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Abstract

This paper presents a novel stereo matching algorithm Cyclops2. The algorithm produces a disparity image, provided
two rectified grayscale images. The matching is based on the concept of minimising a weight function calculated
using the absolute difference of pixel intensities. We present three simple and easily parallelizable weight functions.
Each presented function gives a different trade-off between algorithm processing time and reconstructed depth image
accuracy. Detailed description of the algorithm implementation in CUDA is provided. The implementation was specifically
optimised for embedded NVIDIA Jetson platform. NVIDIA Jetson TK1 and TX1 boards have been used to evaluate the
algorithms. We evaluated seven algorithm variations with different parameter values. Each variation results in a different
speed accuracy trade-off, demonstrating that our algorithm can be used in various situations. The presented algorithm
achieves up to 70 FPS processing time on lower resolution images (750 × 500 pixels) and up to 23 FPS on high-resolution
images (1500 × 1000 pixels). The use of optional post-processing stage (median filter) has also been investigated. We conclude
that despite its limitations, our algorithm is relevant in the field of real-time obstacle avoidance.
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1 Introduction
The rapid advance of computational power has had a sig-
nificant influence on the development of autonomous
vehicles. Over the last decade, unmanned aerial vehicles
(UAVs) and unmanned ground vehicles (UGVs) have been
reaching higher degrees of autonomy, deploying more
complex algorithms and sensors. Nonetheless, obstacle
avoidance remains a challenge when considering real life
applications. There are several types of sensors commonly
used for 3D environment sensing and obstacle avoidance,
such as light detection and ranging (LIDAR), structured-
light, Time-of-Flight (TOF) and stereo cameras.
One of the most popular structured-light sensors often

used in research is Microsoft’s Kinect. Structured-light
sensors project known patterns onto the environment in
order to estimate scene depth information. Structured-
light sensors have successfully been used to solve many
computer vision problems in indoor environments [1].
However, this approach has several limitations, namely

structured-light sensors do not work in direct sunlight
and they have a limited detection range of 5 m.
TOF cameras, on the other hand, are less affected by

direct sunlight because they use modulated light. Some
TOF cameras have longer range than structured-light
cameras but at the cost of increased power consumption.
Another limitation of TOF cameras is low resolution of
currently available sensors. The main advantage of TOF
cameras is their very high frame rate (usually more than
100 Hz) [2].
LIDAR sensors, on the other hand, are often used in

outdoor environments. These types of sensors have high
accuracy and offer working ranges of up to 100 m. Main
disadvantages of 3D LIDAR sensors are their low vertical
resolution (for example 16 vertical channels) and very
high price.
All of the discussed sensors are active, meaning they

emit light rays in order to determine distances to objects
in the environment. The biggest disadvantage of active
sensors is their power consumption. Actively emitting
light requires a lot of energy. Microsoft’s Kinect sensor
consumes approximately 15 W of power. Stereo cameras
are passive sensors; therefore, they consume less energy.
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For example, stereo camera ZED from StereoLabs con-
sumes only 2 W of power. Moreover, stereo cameras can
adapt better to changing environment lighting condi-
tions by controlling its gain and exposure parameters.
Another advantage of passive sensors is that multiple
sensors operating in the same environment do not inter-
fere each other.
Stereo cameras usually consist of multiple sensors that

work as one unit. Two or more video cameras can be used
for this purpose. The main requirement is the calibration
and synchronisation among all the devices within the sys-
tem. It means that more than one image has to be proc-
essed at a time in order to reconstruct a disparity map. A
disparity map is an image where each pixel stores the shift
of that pixel between two stereo images. A disparity map
can be converted into a 3D point cloud using the camera
parameters determined during the calibration. A 3D point
cloud is a digital representation of the environment and
can easily be used for path planning and obstacle avoid-
ance. Stereo reconstruction is a computationally intensive
procedure. Due to this fact, stereo matching is usually per-
formed on powerful computers.
In recent years, with the graphics processing unit (GPU)

technology becoming more affordable and powerful, NVI-
DIA’s CUDA technology has been developed. It has
opened up new opportunities for embedded systems
which originally were not able to perform computationally
intensive tasks in real time. Implementing a stereo match-
ing algorithm in CUDA is a complex task. In some cases,
it might even be impossible to implement a particular al-
gorithm due to memory restrictions (especially on a low-
end GPU). Moreover, most stereo matching algorithms
have a trade-off between speed and accuracy.
Therefore, the aim of the carried research was to de-

velop a stereo matching algorithm that would be oriented
towards embedded systems and real-time applications.
The presented algorithm concentrates on the speed aspect
of stereo matching sacrificing accuracy where necessary.
Cyclops2 algorithm was evaluated on two embedded
systems—NVIDIA’s Jetson boards—TK1 and TX1.
The paper is structured as follows. An overview of

CUDA-based stereo matching algorithms is presented in
Section 2. Section 3 describes the main principles of
Cyclops2 algorithm, its implementation and the experi-
mental setup. The evaluation of results and discussion is
presented in Section 4 and Section 5 respectively.

2 Related work
The main goal of this section is to compare stereo match-
ing algorithms that support CUDA parallel computing plat-
form. The working principle of each algorithm is briefly
described, highlighting their main advantages and disadvan-
tages. Two metrics were used for algorithm comparison,
namely the percentage of bad pixels (detailed description in

Section 3.3) and algorithm runtime in seconds. The com-
parison data was obtained from Middlebury version 3 [3]
and KITTI Vision Benchmark [4] datasets. The comparison
results are presented in Table 1. Qualitative comparison of
different algorithms is, however, complicated.
First, the threshold for bad pixels is different in Middle-

bury and KITTI datasets. For Middlebury dataset pixels
whose disparity error is more than 4 pixels are considered
bad pixels (same threshold as that used to evaluate our
algorithms). Whereas, in the KITTI dataset, bad pixels
have disparity error of more than 3 pixels. Therefore, the
percentage of bad pixels should be higher in KITTI data-
set if two algorithms have identical performance.
Second, Middlebury and KITTI datasets are very differ-

ent. The KITTI dataset contains outdoor images, whereas
Middlebury contains only indoor images. Moreover, the
resolutions of images in the datasets are different.
Third, comparison of the algorithm runtime is even more

complicated. Both Middlebury and KITTI datasets mainly
focus on accuracy of reconstructed disparity images.
Researchers run algorithms on their own hardware and
only submit computed disparity images and computation
times. The hardware used for computation is different be-
tween algorithms and runtime results are therefore difficult
to compare.
Most stereo matching algorithms can be split into two

stages, namely cost computation and stereo matching.
The cost computation stage usually determines the simi-
larity of image regions in stereo image pair, and stereo
matching finds the pair of patches with the best match-
ing score. In this paper, we mainly focus on cost compu-
tation functions optimised for embedded GPU platforms
NVIDIA Jetson TK1 and TX1.
Block matching (BM) is a classical and very simple ste-

reo matching algorithm. Image blocks from two stereo
images are compared using Summed Absolute Difference
(SAD) error criterion and full scanline search for finding
optimal block displacement. Full scanline search used in
BM produces a lot of errors especially in untextured areas.
This is usually addressed by running image pre-filters that
remove untextured areas and adding matched pixel
uniqueness criterion. Even with these measures, results
produced by BM are sparse and have high bad pixel per-
centage, i.e. 25.27%. BM can be easily parallelised due to
its simplicity [5], but results of CUDA implementation are
not submitted in Middlebury and KITTI datasets. Our
algorithm is similar to BM in that we are also performing
a full scanline search.
Stereo Processing by the Semi-Global Matching and

Mutual Information (SGM) [6] presented a more sophisti-
cated matching strategy that has become very popular in
recent years. Semi-Global Matching uses up to 16 search
paths when evaluating disparity of a current pixel and
enforces reconstructed surface smoothness by introducing
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two matching cost penalties, namely P1 and P2. P1 is a
penalty applied to the matching cost when disparity value
of a current pixel changes by 1 pixel, and P2 is applied
when disparity value of a current pixel changes by more
than 1 pixel. This technique helps to reconstruct disparity
values in untextured areas of stereo images. Choosing
good parameter values can be challenging and has a big
impact on algorithm performance. CUDA implementation
of SGM is available in libSGM [7] library, but no evalu-
ation data is available at the time of writing.
Despite its limitations, SGM has led to the develop-

ment of many modern stereo matching algorithms. For
example, Semi-Global Block Matching (SGBM) uses
Semi-Global Matching from SGM algorithm but calcu-
lates matching costs using SAD of image patches. At the
moment, SGBM is one of the most widely used algo-
rithms in real-time applications due to its fast processing
times and quality of produced images. It is also imple-
mented in many major computer vision libraries, such
as OpenCV [8] and VisionWorks [9]. This was the main
reason why we chose to use SGBM for result compari-
son in this paper.
Embedded real-time stereo estimation via Semi-Global

Matching on the GPU (CSCT) [10] is another method
that uses Semi-Global Matching. The matching cost is
computed using Center-Symmetric Census Transform
and additionally median filter is used to remove outliers.
This implementation was optimised for CUDA platform
and achieves very good processing time of 0.0064 s on
NVIDIA Titan X.
The Iterative Refinement Method for Adaptive Support-

Weight Correspondences (IDR) method [11] has a strict
binary assignment of weights near boundaries and uses a
two-pass approximation of adaptive support weights for
matching cost aggregation and an iterative refinement
technique that enforces consistency of disparities. IDR

was the fastest method of those compared in Middlebury
dataset, but the computations were performed on a
powerful NVIDIA TITAN Black GPU. IDR’s average speed
was 0.49 s and its percentage of bad pixels was 12.7%.
In recent years, convolutional neural networks (CNN)

have become very popular in solving various computer
vision problems, and stereo matching is not an excep-
tion. In 2015, Stereo Matching by training a Convolu-
tional Neural Network to Compare Image Patches (MC-
CNN) [12] was one of the first methods utilising CNN
and achieving bad pixel percentages lower than 7%. This
algorithm has two network architectures (one optimised
for speed (FST), other for accuracy (ACRT)). MC-CNN
uses CNN for matching cost computation, and matching
is performed using Semi-Global Matching from SGM.
The success of MC-CNN has led to the adoption of
CNN in modern stereo matching algorithms.
Efficient Deep Learning for Stereo Matching (C-CNN)

[13] is a more advanced method that uses CNN not only
for cost computation but also for predicting the disparity
image values. A C-CNN-produced output is not competi-
tive compared with other modern methods, and the
authors are therefore using additional post-processing
stages to improve the quality of produced disparity image.
A Large Dataset to Train Convolutional Networks for

Disparity, Optical Flow, and Scene Flow Estimation
DNET [14] is also a CNN-based approach that is trained
to perform full disparity estimation task without requir-
ing additional matching algorithms. This method recon-
structs good disparity images that have only 4.34% of
bad pixels. DNET also has a short processing time of
0.06 s. The main challenge of CNN-based stereo match-
ing algorithms is that they require large datasets for
training. This is usually addressed by synthetically gener-
ating large datasets. The main disadvantage of most
CNN-based methods is that even optimised versions of

Table 1 A comparison of CUDA-based stereo matching algorithms on Middlebury and KITTI datasets

Method Middlebury (1436 × 992 single image) KITTI (1242 × 375 single image) Advantages/disadvantages

Avg. runtime, s Bad pixels
(error > 4 pixels), %

Avg. runtime, s Bad pixels
(error > 3 pixels), %

BM [5] x x 0.1 25.27 Sparse results, high error rates, does not work
in untextured areas, CPU implementation

SGM [6] 9.9 12.2 x x Non optimal matching cost, performance depends
on parameter choice, CPU implementation

SGBM [8] 2.27 18.5 1.1 10.86 Simple matching cost, fast computation time even
with CPU implementation

CSCT [10] x x 0.0064 8.24 Simple GPU model, hard to adjust to complex tasks

IDR [11] 0.49 12.7 x x Strict binary weights near boundaries

MC-CNN-ACRT [12] 150 4.48 67 3.89 Complexity of training CNN, slow speed

MC-CNN-FST [12] 1.69 6.7 x x CNN optimised for speed, requires powerful GPU

C-CNN [13] x x 1.00 4.54 Smoothing technology dependent

DNET [14] x x 0.06 4.34 Dataset specific, added complexity of CNN
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these algorithms require powerful GPU processors (usu-
ally NVIDIA Titan X). Therefore, these methods cannot
be used on a low-power embedded GPU, such as NVI-
DIA TX1.

3 Materials and methods
Cyclops2 is a stereo matching algorithm that produces a
disparity image from two rectified grayscale images: left
and right. Rectified stereo images satisfy epipolar con-
straints; therefore, the corresponding pixel search only has
to be performed along image rows. The algorithm at-
tempts to find the disparity value that minimises a weight
function. We define the weight function as follows:

w ¼ f ðs; y; xÞ; dmin≤s≤dmax ð1Þ

Here, y (image row) and x (image column) are pixel
coordinates in the left camera image; the independent
variable s denotes a shift in image columns of rectified
left and right images, expressed in pixels. s belongs to an
interval which is chosen taking into account the charac-
teristic of a physical setup. The interval is denoted
by dmin and dmax, which correspond to minimum and
maximum disparities respectively. w is the matching
weight between the (y, x) pixel in left camera image and
(y, x − s) pixel in the right camera image. The produced
disparity image satisfies the following equation:

dðy; xÞ ¼ s : minðwðs; y; xÞÞ ð2Þ

Here, d (y, x) is each pixel in the computed disparity
image. The value s that is assigned to each disparity
image pixel (y, x) is chosen such that the weight function
would have minimal value for that (y, x). A weight func-
tion is used to determine the similarity of two pixels in
the input images.
Progressively, three different weight functions have

been investigated. Each of these weight functions will be
presented as separate methods:

1. Minimum Difference (MD);
2. Region Minimum Average (RMA);
3. Minimum Neighbour Sum (MNS).

The weight function of each method is described in
the following subsection.

3.1 Cyclops2 weight functions
The MD method can be described as a straightforward
implementation of the absolute difference concept. It
calculates an absolute difference between two specific
pixels located in the left and right images. Here, the
minuend is the intensity of the pixel located in the left
image and the subtrahend is the intensity of the pixel

located in the shifted right image. The difference is then
assigned as the value of function f, at point s, y, x:

f s; y; xð Þ ¼j L y; xð Þ−R y; x−sð Þ j; ð3Þ

Here, y and x correspond to a row and column of an
image and L and R are matrices of the left and right
images. The last step is to find a shift value for each y, x
pair, i.e. for each pixel in the disparity image that mini-
mises the function at that point. The shift value is then
assigned as a disparity value.
On the other hand, the RMA method is based on the

notion that a disparity value that is closer to the ground
truth can be found by taking into account the absolute
differences between the neighbouring pixels as well. The
method works iteratively. Starting with N = 0, each iter-
ation calculates the average of 2N absolute differences lo-
cated in the same row until the end of the row is reached.
The goal is to find the minimum average which would in-
dicate the maximum correspondence of two regions. The
weight function of RMA can be defined as follows:

f s; y; x;Nð Þ ¼ 1

2N
X2N

i¼0
L y; x−ið Þ−R y; x−i−sð Þj j ð4Þ

Here, N is varied from 0 to the value such that the
following equation is satisfied:

x−2N−s > 0 ð5Þ

This is done to ensure that the weight calculation func-
tion never goes out of the image row.
The MNS method is different from the previous two

methods in a few ways. First, the calculation of delta here
can be represented as follows:

ΔI s; y; xð Þ ¼j L y; xð Þ−R y; x−sð Þ−Lþ R j : ð6Þ

Hence, the delta function value at each shift and pixel
is determined not only by the difference between pixel
intensities, but also by the difference between the aver-
age intensities. The weight function value is then ob-
tained by summing up those deltas that fall into the
bounds of a block. A block can be described as a kernel
that has three parameters:

1. Kernel height h or hr (odd);
2. Kernel width w or wr (odd);
3. Kernel step ks (greater than 0).

Therefore, a block is a data structure that has a rect-
angular shape, i.e. it is an array of deltas with dimensions
h × w. The weight value at the particular point equals
the sum of the values in the array. The array is filled up
with values (deltas) in the following manner:
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1. If ks equals 1, then the centre of the block is shifted
to the point y, x and all the values that fit into
a frame with dimensions h × w are assigned
(see Fig. 1a);

2. If ks is greater than one, then the array is filled,
ignoring each ks−1 row and column, starting at
the centre point y, x (see Fig. 1b).

In the second case, the real size of a kernel can be cal-
culated as follows:

wr ¼ ks−1ð Þ w−1ð Þ þ w; hr ¼ ks−1ð Þ h−1ð Þ þ h: ð7Þ

Lastly, the shift value that minimises the weight func-
tion is calculated for each y, x pair.

3.2 Implementation of Cyclops2
To obtain a stereo matching frame rate that would be suit-
able for real-time applications, Cyclops2 algorithm has
been oriented to utilise the GPU computational resources.
Nevertheless, some portion of computations had to be
delegated to the central processing unit (CPU).
Before going into further details, there are a few rules

about the GPU programming that have to be addressed:

1. The main operations of an algorithm have
to be performed concurrently; they have to
be independent from one another or the
dependence has to be minimised [15];

2. When NVIDIA CUDA technology is used, every
memory access by threads has to be organised in
such a way that read and write operations would
be in the scope of neighbouring memory cells.
Otherwise, cache memory gets updated, which leads
to a significant increase of the processing time [15];

3. NVIDIA’s CUDA architecture indicates that kernels
are executed concurrently by thread blocks. Each

block is divided into warps that consist of 32
threads. Threads inside a warp perform the
same branch of the algorithm at the same time.
Threads that belong to a warp but do not execute
the same branch of the algorithm are executed
sequentially. That being said, loops and conditional
statements should be avoided when possible;

4. Shared memory is a unique memory on the
GPU shared among threads within a thread
block. The size of a thread block on the
newest GPUs is limited to 1024 threads [15].

Considering the rules above, we have created two
implementations of the MNS method.
The first implementation consists of the main cycle per-

formed on the CPU. The cycle is responsible for managing
kernels and uploading data to the GPU memory. Each
iteration of the cycle has its own shift value which leads to
different deltas. Shifting the right image row with respect
to the left image row is depicted in Fig. 2.
In the cycle, two separate CUDA kernels were used:

one for calculating absolute differences and the other for
calculating weights and minimising its function. The
main reason behind the separation is based on the fact
that the performance of a thread block is maximised
when threads interfere with fewer conditions and loops.
The second operation is slightly more expensive com-
pared with the first one. Therefore, in case of combin-
ation, it would bring some of the threads to a halt.
Both kernels are called by the CPU specifying the

number of threads per block and the size of a grid. The
size of a block is determined by the size of an image. It
was set to be a one-dimensional structure with a length
equal to the quarter of an image width. In this case, the
size of the grid is 4 × height.
Inside a grid, each thread has its own relative position.

According to this position, individual pixels are accessed

Fig. 1 Computation of kernels. a Example of a dense kernel. b Example of a sparse kernel. Each square in this figure corresponds to a value in the array
that contains deltas. The red (darkest) square indicates the current position at point y, x for which a weight function value is being calculated. The frame
that has several coloured squares in it is a kernel. These squares that belong to the frame, i.e. kernels, are considered when calculating the weight function
value at point y, x
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and the absolute differences are calculated. When all the
blocks within the grid have finished execution, another
kernel is launched by the CPU, passing a pointer to the
data stored on the GPU memory. The kernel responsible
for the computation of weights has a loop that iterates
through the specified neighbours of a pixel (see subsec-
tion 3.1). It gathers the neighbouring deltas and aggre-
gates their values. Then, the sum is compared with the
latest weight value at point y, x. If the current sum is lower
than the previous, a new disparity value is assigned to that
point. The same sequence of operations is repeated for
every shift, overriding already set weights and disparities.
This approach does not use the advantages of the

shared memory concept because it is performed on the
global GPU memory. Accessing the global GPU memory
is a more expensive operation, but it makes it possible to
have kernels of various sizes, which leads to a more ver-
satile algorithm implementation.
The second approach uses the CPU for uploading/

downloading data to/from the GPU, and there is only
one CUDA kernel that is called by the CPU. The kernel
for this purpose is loaded to the GPU, providing the size
of a thread block that equals width of an image and the
size of a grid that equals height of the image. An array
of shared memory is then allocated dynamically, based
on the size of the thread block. Inside the CUDA kernel,
before doing any computation, images are loaded from
the global GPU memory to the shared memory. It is
done by reading individual pixels from the global mem-
ory and assigning them to the array of the shared mem-
ory. The procedure is followed by the synchronisation of
the threads within a block since the following steps re-
quire the intensities (of a single image row) to be known.
Then, each thread performs a loop, shifting a row of the

right image with respect to the left one. For each shift
and point (y, x), the value of weight function is calcu-
lated. The main difference compared with the previous
approach is the fact that the height of a kernel is limited
to 1 pixel and the width of the image is limited to
1024 pixels. It leads to a less favourable image quality,
but the number of times the global GPU memory needs
to be accessed is reduced.

3.3 Experimental setup
For a better overview, all experiments were performed
on two separate embedded systems—NVIDIA Jetson de-
velopment boards—TK1 and TX1. A side-by-side com-
parison of their main specifications is shown in Table 2.
The evaluated algorithms used both the CPU and

GPU computations. The performance of each system
was maximised by disabling the CPU power saving func-
tionality and setting the GPU clock to the maximum
frequency. The boards were powered using the default
power adaptors provided with the development kits. Dur-
ing the experiments, only the algorithm evaluation process
was running.
Cyclops2 was compared with only one algorithm,

SGBM, because it was one of the fastest algorithms in
the Middlebury evaluation table that had a publicly

Fig. 2 Illustration of the basic concept of Cyclops2 algorithm. Right and left image rows are first shifted by specified number of columns. Shifted
rows are subtracted to produce deltas. Deltas that correspond to minimal weight are used to fill disparity image with current shift value

Table 2 Specifications of Jetson boards

TK1 TX1

CUDA cores 192 256

Core clock 852 MHz 998.4 MHz

Processor 32-bit quad-core 64-bit quad-core

Linux Tegra R21.4 R24.2

Compute capability 3.2 5.3
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available GPU implementation. VisionWorks provided
the most popular and stable implementation [9]; there-
fore, it was used for the performance tests.
The VisionWorks implementation had a slightly different

interpretation of its parameters for a better GPU adapta-
tion. Also, both Jetson boards had different VisionWorks
versions available. Nonetheless, the SGBM algorithm was
configured to have similar parameters (see Table 3), which
led to similar error-wise performance.
Cyclops2 (particularly the MNS method) has several

parameters to play with (see subsection 3.1). Five differ-
ent versions of MNS were selected (see Table 4) to dem-
onstrate the impact various parameters have on
performance. There is one parameter that has not been
introduced yet, namely a step of disparity shift. Ordinar-
ily, stereo matching algorithms consider each integral
number that belongs to a disparity range. In this case, a
step of disparity shift equals 1 pixel, which means that
there are as many shifts as integral values in the interval.
If the step is an integral number greater than 1 pixel,
then every time one input image is shifted with respect
to the other, by this number, the algorithm ignores in-
between disparity values.
Both SGBM and Cyclops2 were evaluated using the

method provided by Middlebury dataset version 3 [3]
providing evaluation tools and images. It has a specific
procedure, scripts, file formats, criteria and images. The
most recent Middlebury version has three identical data-
sets that differ in resolution:

1. Quarter (Q) resolution dataset. Quarter resolution
images have up to 750 × 500 pixels and no more
than 200 disparity values;

2. Half (H) resolution dataset. Half resolution images
have up to 1500 × 1000 pixels and no more than 400
disparity values;

3. Full (F) resolution dataset. Full resolution images
have up to 3000 × 2000 pixels and no more than
800 disparity values.

Each dataset has two parts: a training set and a test set
with 15 image pairs each. The training set can be used
to evaluate the error rate because each image pair comes
with a ground truth disparity. Also, Middlebury provides
the maximum disparity values of each image individu-
ally. However, only the algorithms that have been pub-
lished can be evaluated with the test set.
We used only quarter and half resolution training sets

because full resolution images were too large for the
Jetson embedded systems to process. There are many
metrics available in the Middlebury stereo evaluation
website. However, we decided to use only the following,
as they provided enough information to compare the
algorithms:

1. Algorithm computation time. As the Middlebury
evaluation procedure states, it was measured
without considering the time taken to load input
images and save the result. The computation time
was calculated for each image individually. Section
4 provides the average algorithm computation
time per image together with frames per second;

2. Percentage of bad pixels whose disparity
error is greater than 4.0 pixels. The provided
measure is the average percentage of bad pixels
per image. As already mentioned in introduction,
the methods presented in this paper concentrate
on optimising algorithm processing time at a cost
of higher percentage of errors. This is reflected
in the choice of higher than default bad pixel
threshold (4.0 pixels instead of 2.0 pixels
default of Middlebury dataset) which is more
suitable in obstacle avoidance scenario;

3. Percentage of invalid pixels per image. These are
pixels where the stereo matching algorithm was not

Table 3 SGM parameters for different VisionWorks versions, side
by side with the SGBM parameters that are presented in the
Middlebury evaluation table

Parameter Jetson TK1
VisionWorks
1.4.3 SGM

Jetson TX1
VisionWorks
1.5.3 SGM

SGBM2
(Middlebury v3)

Smoothness penalty 8

Discontiguous penalty 32

SAD 3

Census transform window size – 0 –

Hamming cost window size 0

Clip value for cost 63

Maximum allowed difference 32,000 –

Uniqueness ratio 10

Scan line direction ALL MODE_HH

Extra flags – DEFAULT –

Table 4 Cyclops2 MNS methods and their relevant parameters
used in the evaluation

Algorithm Parameters

Step of
disparity
shift

Kernel
height h

Kernel
width w

Kernel
step ks

Note

MNS1 1 5 5 2 Only for quarter
resolution

MNS2 4 1 7 3

MNS3 4 1 7 3 Uses shared
memory. Only
for quarter
resolution

MNS4 2 5 5 4 Only for half
resolution

MNS5 8 1 5 6
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able to estimate a disparity value. The provided
measure is the average percentage of invalid pixels
per image;

4. Average error of bad pixels per image. The average
disparity value error of pixels that have been
classified as bad pixels.

4 Results
One of the most important criteria used to evaluate
the capability of an algorithm is the computation time.
It can be represented as either seconds per frame or
frames per second. In order to support the Middlebury
evaluation method, the processing speed will be
expressed in seconds. However, majority of our algo-
rithm modifications had processing times in the order
of milliseconds. Also, when working with real-time
oriented computer vision applications, it is customary
to present the computation time as frames per second
(FPS). For these reasons, the processing speed will also
be expressed in FPS.
We first compare the methods of Cyclops2 men-

tioned in section 3.1. The MD method yields high pro-
cessing frame rate (see Table 5) at the expense of
disparity image quality (see Fig. 3). Conceptually, it is
due to the fact that the weight function of this method
is simple. It considers only the intensity difference of
1 pixel, which, as we can see, is only enough to detect
unique parts of the objects in the scene. Other pixels

are mismatched since there are a lot of pairs in the
images that have similar differences.
RMA has approximately the same frame rate as MD

(see Table 5). The core difference between the two is
that RMA searches for a value that minimises the
whole region rather than a single pixel. RMA recon-
structs the shape of larger objects in the scene better
than MD (see Fig. 4). This is mainly due to the fact
that larger regions are usually more unique than small
regions. However, the edges of objects in the disparity
map become scattered.
Compared with the previous methods, the quality of

the MNS method is arguably better for robot naviga-
tion (see Fig. 5). The basic shape of objects can be
detected and there is less noise compared with that of
RMA. However, small objects and shapes are filtered

Table 5 The average frame rate and processing time of each
algorithm. Evaluation was performed on both Jetson boards.
The RMA method was not performed on Jetson TX1 board with
H resolution. The SGBM algorithm was not performed on TX1
with H resolution

Algorithm TX1 TK1

Frame rate, FPS Time, s Frame rate, FPS Time, s

Quarter resolution dataset

MD 57.4 0.017 45.2 0.022

RMA 59.7 0.017 44.6 0.022

MNS1 16.4 0.061 6.0 0.167

MNS2 59.0 0.017 41.2 0.024

MNS3 70.1 0.014 68.1 0.015

SGBM 11.8 0.085 7.0 0.143

Half resolution dataset

MD 23.2 0.043 12.7 0.079

RMA – – 13.0 0.077

MNS4 4.8 0.208 1.9 0.526

MNS5 22.4 0.045 13.0 0.077

SGBM 1.3 0.769 – –

Fig. 3 Disparity image produced using the MD method. Overall
object shape is visible in MD method output, but the image
contains many noisy pixels. Incorrect pixels are visible on both
foreground and background pixels

Fig. 4 Disparity image produced using the RMA method. Region-
based matching nature of RMA is clearly visible in the image.
RMA output contains less noisy pixels, but uniform disparity
value assignment for the whole region is clearly visible
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out, which could be a disadvantage in some scenarios.
The results depend not only on the weight function,
but also on its parameters. It is worth pointing out
that MNS performs better on larger objects, since the
weight function considers neighbouring differences.
MNS has a slightly increased processing time caused
by greater number of differences that have to be calcu-
lated (see Table 5).
The processing speed comparison of several Cyc-

lops2 modifications and SGBM algorithm can be seen
in Figs. 6 and 7.
Based on the two charts above, one can conclude that

the computation time of MNS increases significantly with
the size of a kernel (more processing). Whereas, increas-
ing the step of disparity shift can reduce the amount of
performed computations.
On quarter resolution images and TX1 board,

MNS1, being the slowest modification, has 3.5 times
lower frame rate compared with the fastest—MNS3.
Nevertheless, MNS1 was 1.4 faster than SGBM. MNS3
has the same parameters as MNS2, but MNS3 was

implemented using the shared memory approach (see
subsection 3.2). Shared memory implementation
produces disparity images 1.2 times faster on average,
compared with its non-shared memory implementa-
tion. The fastest modification of MNS, namely, MNS3,
is about 18 times faster than SGBM.
The results of the H training set suggest that SGBM

computational times increase exponentially with reso-
lution. Cyclops2, on the other hand, still manages to
operate with a high frame rate. Detailed results of the
processing speed are presented in Table 5.
A comparison between TX1 and TK1 processing speed

is shown in Fig. 8.
The chart of Fig. 8 signifies the core principle of the

GPU performance optimisation. As expected, the
majority of the algorithms perform significantly faster
on the newer board due to its more advanced hard-
ware. Depending on the Jetson board, the frame rate
of the same algorithm can differ up to 2.5 times.
Meanwhile, the shared memory modification of the
algorithm seems to yield similar processing times. The
reason for this similarity lies in the interaction
between the CPU and GPU. The shared memory
modification minimises CUDA kernel calls by the
CPU and reads from the global GPU memory less
often. It ensures a high processing rate even for a less
powerful board.
It is worth mentioning that the VisionWorks imple-

mentation of SGBM was not able to process half reso-
lution training set images on Jetson TK1. The process
terminated whenever the size of the image was close
to 1500 × 1000 pixels. This is caused by the GPU
driver timeout pre-set that works as a safety switch
for many systems. Whenever the GPU does not report
back to the OS within a specified time, the OS re-
starts the GPU driver automatically. This is a stand-
ard behaviour of NVIDIA GPU driver under Linux
operating system.
The implementation of SGBM is targeting systems

that have more computational power. Therefore, it is

Fig. 5 Disparity image produced using the MNS1 method. MNS1 is
able to reconstruct the shapes and spatial locations of the objects in
the scene. This method produces significantly less noise than other
presented methods

Fig. 6 The average frame rate of all training images. Evaluated on the Q resolution training set using Jetson TX1
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not possible to use SGBM for real-time applications with
half resolution images on embedded systems. Same ap-
plies to RMA and Jetson TX1 board, as RMA compares
pixels iteratively until it reaches the number of pixels in
a row. For large images, it requires a lot of time to per-
form this procedure, so it gets terminated by the OS.
Next, the average percentage of bad and invalid pixels

in the produced disparity images were evaluated. The re-
sults of the experiment are presented in Figs. 9 and 10.
The percentage of bad pixels in the disparity image

produced by the MNS method is kernel-size
dependent. Approximately, it belongs to the interval
46–77%. Similar error-wise quality can be obtained for
both resolutions. There are a few reasons why the
results of the same MNS modifications performed on
both resolutions are not presented. First, it was noted
that for higher resolution images, the step of a kernel
has to be increased in order to obtain better quality.
Second, for higher resolutions, the higher shifting step
gives better results in terms of the processing time,
where the quality of produced disparity images does
not change at the same rate. Eventually, there is a
trade-off between accuracy and frame rate that has to
be made when considering a specific application.
Compared with SGBM, MNS produces up to 3–6

times more disparity values that have error greater

than 4 pixels. Nevertheless, unlike SGBM, MNS esti-
mates disparity values of every pixel; therefore, its per-
centage of invalid pixels is 0. More detailed results are
shown in Table 6.
Another important metric for evaluating stereo match-

ing algorithm quality is the average disparity error of
bad pixels. The results of this evaluation are presented
in Figs. 11 and 12.
SGBM has a lower rate of average error compared

with that of our proposed algorithm. The error of
SGBM increases with resolution. Cyclops2 MNS algo-
rithm has its bounds for the average error. The upper
limit is the error of the MD method, and the lower
limit is the error of MNS with the largest kernel size,
which indicates that MD is a simplified MNS that has a
kernel size of 1 pixel. Within these bounds, the parame-
ters can be manipulated in order to achieve the desired
processing time. That being said, the average error of
MNS is considerably higher than that of SGBM. The
main reason for such high percentage of bad pixels and
average error is the fact that the weights are calculated
using only the intensities of a grayscale image and
their differences. This information is insufficient to
match two points more accurately. The proposed
methods are oriented towards higher frame rates, and
higher errors are therefore tolerable.

Fig. 7 The average frame rate of all training images. Evaluated on the H resolution training set using Jetson TX1

Fig. 8 Performance comparison of Jetson TX1 and Jetson TK1 boards. Evaluated on the Q resolution training set. TX1 processing frame rate was
always higher than TK1
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In order to increase the quality of the produced dis-
parity images, a median blur filter was used as a
post-processing stage. OpenCV 3.1.0 [8] implementa-
tion of median blur was applied to the produced
disparity images.
For quarter resolution images, median blur with ker-

nel size of 3 pixels was used, for half resolution im-
ages—5 pixels. The improvement on the average error
for both resolutions can be seen in Figs. 13 and 14.
Post-processing quarter resolution images had a sig-

nificant impact on the output of those methods that
produce relatively noisy disparities, e.g. MD's average
error was reduced by 23%. Whereas for MNS1, being
the most accurate Cyclops2 method (Q resolution)
(see Table 5), only 7% error reduction was observed.
On the other hand, MNS4, the most accurate modifi-
cation (H resolution) of Cyclops2, gets the average
error reduction of 34%, while MNS5 gets only 11%.
The reason of such difference is that MNS5 had a
smaller kernel and a larger shift step compared with
that of MNS4. The results of MNS5 were too scat-
tered for the post-processing to make a greater im-
provement, as the median blur filter simply removes
outliers.

More detailed results together with the added latency
are presented in Table 7.
Based on the results of both Table 7 and Table 5, we

can conclude that Jetson TK1 processing speed
decreases up to two times after applying the suggested
post-processing. On the other hand, the procedure has
a less significant impact on the Jetson TX1 board pro-
cessing time. It is mainly because the blur is per-
formed on the CPU and TX1 has a better one. The
added latency on TX1 for both resolutions differs up
to 10 times, while on TK1—up to 21.

5 Discussion
The algorithm presented in this paper was optimised
for high processing frequency, making it usable in
real-time applications, such as obstacle detection and
avoidance. The implementation was targeted for NVI-
DIA Jetson embedded platforms. These platforms are
optimised for low power consumption and are there-
fore well suited in robotics applications.
The computational simplicity of the proposed algo-

rithm made it possible to parallelise it efficiently using
CUDA technology. The main disadvantage of the pro-
posed algorithm is high percentage of bad pixels. On

Fig. 9 Average percentage of bad pixels, whose error is larger than 4 pixels, and average percentage of invalid pixels. Evaluation performed using
Q resolution training set images

Fig. 10 Average percentage of bad pixels, whose error is larger than 4 pixels, and average percentage of invalid pixels. Evaluation performed
using H resolution training set images
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average, more than half of the points in the produced
disparity image have an error greater than 4 pixels.
The error tolerance of a stereo matching algorithm de-
pends on a specific use-case and operating environ-
ment. For example, in a controlled environment,
where a robot is only likely to encounter big obstacles,
a higher than currently selected (4 pixels) threshold
would be tolerable. The accuracy versus speed trade-
off of our algorithm is adjustable by tuning its parame-
ters and can be tuned for different use-cases.
An alternative solution for reducing bad pixel per-

centage is to use pre-processing filters and additional
matching pixel uniqueness checks, such as those
used in the BM algorithm. The pre-processing filter
removes untextured regions from the original left
and right images so that these regions would not
produce erroneous disparities. The uniqueness check
stage ensures that the matching pixel weight is sig-
nificantly different from the weight of the second best

matching pixel. Both of these techniques would re-
quire additional computations that would have a sig-
nificant impact on the performance of the algorithm.
Furthermore, pre-processing filters and uniqueness
checks do not solve the problem of incorrect matches
but instead reduce the percentage of bad pixels by in-
creasing the percentage of invalid pixels.
The majority of errors produced by our algorithm

are due to the fact that the disparity values are calcu-
lated only using neighbouring pixel intensities. This
could be improved by taking into account already cal-
culated disparities of the neighbouring pixels. Neigh-
bouring disparities can be used to take into account
the fact that real objects are usually regions and not
individual points. This can be done by incorporating
additional terms into the current weight function.
These terms, for example, could be the distance to the
nearest edge, region, etc. The neighbouring pixel
disparities can also be incorporated by using more
sophisticated matching techniques, such as that used
in SGM. This, however, is a non-trivial task and would
most certainly have significant performance cost
mainly due to additional memory being accessed by
the algorithm.
Another approach is to use post-processing algo-

rithms to remove outliers. This is usually implemented
by filtering the produced disparity image with a
median blur or Gaussian blur filters. For some modifi-
cations of our proposed algorithm, the suggested
median filter post-processing reduced the average
error by 34%. Median filter is a commonly used post-
processing algorithm that has not been observed to
significantly decrease object locality accuracy. More-
over, this method is successfully being used by the
top-ranking algorithms, such as MC-CNN. The main
disadvantage of additional post-processing stages is
the added computational time.
The proposed algorithm was evaluated using Mid-

dlebury dataset. The algorithm showed competitive
processing time results despite the fact that it was

Table 6 The average quality measures of each algorithm
performed on the Q and H resolution training sets images

Algorithm Bad 4.0, % Invalid, % Average error, pixel

Quarter resolution dataset

MD 89.0 0.0 61

RMA 77.4 0.2 41

MNS1 46.4 0.0 27

MNS2 72.9 0.0 38

MNS3 72.9 0.0 38

SGBM 12.1 6.6 6

Half resolution dataset

MD 89.4 0.0 61

RMA 78.3 0.1 42

MNS4 47.5 0.0 38

MNS5 76.5 0.0 43

SGBM 8.7 9.7 7

Fig. 11 The average disparity error of bad pixels. Evaluation performed on Q resolution training set images
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evaluated on an embedded NVIDIA Jetson platform.
Evaluating the algorithm using the KITTI dataset
would have provided additional insights of its per-
formance on the outdoor environment images.

6 Conclusions
The aim of this paper is to present a novel stereo match-
ing algorithm Cyclops2. The algorithm performs scanline
correspondence search and minimises a simple weight
function. The weight function values are calculated
using absolute difference of pixel intensity values. We
described three different weight functions, namely
MD, RMA and MNS. MD is a very simple method
only taking single pixel intensities into account. RMA
and MNS are more sophisticated methods that incorp-
orate the neighbouring pixel information. Presented
functions can be used to adjust stereo matching per-
formance for a specific use-case.
The proposed algorithm was implemented using

CUDA parallel programming library and optimised
for embedded NVIDIA Jetson platform. This paper
discusses the rules that should be followed when
optimising algorithms for parallel GPU execution.
We provide detailed algorithm implementation de-
scription. Two algorithm versions have been imple-
mented. The first version used CPU loops and two

GPU kernels, whereas the second used a single GPU
kernel and GPU shared memory.
Cyclops2 has been evaluated on two NVIDIA Jetson

boards, namely TK1 and TX1. Training image sets
from Middlebury dataset were used in all experi-
ments. We only used Q and H resolution images be-
cause Jetson boards did not have sufficient resources
to process F resolution images. The performance of
our algorithm was compared with that of SGBM, one
of the most popular stereo matching algorithms. We
chose SGBM because it had a publicly available GPU
implementation. Four metrics were used to evaluate
the algorithms, namely computation time, percentage
of bad pixels, percentage of invalid pixels and average
error of bad pixels.
Our algorithm provides a range of configurations

that are suitable for different real-time applications. It
is capable of maintaining up to 70 FPS for Q reso-
lution images and 22 FPS for H resolution images.
Weight function and algorithm parameters can be
chosen such that the desired processing time and
accuracy is achieved. This paper contains detailed
experimental results of seven variations of Cyclops2.
Evaluated variations had high percentage of bad pixels.
The percentage of bad pixels is directly related to the
bad pixel threshold (set to 4 pixels in this paper). In

Fig. 12 The average disparity error of bad pixels. Evaluation performed on H resolution training set images

Fig. 13 Improvement on the average error after the post-processing. Evaluation performed on Q resolution training dataset images
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situations where speed is more critical than accuracy,
this threshold could be set to a larger value resulting
in smaller percentage of bad pixels. Further algorithm
improvements can be done by implementing add-
itional pre-processing stages that filter out untextured
regions. Such approach could reduce the percentage of
bad pixels but would also increase the percentage of
invalid pixels.
Additional post-processing stage using a median filter

was investigated and proved to be useful in significantly
reducing the errors of the produced disparity images.
Average error improvement was 14.59% on Q reso-
lution images and 25.16% on H resolution images. The
post-processing significantly increased the algorithm’s

computation time on TK1 by 0.014 s for Q resolution
and 0.303 s for H resolution. TX1 post-processed dis-
parity images in 0.004 and 0.038 s for Q and H resolu-
tions respectively. These results indicate that the post-
processing can be used in real-time scenarios on TX1
but is not practical for TK1.
Considering the fact that the experiments were per-

formed on NVIDIA’s Jetson TX1 board, we conclude
that the algorithm is relevant in the field of embedded
systems and could be used for UAVs, obstacle detection
and avoidance.
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