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Hands-on: deformable pose and motion
models for spatiotemporal localization of
fine-grained dyadic interactions
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Abstract

We introduce a novel spatiotemporal deformable part model for the localization of fine-grained human interactions
of two persons in unsegmented videos. Our approach is the first to classify interactions and additionally provide
the temporal and spatial extent of the interaction in the video. To this end, our models contain part detectors that
support different scales as well as different types of feature descriptors, which are combined in a single graph. This
allows us to model the detailed coordination between people in terms of body pose and motion. We demonstrate
that this helps to avoid confusions between visually similar interactions. We show that robust results can be obtained
when training on small numbers of training sequences (5–15) per interaction class. We achieve AuC scores of 0.82 with
an IoU of 0.3 on the publicly available ShakeFive2 dataset, which contains interactions that differ slightly in their coordination.
To further test the generalization of our models, we perform cross-dataset experiments where we test on two
other publicly available datasets: UT-Interaction and SBU Kinect. These experiments show that our models generalize
well to different environments.
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1 Introduction
We focus on detecting fine-grained human interactions in
videos. The automated localization of such social behaviors
has a wide range of applications in video search, automated
video captioning, and surveillance. Modeling human inter-
actions from videos is motivated by these applications and
has gained significant research interest in recent years.
Starting from the analysis of individuals performing par-
ticular actions in isolation [1, 2], to actions constrained by
the context in which they occur [3], researchers have begun
to direct their attention to the analysis of human-human
interactions [4, 5] and group actions [6].
In this work, we focus on two-person (dyadic) interac-

tions such as shaking hands, passing objects, or hugging.
The type of interaction in which people engage informs
us of the relationship between them, their activity, and
the social and cultural setting in which the interaction
takes place. For example, we can use this information to
differentiate between friendly and hostile interactions or

to determine whether a person in an elderly home is a
staff member, family member, or unrelated visitor.
Detecting such social interactions in videos involves

several subtasks. First, we need to localize the people
involved. Second, we need to identify who interacts with
whom. Third, for each interaction, we need to determine
the start and end. And finally, we need to assign the
correct class label. These subtasks present challenges.
Variations in appearance due to factors such as lighting
conditions or differences in clothing can make localization
of people more difficult. In addition to these environmen-
tal factors, the variation in viewpoints from which interac-
tions can be observed makes the introduction of a single
visual representation of the interaction challenging.
Important parts of the interaction can be occluded from
certain viewpoints, which make it harder to determine
who are interacting.
We also face challenges in dealing with the performance

of the movement. The visual appearance of different inter-
actions can be similar, which might cause confusions in the
classification of interactions. Finally, dealing with temporal* Correspondence: C.J.vanGemeren@uu.nl
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variations between instances of the same interaction pre-
sents difficulties in marking their start and end points.
A large body of work has emerged to address these chal-

lenges. In recent years, significant progress has been
achieved to make each of these subtasks more robust and
accurate [7]. However, solving each subtask independently
is unlikely to give the best results. Errors made early on,
for instance in the person detection, impact the final
classification because each step depends on the previous.
To overcome this issue, we propose a solution that

addresses all subtasks of the interaction classification
problem simultaneously. We look at the body configura-
tions of the people involved. The solution we propose
benefits significantly from information on limb positions
and movements. We share this view with Jhuang et al.
[8], who have shown that the precision in action classifi-
cation improves with greater accuracy of the limb esti-
mations. Van Gemeren et al. [9] demonstrate that pose
or movement alone is typically not sufficient to distin-
guish between similar interactions. In the example in
Fig. 1, the poses during the handshake and passing an
object look similar, whereas the motion is different. On
the other hand, the movement of passing an object and
a fist bump can both be characterized by two right
hands moving toward each other. In this case, the poses
are different. Therefore, we model both pose and motion
of the body parts that are representative for the inter-
action. Our models are based on the deformable parts
models (DPM) introduced by Felzenszwalb et al. [10].
To model the temporal extent of the interactions, the
detection responses are accumulated over time to gener-
ate spatiotemporal localization tubes.
We focus on human interactions that have a moment

of coordinated contact between the two individuals. Our
work is aimed at distinguishing between interactions
that vary subtly. Therefore, we model the characteristic
pose and motion of relevant body parts at a fine-grained
level. The output of our method is a set of spatiotempo-
ral localization tubes with an assigned interaction label.

Our end-to-end framework for spatiotemporal inter-
action localization aids in the automated analysis of vid-
eos. Instead of just recognizing that a certain interaction
takes place in the video, we recover where and when it
takes place.
We apply our method in a variety of settings. To this

end, we train our models on a modest number of training
videos. We run cross-dataset experiments to test the
generalization of our trained models.
We make three main contributions. First, we present a

novel spatiotemporal DPM that supports both pose and
motion features per part, which enables us to train fine-
grained models that can detect interactions which vary
only subtly. Second, we introduce an end-to-end frame-
work to localize human interactions from video in both
space and time. Third, we show the efficacy of our work
in spatiotemporal localization experiments both on a
single dataset, and in a cross-dataset scenario.
In the next section, we will discuss related work,

followed by a detailed explanation of our method in
Section 3. In Section 4, we detail our experiments, after
which we discuss the results in the Section 5. We con-
clude in Section 6.

2 Related work
Detecting and classifying human actions in videos has
attracted a lot of interest over the past decade. The type of
actions that have been considered typically involve a single
person performing actions such as walking, running, and
hand waving [1]. More recently, researchers have started to
analyze the behavior of multiple people, in groups or pairs
[6, 11]. We focus on the localization of two person interac-
tions that are characterized by the coordination of the
movements and poses of both individuals. We distinguish
between approaches that classify interactions directly from
distributions of image features and those that first detect
faces or bodies and then classify the interaction.
The first efforts that were made consider gross body

movements and employed bag of visual words (BoVW)

Fig. 1 Interactions that differ slightly in pose (HOG) or movement (HOF). The red bounding boxes show the areas of the right hands, with part
descriptors shown on the right
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or vector of locally aggregated descriptors (VLAD).
Local features are pooled in a region and a mapping is
learned from feature distributions to semantic action
labels [12]. To be more robust and to take into account
the local movement of image features, Wang et al. [13]
introduce dense trajectories of keypoints. A dense trajec-
tory is defined as a sequence of keypoint locations over
time. At each point in the trajectory, local gradient and
motion features are calculated, using histograms of oriented
gradients (HOG), histograms of optical flow (HOF), and
motion boundary histograms (MBH) descriptors. These
features can be encoded with a BoVW, VLAD, or using
Fisher vectors (FV) [14].
The main advantage of this approach is that accurate

localization of a person is not required. The approach is
successful in creating discriminative dictionaries of the
movements in the scene which implicitly represent the
interactions. There is no explicit link between the low-
level movement and human body parts. Without such
pose information, discriminative patterns of image
movements are modeled implicitly, for instance using
co-occurring spatiotemporal codewords [15]. To localize
an interaction, additional steps need to be taken such as
clustering dense trajectories [16, 17]. When a sufficient
number of trajectories can be clustered, the volume
created by the set roughly encompasses the interaction.
This approach is less reliable in the presence of other
motions, for example when multiple people interact in
close proximity.
Instead of starting from low-level image features,

another line of approach is to first detect faces or bodies
[5, 18]. Given two close detections, interactions can then
be classified based on extracted features within the
detection region [19]. Recent work in this area has
employed gross body movement and proximity cues for
the detection of interactions. Patron-Perez et al. [5] use
this two-stage approach to classify human interactions
in unsegmented videos. The drawback is that classifica-
tion is suboptimal when the person localization fails, for
example when people partly occlude each other. Yang et
al. [20] improve classification in these cases by building
detectors for various types of physical interactions such
as hand-hand and hand-shoulder touches. The relative
distance between individuals has been further explored
by Sener and İkizler [21], who formulate interaction de-
tection as a multiple-instance learning problem because
not all frames in an interaction are considered inform-
ative. Sefidgar et al. [22] use the same reasoning to cre-
ate a model based on discriminative key frames and
consider their relative distance and timing within the
interaction. In this paper, we focus on physical interac-
tions and analyze them at the level of body parts.
The availability of body pose and, especially, body move-

ment information has been found to increase action

classification performance [8]. Poses and movements of
specific body parts characterize interactions [23]. For
instance, in a fist bump, the arms extend toward each
other and the knuckles of the right hands meet as they
touch (see Fig. 1). This requires the lower arm to be in a
particular pose and to move forward. The positions of the
limbs were first used by Bourdev et al. [24] to detect
people engaged in specific actions in still images. Kong et
al. [25] combine this with motion, forming units of inter-
action. They use attributes such as “outstretched hands”
and “leaning forward torso” and consider their co-
occurrences to characterize interactions.
Some of the attributes might not be informative, such as

the positioning of the feet when performing certain greet-
ings. Kong and Fu [26] consider only those body parts that
characterize the interaction. Their method pools BoVW
responses in a coarse grid. This allows them to identify
specific motion patterns relative to a person’s location, but
the level of detail of the analysis is limited by the granular-
ity of the patches and the accuracy of the person detector.
We also focus on physical interactions, but analyze them
at a finer scale by modeling the precise pose and move-
ments of specific body parts.
Part-based models such as the deformable parts model

(DPM) [10] can be used to detect people in an image and
localize their body parts. These models employ part detec-
tors and impose spatial constraints between these parts.
DPMs are sufficiently flexible to describe articulations of
the body [27]. This enables the detection of key poses
representative of an action [28]. Different body parts can
occur at different depths within an image due to out-of-
plane rotation. The resulting differences in depth make
the affected parts more difficult to detect. Allowing parts
to scale independently from each other can counter this
and has been explored by Dubout and Fleuret [29], who
also modeled scale deformations. This results in a signifi-
cant improvement over using image pyramids.
Yao et al. [30] use DPMs and focus on human-object

interactions. To capture the movement related to a key
pose, they connect the output of a DPM to a set of motion
templates. This formulation works well for the representa-
tion of coarse movements, but the motion templates are
not connected to specific parts of the DPM model. Tian et
al. [31] have extended DPMs for action detection to model
changes in pose over time, using spatiotemporal descriptors
[32]. Parts are deformable in both space and time but,
again, are not connected to specific body parts. As such,
they cannot model detailed motion or pose of a specific
limb. Van Gemeren et al. [9] use interaction-specific DPMs
to locate people in characteristic poses. They then describe
the coordinated movement in the region in between DPM
detections. As there can be significant variation in how
people pose, this two-stage approach strongly relies on the
accuracy of the pose detection.
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DPMs show promising results in action detection.
They are capable of modeling proximity and orienta-
tions. For fine-grained interactions such as those in
social encounters, we need to more effectively model the
coordination between the people involved. To this end,
we introduce a spatiotemporal DPM that encodes the
fine-grained movements and poses of specific limbs
from both individuals involved in the interaction. This
enables us to detect close proximity interactions with
subtle differences in pose and movement.

3 Method
In this section, we introduce our spatiotemporal
localization model for fine-grained interaction localization.
We also detail the procedures for training such a model
on a small set of video examples, and to detect interac-
tions in unsegmented videos.
For human interactions, there is a moment where both

the pose and motion are coordinated in a way that is
characteristic for the interaction: the epitome. At the
epitome, we model the two-person interactions with a
novel DPM formulation. This formulation is based on
Yang and Ramanan [27], who detect articulated poses in
images using a flexible mixture-of-parts model. They
model the pose as a tree of patches connected with
springs. Each patch consists of a set of representations
(mixtures) tuned to different angles and rotations. This
is a variation of the original DPM [10] in which parts
appear on multiple layers, but are not modeled as
mixtures. Yang and Ramanan demonstrate accurate
detections of limb configurations for a wide variety of
human poses. We base our formulation on this model,
but adapt four key properties to make it suitable for the
localization of coordinated human interactions in videos.
First, Yang and Ramanan model body parts in different

orientations using multiple mixtures per part. In our
work, we consider articulations potentially characteristic
for an interaction and therefore model body parts in spe-
cific poses. For example, during a handshake, we model
the upper arms, the lower arms, and the hands in the pose
that is most characteristic for the given interaction. This
representation is reminiscent of the poselets introduced
by Bourdev et al. [24], though they only consider the inter-
action pose, whereas we consider both the pose and its
corresponding motion.
Second, not all parts of the body contribute equally to

the characterization of an interaction. For some parts,
the pose is an important cue, while for others the move-
ment is more important. Therefore, for every part, we
model either pose or motion features, or a combination
of both. This allows us to focus on those aspects that
characterize an interaction.
Third, we model the spatial relation between the body

parts and movements of both persons involved in the

interaction simultaneously. We also model the orienta-
tion and the distance between the two persons during
the interaction. Because we focus on fine-grained inter-
actions that are coordinated in the pose and movements
of particular limbs, we represent the corresponding parts
of both persons in a single tree structure.
Finally, we model the cumulative response space of the

part convolutions as a four-dimensional data structure
that represents scale, time, and 2D space. Dubout and
Fleuret [29] have shown that modeling scale and 2D
feature space as a single three-dimensional response
space improves accuracy, because individual parts can
be scaled independently as opposed to the fixed scales
for all parts in the original DPM formulation. We
follow this rationale and add time to the response space
as a fourth dimension.
With these extensions to [27], we can model fine-grained

interactions that differ only slightly. We use this novel spa-
tiotemporal formulation to detect interactions between two
individuals from video in scale, time, and space.

3.1 Model formulation
To model the pose and motion at the epitome of each
positive training example, we define a graph G = (V, E),
with V a set of K body parts and E the set of connections
between pairs of parts [27]. The body parts we consider
may be compound parts consisting of multiple skeleton
joints, such as a torso, right lower arm, or left upper leg.
A body part is formed by the smallest area surrounding
a given set of skeleton joints, including a margin. For
example, the right upper arm part is contained in the
bounding box surrounding the right shoulder and right
elbow joints, shown as yellow dots in Fig. 2. Each body
part i (1 ≤ i ≤ K) is centered on location li = (si, ti, yi, xi)
within a spatiotemporal feature pyramid. yi and xi repre-
sent the 2D location in the feature space of frame ti, at
layer si of the feature pyramid, at which the part occurs.
The scoring for a part configuration in image I is

given by:

SðI; lÞ ¼ ϑsð
X
i∈V

wi � ϕiðI; liÞÞ þ
X
i j∈E

wi j

� ψðli−l jÞ ð1Þ

The first term models the part appearance with a con-
volution of image feature vector ϕiðI; liÞ with trained de-
tector wi. After convolution, the result is resized by ϑs.
For clarity, we omit that the scores are defined by the
dot product between a part and a sub-window of a
feature pyramid computed from the input image. The
second term contains the pairwise deformations between
parts ψ(li − lj) = [ds ds2 dt dt2 dy dy2 dx dx2], with
ds = si − sj, dt = ti − tj, dy = ri si yi − rj si yj and dx = ri si
xi − rj sj xj, the relative location and scale of part i
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with respect to part j [27]. Note that the distances dx
and dy for part i and j are defined with respect to a
root level factor r, scaled by s which is derived from
the pyramid layer at which the deformation takes
place. We allow each part to have its own spatial
resolution. r compensates for the resolution difference
between i and j that occurs when parts have a differ-
ent spatial resolution. In practice, we only allow two
different resolutions. This allows us to quickly find
candidate detections for some parts at a coarse level, on
which a localization of fine-grained pose and motion cues
at double the resolution can be detected for other parts. s
on the other hand compensates for the scale difference
between i and j, that occurs because we scaled re-
sponses wi � ϕiðI; liÞ by ϑs.
We do not allow scaling in this way for ds and dt. ds

deals with deformations between responses from differ-
ent pyramid layers. Allowing parts to move independ-
ently in this dimension causes mismatches between the
lattices of part locations at different scales. This happens
when the size difference between two consecutive layers
is non-integral. Dubout and Fleuret solve this by
approximating the root position of a part by rounding it
to its closest integral position [29]. We take a slightly
different approach. Instead of rounding the part location

at the root position, we scale Σi ∈ V wi ψ(li − lj) by ϑs,
which is the factor by which the original input in layer s
of the feature pyramid was scaled. As a result, each fea-
ture response at a layer of the pyramid becomes a scale
space response with the same spatial dimensions. This
has the advantage that at each scale the spatiotemporal
response space can be concatenated into a single four-
dimensional spatiotemporal response matrix. wij encodes
the deformation error of the connection between parts i
and j. The deformation function ψ(li − lj) can now be
applied on each dimension independently and in linear
time with the number of part locations, the same way as
it was applied in the original DPM implementation [10].
The chosen structure keeps the model suitable for
cascade object detection [33] in which the detection
process at a certain image location can be stopped early
if a cumulative response score threshold is not met after
processing a particular part.
The four key extensions to this model are defined as

follows.

3.1.0.1 Class-specific part detectors We learn class-
specific detectors that encode the characteristic articula-
tions or movements of the body parts directly. Examples
are a right-facing torso or an upwards moving lower arm.
Therefore, we use a single detector per class, instead of a
mixture of part detectors as in [27]. We base this choice
on [24] who train articulated poses and obtain good
results in a pose detection task. The main difference with
[24] is that we train both pose and motion in this manner.
So, in addition to a pose representing the epitome of the
interaction, we simultaneously model the fine-grained
movements of relevant body parts.

3.1.0.2 Multiple features Our model supports different
types of features per part.
For part i with feature representations Di, we replace

the first term in Eq. 1 by:

ϑs
X
i∈V

X
j∈Di

bijw
j
i � ϕ j

i I; lið Þ
 !

ð2Þ

ϕ j
i ðI; liÞ denotes a feature vector of type j for part i. w j

i

is the trained detector for part i and feature type j. Parts
can have different combinations of features Di. In this
work Di is HOG, HOF, or MBH, but it is not limited to
these features. In fact, the DPM inference algorithm is
well suited to incorporate a learned feature extractor
such as convolutional neural networks (CNN) [34, 35].
As such, our formulation is different from Yao et al.
[30], who require one HOG template and a set of HOF
templates per body part. In contrast, our model allows
us to focus on those features that are characteristic for a

Fig. 2 Interaction with superimposed pose data. Green: right side, red:
left side
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specific body part and interaction class. We explicitly
also consider features that are calculated over time such
as HOF descriptors. Bias bij denotes the weight for each
feature type Di, to emphasize the gradient properties of
the pose (HOG) or the movement direction (HOF or

MBH) of part w j
i .

3.1.0.3 Two-person interaction As there are two per-
sons involved in a dyadic interaction, we combine their
body parts in the same graph (see Fig. 3). Each actor’s
body parts form a sub-tree in this (2 K + 1)-node graph.
The torso parts of both actors are connected through a
virtual root part of the graph. This part does not have an
associated part detector but it allows us to model relative
distances between people, similar to Patron-Perez et al. [5]
and Sener and İkizler [21]. We enforce that the size of the
virtual root part is equal to the size of the entire dyad of
bodies, regardless of the locations and sizes of the associ-
ated part detectors. This compensates for the fact that
during localization we are interested in a tube that encom-
passes the entire interaction, as opposed to just a hull
surrounding the modeled parts. Finally, a combined graph
allows us to stop the detection process at that location
early when only one suitable person is found in the dyad.

3.1.0.4 Independent spatiotemporal part modeling
Each part can be independently scaled and spatiotempo-
rally transformed, to best fit the interaction that is being
modeled. This results in an extremely flexible deform-
able parts model capable of capturing fine-grained differ-
ences between different interaction types.

3.2 Training
For each interaction class, we learn a deformable model
from a set of training sequences. We describe a sequence
of length n as X ¼ fðI i; yi; piÞgni¼1 with Ii an image frame,

yi the interaction label of frame i, and pi a vector contain-
ing the 2D joint positions of the two people performing
the interaction.
We train the interaction model in three steps. First,

we determine the epitome for each training sequence.
Second, we learn the initial body part detectors and
assemble the body parts into the initial pose and motion
model. Third, we simultaneously update the epitome
and the body part detectors.

3.2.0.1 Epitome detection At the epitome, the people
engaged in an interaction pose in a way that is represen-
tative for the interaction. We first find the epitome
frame for each positive training sequence. We define the
epitome as the pose with the smallest pair-wise differ-
ences to other training sequences. We thus find a set of
similar frames, one per sequence. To determine these
epitome frames, we iterate over the training sequences
in a random order. At each iteration, we compare the
pose in the current frame, the seed pose, to all poses in
the other sequences’ frames. We assign the frame with
smallest Euclidean distance between the seed pose and
the other frames’ poses as the epitome. This results in a
set of epitomes of which we can calculate the cumulative
pose difference. We select the set of epitomes with the
smallest cumulative pose difference.
We normalize the distances between the joints based

on the spine length to compensate for differences in
scale. Furthermore, we translate the set of compared
joints so they overlap as much as possible with the seed
pose. We can efficiently calculate the scaling and the
translation with a 2D adaptation of the Kabsch algo-
rithm [36]. For translation, we have a set consisting of k
two-dimensional points that represent body joints: K
= ((x1, y1), …, (xk, yk)), with mean ðx; yÞ . We translate
these points such that their mean is at the origin, giving

Fig. 3 Graph of the part configurations of our model. Both persons share the same virtual root part which encompasses the entire dyad

van Gemeren et al. EURASIP Journal on Image and Video Processing  (2018) 2018:16 Page 6 of 16



points ðxi−x; yi−yÞ (1 ≤ i ≤ k). After translation, we per-
form uniform scaling by s:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σk
i¼1 xi−xð Þ2 þ yi−yð Þ2

k

s
ð3Þ

We do not perform rotation normalization because the
orientation of the limb is informative of the interaction.
Based on the summed joint distances with the best seed

frame, we find corresponding epitome frames in other
sequences of the same interaction. These sequences are
labeled as prime if the normalized joints distance is below
0.5, and inferior otherwise. We thus obtain two sets of
sequences with epitome frames: one set where the poses
are much alike and one where the differences between the
poses are bigger.

3.2.0.2 Initial model learning After finding the epit-
omes for each positive example of a certain interaction
class, we use the prime sequences to train body part

detectors w j
i . We specify beforehand, for each part, the

type Di, spatial resolution r and temporal extent τ.
Parameter r indicates the cell size. For movement
descriptors, τ dictates how many frames around the epit-
ome are used.
For the body parts of both individuals in the interaction,

we optimize ϕ j
i ðI; liÞ and bij using dual coordinate descent

SVM (DCD SVM) solvers [37]. We create a set of detec-
tors for each part. After this positive optimization round,
we perform a round of negative hard data mining [10] for
each detector. We harvest negative examples in random
frames of the Hannah dataset [38]. This allows us to
optimize each detector to maximize its response score for
target interactions, while minimizing the scores of patches
that do not depict any interaction of interest.

3.2.0.3 Epitome and model refinement We then
optimize deformation parameters ψ(li − lj) in Eq. 1, as

well as its features ϕ j
i ðI; liÞ in Eq. 2, in a latent manner.

We apply the model (Eq. 2) on the complete set of posi-
tive training examples. This results in an updated positive
example set that accounts for more variation, while the
negative impact of the less-than-perfect training data is
largely avoided.
We assemble the interaction model from the individual

part detectors. The placement of the parts is based on the
joint locations of the poses at the epitome. Once the initial
model is constructed by anchoring all interaction model
parts at their relative positions, we apply it to both prime
and inferior training sequences of the particular class to
detect new latent positive interaction examples. We search
for the highest scoring frame in each sequence to add to
the positive example set. This frame is the new epitome
for that positive example. Given that the initial epitome
frames are selected solely based on pose, this step allows
us to better represent the motion of the body. The result-

ing positive example set is used to optimize ϕ j
i ðI; liÞ; ψðli

−l jÞ and bij using the DCD SVM solvers. Examples of
trained models are shown in Fig. 4.

3.2.0.4 Platt scaling of the classification output A
common problem with the classification scores of SVM
solvers is that the output is susceptible to large numbers
of false positives. This is because max margin methods,
such as SVMs, tend to produce scores distributed around
the − 1 to 1 range. We would like to compress the scores
of the false positives at the lower end of the SVM classifi-
cation scores, and those of the true positives at the higher
end. To achieve this, we estimate the posterior probabil-
ities as a sigmoid loss function using Platt calibration. We
calibrate the sigmoid loss function by testing the model

Fig. 4 Trained interaction models. The parts outlined in red represent the gradient features of the right hands. Below the part model, we show the
motion features of these parts. a Fist bump. b Handshake. c High five. d Pass object
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on a set of cross-validation examples taken out of the
training set before optimizing the model. The minimal
amount we take out is four training examples. The result-
ing scores are split into positive and negative candidates
by determining, for each candidate location in the training
example, whether it was a true or false positive. True posi-
tives correspond to those locations within the annotated
spatiotemporal ground truth. We use the resulting score
sets to calibrate the posterior probabilities.
Because we look at the locations of the candidates

with respect to the spatiotemporal ground truth of the
positive examples, we can keep track of the positive
scores of the candidates at the start, epitome, and end of
each interaction. Naturally, the scores at the epitome are
very close to 1.0 after scaling. The scores at the start and
end of each interaction are significantly lower. We use
these scores to estimate the duration of the interaction.

3.3 Spatiotemporal localization
A trained model can be used to detect an interaction as a
spatiotemporal tube within a video that contains one or
more occurrences of the interaction of interest. We first
create a set of candidate epitome detections and construct
the localization tubes from these candidates.
To speed up the process, we consider only every fourth

frame. We first generate a feature pyramid of the types in
D to detect interactions at various scales. The number of
layers in the pyramid depends on the frame size of the
video. In detection, we halve this size every ten layers,
until it is smaller than the size on which the model can
perform detections. We use dynamic programming to
make the feature descriptions of a given type available to
all relevant model parts. For each scale, we thus only
calculate the feature description and model responses
once. The pyramids deal with feature types that take into
account multiple frames, such as HOF, by creating
descriptions for τ consecutive frames at each layer.
We generate a set of spatiotemporal detection candi-

dates spanning the entire video. We scale each candidate
score by applying the sigmoid function obtained from
Platt calibration. Finally, we remove spatially overlapping
detections at the same temporal location, using non-
maximum suppression. Each of the remaining candidates
represents a potential epitome for the interaction of inter-
est with a scaled response score S(I, l) (Eq. 1).
The next step is to construct tubes from the set of

candidate detections. The highest scoring candidates are
likely to correspond to the epitome of the interaction.
Non-prototypical interaction poses and movements are
likely to give a lower response to the interaction
localization model. Consequently, we can find candidates
that are part of the interaction before and after the epit-
ome at nearby locations in the spatiotemporal response
function. We therefore look for subsets of consecutive

high-scoring detections that have significant spatial over-
lap to create the localization tubes (Fig. 5).
Our response function is four-dimensional. Because

we apply the deformation function on each dimension,
we can find spatiotemporal blobs that represent the spa-
tiotemporal extent of each interaction. During the cali-
bration of the Platt scaling function, we recorded the
scores at the edges of the spatiotemporal ground truth,
after scaling. We use the mean scores of the start and
end of the ground truth tubes to determine when a tube
starts and when it ends, with respect to the detected
epitome location.
In the response space, we aim to extract tubes that

contain the interaction of interest. Temporally, the
response space contains gaps because we only test every
fourth frame. First, we create a continuous response
space by interpolating all the response scores between
consecutive frames. Second, we find the best scoring
detection and look at the size of the bounding box. We
consider this detection as the epitome frame and store
the detection’s score and size. Instead of relying on the
candidate detections, which occur only every fourth
frame, we use the continuous response space to find the
location of the interaction in each frame by interpolating
between detection frames. We then add neighboring
frame segments backwards and forwards in time. Itera-
tively, we project the bounding box to a neighboring
frame. Within this area, we center the bounding box on
the highest value in the response space. We continue
this process as long as the overlap between two subse-
quent bounding boxes is at least 50% and the score of
the newly added segment is higher than the mean tube
edge scores obtained during training.
After creating a tube, we remove all candidates that

spatially overlap with it for more than 50%. The tube
creation process stops when all candidates have either
been converted to tubes or have been erased. As a final
step, we remove tubes that are shorter than τ frames.
Using the response space instead of directly relying on

detection candidates is beneficial for three reasons. First,
there can be missing detections, for example as a result
of background motion, or partial occlusions. This situ-
ation complicates linking detections over time. Using the
response space, missing detections can be bridged by
interpolation, as neighboring detections ensure that the
sub-volume is sufficiently covered. Second, the start and
end of a tube does not have to match with the tested
frames that have temporal gaps between them. By inter-
polating between these frames, we can more accurately
find the start and end of the interactions. Third, we can
detect interactions with varying durations, even those
that differ significantly from those seen during training.
This is a desirable characteristic, especially for cyclic
interactions such as handshakes.
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4 Experiments
Research on interaction recognition considers assigning
labels to video sequences that are segmented in both
space and time. In contrast, we focus on the more chal-
lenging task of spatiotemporal localization from unseg-
mented videos. In addition to correct classification, this
requires finding the subspace in the video containing
interactions of interest.
To experiment with interactions that are visually simi-

lar, we use the recently introduced ShakeFive21 dataset
[39]. We test the generalization of our models using
cross-dataset experiments. We train our models on
ShakeFive2, and apply them to the unsegmented videos
of the interaction datasets UT-Interaction [4] and SBU
Kinect [40].

4.1 Datasets
We briefly describe the three publicly available datasets
that are used in this paper.
ShakeFive2 consists of 94 videos recorded at 30 frames

per second, with a resolution of 1280 × 720 pixels. The
videos feature five close proximity interactions: fist bump,

handshake, high five, hug, and pass object. Each video con-
tains one two-person interaction, recorded under con-
trolled settings but with small variations in viewpoint (see
Fig. 6). For each person in each frame, 2D joint position
data obtained using Kinect2 is available. Interactions are
labeled per frame.
UT-Interaction consists of two sets of 10 videos each,

recorded at 30 frames per second with a resolution of
720 × 480 pixels. The first set features at most two inter-
acting persons at each moment, while the second set con-
tains multiple pairs of people interacting simultaneously.
The following interactions are performed: handshake, hug,
kick, point, punch, and push. No pose data is available and
we use the bounding box data from [21] as ground truth.
SBU Kinect involves two actors performing one inter-

action per video in an indoor setting. The videos were
recorded using a Kinect at 15 frames per second and a
resolution of 640 × 480 pixels. The interactions are hand
shake, high five, hug, pass object, kick, leave, punch, and
push. Pose data, obtained with a Kinect, is provided but
is not always accurate. From the 260 videos, we exclude
42 with incorrect pose data.

Fig. 5 Example frame of a handshake interaction (a). The Platt response space appears in (c). The localization tube is shown in (b), projected on the
epitome frame. a Video frame with ground truth box (light blue). b Final detection tube. c Platt response space with the ground truth bounding
volume (dashed)
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While both ShakeFive2 and UT-Interaction are recorded
at 30 fps, SBU Kinect has a frame rate of 15 fps. During
localization, we can modify the temporal extent of the
model by dividing τ by two. Combined with skipping half
as many frames while processing a video, we can compen-
sate for this difference in frame speed.

4.2 Performance measurements
We detect interactions in both space and time and use
the average intersection over union of the ground truth
G and detected tube P as in [17]. G and P are two sets
of bounding boxes and θ is the set of frames in which
either P or G is not empty. The overlap, expressed as the
intersection over union (IoU), is calculated as follows:

IoU G; Pð Þ ¼ 1
θk k
X
f ∈θ

Gf ∩P f

G f ∪P f
ð4Þ

We evaluate different overlap thresholds σ for which
IoU (G, P) ≥ σ and report the mean area under the curve
(AuC), which is a measure for the average precision over
all interactions in each fold and each interaction. In the
evaluation, we compare against a ground truth which
has bounding boxes of the full body. Therefore, we com-
pare its spatial size to the size of the virtual root part,
which was scaled to represent the spatial size of the
interaction dyad during training. We use the relative
location and scale of this part to account for the
increased height of the ground truth if only part of the
body is modeled.
To analyze confusions between pairs of classes, we use

a difference mean average precision (d-mAP) multi-class
confusion matrix [39]. Each score in this matrix indi-
cates how much of the AuC for a given class is lost to
another class.

4.3 Experimental setup
To test the performance of a model on a given video, we
process every eighth frame. Our models have a temporal

extent of τ = 15 frames, which means there is a temporal
overlap between candidates of seven frames. In an
unsegmented video, we find all candidate detections as
described in Section 3.3.
We consider two testing scenarios: single class (SC) and

multi-class (MC). For single class localization, we apply a
detector for a given interaction to test videos for that class
only. This scenario measures the spatiotemporal
localization accuracy. In the multi-class scenario, we use
the detector on all available test sequences in a dataset.
This allows us to test for confusions with other interac-
tions. In this scenario, we measure the response from the
model on interactions of the target class and distractor
classes. False positives occur when responses from a
distractor class score higher than the responses from the
target class. This common situation will lead to a lower
precision as we do not compare or filter these detections.

4.3.1 Baseline comparison
We compare our method to a baseline using a codebook
consisting of dense trajectories [13] and Fisher vectors
(FV). This approach has achieved state-of-the-art per-
formance in the localization of individual human actions
[17]. We largely follow [14]. During training, we obtain a
set of dense trajectories over all relevant parts in all
videos of a given interaction class. The vector length of
each feature type (HOG, HOF, and MBH) in the dense
trajectories is halved using principle component analysis.
We encode all trajectories into a Gaussian mixture
model (GMM) with K = 256 clusters and a codebook size
of 256 k trajectory keywords. We use FV in a straightfor-
ward manner. The length of each Fisher vector is deter-
mined by F = 2KD, with D the number of dimensions of
the concatenated feature descriptors from the dense
trajectories. With the resulting codebook, we train a
linear support vector machine (lSVM).
At test time, we encode a video with dense trajectories.

We then create sets of trajectories that represent subsec-
tions of the video. We use a sliding window on every eighth

Fig. 6 Example frames from ShakeFive2, SBU Kinect, and UT-Interaction. Top row: handshake, bottom row: hug
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frame to determine the subsections. A dense trajectory is
selected when it intersects with a subsection. We filter out
sets that are empty or that contain the same trajectories.
We use the codebook to encode subsections and classify
them with the lSVM.

5 Results and discussion
We first evaluate the performance of our method on
ShakeFive2 with different model configurations. Then we
look at parameter settings, training strategies, and the
amount of training data. Finally, we evaluate the perform-
ance of our models in two cross-dataset experiments.

5.1 Model feature configurations
We test the HOG, HOF, HOGMBH, HOGHOF, and
HOGHOFMBH models on the ShakeFive2 dataset. We
compare against the baseline of dense trajectories with
Fisher vectors (FV). We refer to the five interactions as
FB (fist bump), HS (handshake), HF (high five), HU
(hug), and PO (pass object). We use a minimal overlap
between the detected tube and the ground truth volume
(Eq. 4) of 30% (σ = 0.3). The AuC is obtained using the
mean of a four-fold cross-validation. In Fig. 7, we show
IoU (G, P)-diagrams for varying σ (Eq. 4) for the four
different models. Results for the SC and MC scenarios
are shown in Table 1.
In the baseline FV experiment, we have purposely

omitted using a feature pyramid. We select the number
of dense trajectories suitable for the scale at which the
interactions take place. This eliminates false detections
at different scales. Even with this advantage, FV does not
perform well in both the SC and MC scenarios. We
believe this is mainly due to the limited amount of data
that the codebook and the SVM are trained on. The
fine-grained differences between the different interac-
tions are not captured well by the dense trajectories.
Given the superior performance on human action detection
[17], the lower scores for the detection of fine-grained
interactions suggest that not explicitly modeling the coord-
ination between people is disadvantageous.

When tested only on videos of the same class, the
HOGHOFMBH model outperforms all other model
configurations. This demonstrates that interactions are
more accurately detected by a combination of pose and
motion information. When additional sequences of other
interactions are tested (MC), we notice a drop for all
models but only marginally for HOGHOFMBH. Espe-
cially when relying only on pose information alone in
the HOG model, the confusion between interactions
increases. The HOGMBH model does not really improve
performance over the HOG model. And although the
HOGHOF model improves performance slightly more,
the most dramatic improvement is caused by the com-
bination of all three feature types.
There are differences in performance between interac-

tions. Handshakes are detected robustly by all our models.
Hugs are detected significantly worse than other interac-
tions. Especially when the model does not employ all
feature descriptors, the performance is very bad. This can
be attributed to the inaccurate pose information in the
training data as a result of frequent occlusions. Despite
modeling pose and motion, there are still significant visual
similarities between, for instance, a hug and a distractor
class. Because the subjects approach each other, their gross
body movement is also similar. As the limb placement is
not very well captured by the hug model, we can under-
stand why a false positive like the right image in Fig. 8
occurs. Additionally, training the parts as poselets for each
individual will prove very difficult even with sufficient
amounts of properly annotated data. Because of the
minimal distance between the subjects during the hug,
there is little coordination between them, which makes it
hard to gather useful pose features during training.

5.2 Confusions
In the multi-class setting, we investigate how often inter-
actions are confused. Table 2 presents the d-mAP scores
on ShakeFive2 for HOG and HOGHOFMBH. For the
HOG model, there are many confusions. Pose information
alone is not sufficient to distinguish between interactions

Fig. 7 Mean AuC over all interactions using four-fold cross-validation in the SC (left) and MC (right) scenarios of ShakeFive2
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that differ slightly in temporal coordination: handshake,
fist bump, and pass object. The number of confusions for
the HOGHOFMBH model is much lower. The additional
motion information can be used to avoid misclassification
between visually similar interactions.

5.3 Amount of training data
The HOGHOFMBH models achieve good localization
performance despite being trained on a small number of
example sequences. Here, we test the performance of the
model when trained on different numbers of sequences.
In different cross-validation configurations, we train on
examples from a single fold and test on all other folds. By
switching training and test folds, we can test our models
on all examples in a single fold, after training them on all
other folds. We evaluate both assignment configurations
for four folds, and we evaluate two folds. Our scheme
results in 15, 10, and 5 training examples and 20, 50, and
75 test examples, respectively.

Figure 9 shows the AuC. Performance goes up with the
number of training examples. The difference between 15
and 10 sequences is very small and suggests that satur-
ation occurs at a low number of training sequences. This
is advantageous as obtaining training sequences with pose
data might be difficult, especially when many interactions
are considered.

5.4 Cross-dataset evaluation
In this section, we investigate how well our models
generalize by testing on different datasets. We train models
using all available examples from ShakeFive2.

5.4.1 UT-Interaction
We evaluate the HOGHOFMBH models on the UT-
Interaction dataset. When we apply our model to an en-
vironment not seen before, the lSVM classification scores
are significantly lower. This results in a negative shift on
the Platt scale, which causes both positive and negative
detections to fall on the lower end of the sigmoid function,
resulting in bad performance. We solve this by rescaling
the response scores with the Platt algorithm using a leave-
one-out cross-validation on the UT-Interaction data set.
We report the mean AuC with a minimal overlap between
the detected tube and the ground truth volume (Eq. 4) of
10% (σ = 0.1), because the cut-off point is lower for these
results.

Table 1 Mean AuC using four-fold cross-validation on ShakeFive2
with σ = 0.3

SC/MC FB HS HF HU PO Avg.

FV SC 0.02 0.04 0.02 0.03 0.02 0.03

HOG SC 0.53 0.66 0.76 0.01 0.70 0.53

HOF SC 0.18 0.64 0.30 0.05 0.03 0.24

HOGHOF SC 0.74 0.92 0.83 0.10 0.47 0.61

HOGMBH SC 0.70 0.65 0.83 0.05 0.63 0.57

HOGHOFMBH SC 1.00 0.95 0.95 0.43 0.79 0.82

FV MC 0.01 0.03 0.02 0.03 0.01 0.02

HOG MC 0.43 0.51 0.76 0.01 0.49 0.44

HOF MC 0.15 0.62 0.21 0.05 0.02 0.21

HOGHOF MC 0.64 0.80 0.60 0.10 0.36 0.50

HOGMBH MC 0.58 0.54 0.83 0.04 0.49 0.50

HOGHOFMBH MC 0.96 0.93 0.94 0.43 0.70 0.79

Fig. 8 True positive hug localization (score 0.94) (left). False positive localization of a hug with two persons about to cross each other after a
distractor interaction (score 0.36) (right)

Table 2 d-mAP scores for the HOG (left) and HOGHOFMBH
(right) models on ShakeFive2. In columns the true class, in rows
the tested class

FB HS HF HU PO FB HS HF HU PO

FB 0.26 0.17 0.11 0.17 FB 0.02 0.01 0.00 0.02

HS 0.11 0.02 0.03 0.17 HS 0.01 0.00 0.01 0.04

HF 0.14 0.13 0.13 0.13 HF 0.00 0.01 0.02 0.00

HU 0.52 0.52 0.52 0.51 HU 0.18 0.19 0.19 0.18

PO 0.17 0.24 0.02 0.01 PO 0.09 0.14 0.05 0.05
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Ours, and previously reported results are summarized
in Table 3. A direct comparison with other works is diffi-
cult for a number of reasons. First, we report localization
results only for handshake and hug, the two interactions
shared between ShakeFive2 and UT-Interaction. Second,
we report spatiotemporal localization results, whereas
other works consider a recognition scenario. In the latter
setting, volumes segmented in space and time are classi-
fied. Third, we train our models on a different dataset.
Our cross-dataset results show promising scores for

both the SC and MC evaluations. Not only is our metric
strict on the measurement of spatiotemporal overlap with
the ground truth, it also takes into account whether or not
the tube label is of the correct interaction class. From our
results, we can conclude that we are capable of localizing
interactions of interest with reasonable accuracy, although
we do obtain a moderate number of false positive localiza-
tions for visually similar interactions.
We note higher scores for hug than for handshake. This

is because most interactions occur with similar inter-
personal distance, except for hug. Approaching each other
to perform a hug is visually similar to a handshake, as can
be seen in Fig. 10. Therefore, it is easier to confuse a hug
or a push for a handshake, than the other way around.
The d-mAP scores on the UT-Interaction data in Table 4

show that the hug interaction is rarely confused with other
interactions. The pose of the bodies with respect to each
other seems to be sufficiently different compared to the
other interactions. There are more confusions in the

classes where the two persons have an extended arm, such
as handshake and push.
Our method has more difficulties with set two for the

handshake interaction, which contains more occlusions
when people walk behind each other. These cause occa-
sional confusions between interaction classes. We note
that for the hug interaction, we obtain higher scores
with set two than with set one. We believe this is caused
by the camera angle. Set two is filmed with a vertical
orientation that is comparable to the perspective in
ShakeFive2, while set one is filmed from a higher per-
spective (see rightmost top and bottom images Fig. 6).

5.4.2 SBU Kinect
Table 5 summarizes the performance on SBU Kinect [40].
We have tested the “noisy” variation of this dataset using
the HOGHOFMBH model after recalibrating the Platt scal-
ing using four-fold cross-validation.
We obtain near perfect scores for handshake in the SC

and MC scenario even though we did not train on this
dataset. For higher values of σ, our method remains
close to perfect up to σ = 0.3. This is partly because the
videos of SBU Kinect are cropped right to the moment
the interaction takes place. As there is no start or end to
the interactions, there are fewer false positives due to
overestimations in the temporal domain.
We compare our results on spatiotemporal localization

to reported classification scores. Yun et al. [40] use pose
features and obtain 75, 61, and 85% recognition accuracy
for the handshake, hug, and pass object interactions,
respectively. If we interpret our MC results as a measure
for classification accuracy, our performance is slightly
better for handshake but lower for hug and pass object.
Still, our method does not require prior segmentation in
time and space.
The d-mAP scores for SBU Kinect in Table 6 reveal that

handshake (HS) hardly has any confusions. Hug (HU) has a
moderate number of confusions, mainly with pass object
(PO) and punch (PC). Pass object (PO) has a high number
of confusions with all other classes. On closer inspection of

Fig. 9 Mean AuC over all interactions using four-fold cross-validation with different numbers of training sequences, for SC (left) and MC (right)

Table 3 Single-class (SC) and multi-class (MC) AuC for UT-
Interaction (left). Classification accuracies reported on UT-
Interaction (right). Reported values are for σ = 0.1

Set HS HU Avg. Method Avg. (%)

SC #1 0.64 0.65 0.70 Raptis and Sigal [28] 100

#2 0.59 0.93 Ryoo [18] 85

MC #1 0.54 0.52 0.61 Sener and İkizler [21] 100

#2 0.46 0.93 Zhang et al. [15] 100
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the videos of both SBU Kinect and ShakeFive2, we notice
that there is a significant difference in the type of object
that is passed on. This introduces a bias during training
that eventually reduces generalization. It seems this can be
solved by using more varied training data.

6 Conclusions
We have introduced a novel spatiotemporal deformable
part model for the localization of two-person interactions.
We combine pose and motion by means of HOG, HOF,
and MBH to represent the fine-grained body part coordin-
ation of two persons. Our models localize the epitome of
the interaction, which we expand temporally to form
tubes that cover the duration of the interaction. With this
approach, we are the first to address spatiotemporal
localization of interactions. We cannot only say whether
an interaction has occurred, but also recover its spatial
and temporal extent.
We train an interaction model from only a few videos

with pose information. We find that models that combine
HOG, HOF, and MBH features perform best on the
ShakeFive2 dataset, which contains interactions that vary
subtly. We achieve AuC scores of 0.82 with an IoU of 0.3.
In the presence of visually similar interactions, a combin-
ation of pose and motion information reduces the number
of misclassifications. The generalization of our approach to

different settings is demonstrated in cross-dataset experi-
ments on the UT-Interaction and SBU Kinect datasets.
Our method is appealing for several reasons. First, we

can perform spatiotemporal localization on unsegmented
videos. Second, we require only a modest number of train-
ing examples (10–15) to learn robust models. Third, our
model formulation is flexible enough to incorporate differ-
ent features and part configurations, so other interaction
classes can be easily trained.
Despite its good performance, the method has some limi-

tations. Most importantly, the temporal extent of the inter-
action is difficult to estimate with our method because we
train our models on the epitome of an interaction, which
covers only a small part of it. We rely on the degradation of
the detection score with respect to the epitome to estimate
the duration of the interaction. This is not the optimal way
of modeling an interaction’s start and end point. It may be
helpful to explicitly model these poses in a mixture model
that represents the onset and ending, as well as the epitome
as separate model components.
Second, we rely on pose information during training.

When this information is inaccurate, the trained model is
suboptimal and produces more false positives. Eliminating
the dependency of pose data could help to avoid this issue,
while at the same time making our approach applicable to a
variety of datasets. Another source of false positives is com-
monly occurring detections from multiple overlapping
interaction models. We could eliminate duplicate detections
by comparing the detections of the interaction models.

Fig. 10 True positive handshake localization (score 0.65, spatiotemporal overlap with ground truth 42%) (left). False positive localization of a handshake
when two persons are just about to hug (score 0.67) (right)

Table 4 d-mAP scores for the HOGHOFMBH models on UT-
Interaction. In columns the true class, in rows the tested class.
Addition interactions from UT-Interaction include kick (KI), point
(PT), punch (PC), and push (PS)

HS HU KI PT PC PS

HS 0.21 0.22 0.17 0.13 0.16

HU 0.08 0.08 0.10 0.07 0.11

Table 5 Single class (SC) and multi-class (MC) AuC for SBU
Kinect at σ = 0.1

SC/MC HS HU PO

HOGHOFMBH SC 0.99 0.63 0.21

HOGHOFMBH MC 0.87 0.20 0.06
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Third, our method uses hand-crafted features, such as
HOG, HOF, and MBH. These features may produce sub-
optimal region proposals for the body parts of the model.
We can improve them by using techniques that do not
rely on hand crafted features, such as Faster R-CNN [35].
Finally, our models only handle a single perspective.

We would like to include multiple perspectives into our
models to improve viewpoint independence.
Together, we envision that these improvements bring

closer the automated spatiotemporal localization of a broad
range of social interactions in unconstrained videos. This
will allow for the automated analysis of TV footage and
web videos. Moreover, we aim at the application of our
work in dedicated social surveillance settings such as in
public spaces and elderly homes.

7 Endnotes
1ShakeFive2 is publicly available from http://www.pro-

jects.science.uu.nl/shakefive
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