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Abstract

In stereo matching applications, local cost aggregation techniques are usually preferred over global methods due to
their speed and ease of implementation. Local methods make implicit smoothness assumptions by aggregating costs
within a finite window; however, cost aggregation is a time-consuming process. Furthermore, most existing local
methods are based on pixel intensity values, and hence are not efficient with feature vectors used in wide-baseline
stereo matching. In this paper, a new cost aggregation method is proposed, where a Per-Column Cost matrix is
combined with a feature-vector-based weighting strategy to achieve both matching accuracy and computational
efficiency. Here, the proposed cost aggregation method is applied with the DAISY feature descriptor for wide-baseline
stereo matching; however, this method can also be applied to a fast growing number of stereo matching techniques
that are based on feature descriptors. A performance comparison with several benchmark local cost aggregation
approaches is presented, along with a thorough analysis of the time and storage complexity of the proposed method.
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1 Introduction

Estimating depth from a pair of stereo images is a long-
standing problem in computer vision. Its aim is to find
a dense correspondence map between a pair of stereo
images to generate either a disparity map (for recti-
fied stereo pairs), or a depth map (for known cam-
era calibration parameters). Stereo algorithms generally
involve the following four steps: i) matching cost com-
putation, (ii) cost aggregation, (iii) disparity computation
or optimization, and (iv) disparity refinement [1]. Both
local and global approaches need to perform the match-
ing cost computation step, but they differ in the treat-
ment of smoothness constraints. Local methods make
implicit smoothness assumptions by aggregating costs
within a finite window. Global approaches, by contrast,
make explicit smoothness assumptions by combining
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the data and smoothness terms into a cost function,
which is subsequently optimized using an iterative pro-
cedure. The most commonly used optimization meth-
ods for global approaches include Expectation-Maximum
(EM) [2], cooperative optimization [3, 4], Graph Cuts
(GC) [5], Max-Product Loopy Belief Propagation (LBP)
[6], and Tree-Reweighted Message Passing (TRW) [7].
The last three methods are categorized as energy min-
imization for Markov Random Fields (MRFs) [8]. In
practical applications, local approaches are preferred to
their global counterparts due to their speed and ease of
implementation.

Existing short-baseline stereo matching methods, which
are mostly based on pixel intensity values, perform rea-
sonably well and are quite fast. Di Stefano et al. proposed
a local method which achieved real-time speed using Sin-
gle Instruction Multiple Data (SIMD) implementation [9].
Tombari et al. compared fourteen cost aggregation tech-
niques in terms of accuracy and computation cost [10].
They found that cost aggregation methods using adap-
tive weights are among the most accurate. Hirschmiiller
proposed a semi-global method based on mutual informa-
tion [11]. Based on the gestalt principles, Yoon and Kweon
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developed an edge-preserving bilateral filter for stereo
matching [12]. Subsequently, Mattoccia et al. proposed
a symmetric adaptive weighting strategy using two inde-
pendent spatial and range filters [13]. Instead of adopting
an exact weighting strategy, Min et al. addressed the cost
aggregation issue by introducing two approximations [14].
In another approach, Hosni et al. formulated the stereo
matching problem in a cost-volume filtering manner [15].
The cost volume is a three-dimensional (3D) array that
stores the costs for choosing a label (i.e. disparity value
in stereo matching) at a given pixel. To maintain bound-
aries in the filtered output of the guidance image (the
left image of a stereo pair), the filter weights are chosen
to be those of the guided filter [16]. In [17], Yang devel-
oped a Minimum-Spanning-Tree-based cost aggregation
method, which avoids the local optimality caused by man-
ually specifying the size of the support window. Inspired
by this work, Mei et al. introduced a segment-tree-based
cost aggregation method [18]. More recently, Zhang et al.
showed that the different cost aggregation methods essen-
tially differ in the choice of similarity kernels and can be
reformulated in a unified optimization framework [19].
Matching measures directly constructed using pixel
intensity values, such as Sum of Absolute Differences
(SAD), Sum of Squared Differences (SSD), and Normal-
ized Cross Correlation (NCC), lack robustness to large
perspective distortions. These measures are not suitable
for wide-baseline stereo matching, where there are signif-
icant variations in the viewpoints. A better alternative to
pixel-intensity-based cost aggregation is to employ local
feature descriptors. In recent years, many new feature
detectors and descriptors have been developed, including
BRIEF [20], BRISK [21], FREAK [22] and ORB [23]. At the
same time, several studies analyzed the performance of
feature vectors on different tasks. Heinly et al. compared
the performance of five descriptors, BRIEF, BRISK and
ORB, SIFT [24], and SURF [25] in feature detection and
description [26]. Khan et al. used precision-recall curves
and the Wilcoxon signed rank test to compare the per-
formance of thirteen feature vectors [27]. They found the
SIFT is the most accurate performer in both image recog-
nition and feature matching applications. The increasingly
abundant feature descriptors provide alternatives to pixel-
intensity-based similarity measures in dense matching
scenarios, as shown by Tola et al. [28] and Liu et al. [29].
Tola et al. showed that the DAISY feature descriptor, SIFT
and SUREF all outperform the NCC and pixel difference
in wide-baseline stereo matching [28]. To accelerate the
cost aggregation step using the BRIEF feature descrip-
tor, Zhang et al. incorporated binary masks into the cost
aggregation term [30]. The binary masks are constructed
using the Sum of Absolute Differences between two pixels
in the CIELAB color space. However, their binary masks
can only be paired with binary feature vectors like BRIEF.
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Thus, this method is not applicable to general real-valued
feature vectors such as SIFT and DAISY.

Stereo matching using feature vectors has two difficul-
ties. First, feature-vector-based matching costs are much
more computationally intensive than pixel-intensity-based
ones. There are several pixel-intensity-based strategies for
reducing cost aggregation [13—16]. However, they do not
work well when directly applied to feature vectors. For
example, the computational load of the similarity kernels
in the bilateral filtering methods [12, 13] and the tree-
based methods [17, 18] is quite low when involving only
pixel-wise intensity differences. However, their computa-
tional load is very high if feature-vector-based similarity
measures are used. Second, storing feature vectors for each
image pixel requires a large amount of memory. To facil-
itate the repetitive testing of different pixel correspon-
dences, it is desirable to store the per-pixel feature vectors,
as done in SIFT flow [29]. As an example of storage cost,
to store a 200-element DAISY feature vector in double-
precision floating-point format for each pixel of a pair of
high definition images of size 1920 x 1080 pixels, we need
approximately (2 x 1920 x 1080 x 8 x 200)/1024> =
6.18 GB of storage. Obviously, this is not practical on
memory-limited systems.

Very recently, deep learning has been used to compare
image pairs for stereo matching [31-34]. In this approach,
a convolutional neural network (CNN) is deployed to
compute the matching cost between a pair of image
patches from the left and right images. Zagoruyko and
Komodakis extracted feature descriptors from image
patches at the branches of their Siamese network [31].
Their feature descriptor can be used as an alternative
to hand-crafted feature descriptors, such as SIFT and
DAISY. Zbontar and LeCun developped a convolutional
neural network that directly outputs the matching cost
between a pair of image patches [32]. The matching cost
is then combined with a cross-based cost aggregation
method. Chen et al. proposed a multi-scale deep embed-
ding model to extract features from a pair of image patches
[33]. The inner product of the features is large if the
pair of image patches matches well, and vice versa. Luo
et al. adopted a four-layer Siamese architecture for their
CNN [34]. However, they observed that simply predict-
ing the most likely configuration for every pixel using only
the CNN output is not competitive with other modern
stereo algorithms. To achieve a better performance, they
combined their CNN with semi-global block matching
and sophisticated post-processing. All these deep learn-
ing methods rely on the availability of a large pool of
annotated pairs of image patches to learn a mapping
between them. To address this issue, Mayer et al. estab-
lished a synthetic dataset containing 35,000 stereo image
pairs with ground truth disparity, optical flow, and scene
flow [35].
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In this paper, we propose a local cost aggregation
method that operates on feature vectors. The proposed
method has two major contributions. First, we develop
a feature-vector-based weighting strategy, which can be
computed much more efficiently than conventional bilat-
eral filtering, but with only a slight reduction in accuracy.
Second, we propose a new concept called the Per-Column
Cost (PCC) matrix to share the aggregated costs across dif-
ferent disparities during cost aggregation. This is in sharp
contrast to other cost aggregation strategies, such as Inte-
gral Images [36] and Box-Filtering [9], which are limited to
a single disparity map. Although we use the DAISY feature
to instantiate the proposed method, other feature vectors
can also be applied.

The rest of the paper is organized as follows. In
Section 2, the cost aggregation problem is formulated
under the filtering framework, followed by the delin-
eation of the proposed method. In Section 3, experimental
results are presented, followed by a comprehensive analy-
sis and discussion of the results. In Section 4, conclusions
and future directions are given.

2 Cost aggregation method using feature vectors
In this section, we first cast cost aggregation as a filtering
problem. Then, we analyze why existing pixel-intensity-
based cost aggregation methods are not suitable for fea-
ture vectors. Finally, we describe the proposed method in
detail.

2.1 Cost aggregation using a filtering framework
The proposed method works on a pair of rectified stereo
images, where the search of corresponding points on the
stereo image pair is constrained on the horizontal image
scanlines. Consider a pair of left image I; and right image
I,. The aim is to find a pixel ¢ = (x + d, ») in I, which cor-
responds to a pixel p = (x,y) in I}, where d is the disparity
between the pixel pair, d € D = [dmin, dmax]- Let L;(x,y)
denote the intensity value (or the vector of color values) at
location (x, y) in image I;. The search for pixel g is carried
out along a horizontal scan line. For a chosen feature vec-
tor f of length L, the dissimilarity between pixels p and g is
computed by comparing f(Ij; p) and f(/,; q), which denote
the feature vectors extracted at pixels p and g in I; and
I, respectively. Here, we do not restrict the type of fea-
ture vector f, so long as we can derive a scalar dissimilarity
measure between f(/;; p) and f(I,; q). For simplicity and
without loss of generality, we assume that images /; and I,
have identical sizes (H rows, W columns). Furthermore,
the search range D has M discrete integer values, and is
the same for all the pixels p in [;. The dissimilarity between
two feature vectors f; and f; is denoted as ¢ (f1, 7).

Cost aggregation can be defined as a filtering process
[19]. Let C denote the cost volume of size W x H x M,
where C(x, y,d) stores the cost for pixel (x,y) at disparity
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level d. Let V,[I denote the gradient component of image
I along the x direction. For a pixel p in image I;, the
combined intensity and gradient cost volume, used in
[15, 17, 18], is defined as

Clx,y,d) = (1 — ) min (|[;(x, ) — I (x + d, y) |2, 1)
+amin (| Vi) (%, y) — Vil (x +d, y) |2, 72),
(1)

wherel <x < W,1 <y < H,and dnin < d < dmax- The
parameters 1] and 7y are two thresholds, and « balances
the color and gradient terms.

Consider a 2D filter K (also called the “similarity kernel”
in [19]). For a support window of size 2w + 1) x 2w+ 1)
and centered at pixel (x,y) in the left image Ij, the filter
output can be expressed as

w

Cyd =) Y KGj)Cx+iy+jd. (2

I=—wj=—w

Existing cost aggregation methods differ mainly in the
choice of K. For example, for the edge-preserving bilateral
filter [12], the kernel is given as

)

Os

1
K@, j) = = —
@i, )) Zexp(

> (_ 1iGx, ) — Li(x + iy +)) |I2)

Oc¢

®3)

where —w < i,j < w, the parameters o, and o, control
the spatial and color similarity, and Z is a normalization
constantsuch that 377, > KY(i,j) = 1.In the case
of the guided-image filter [16], the kernel is given as

K&, j) = 1+ (;(%,9) —w) T (T + €E)

1
2w+ 1)2 [
W +iy+i) -], )

where u is the mean vector, ¥ is the covariance matrix
of the pixels in the support window, E denotes the iden-
tity matrix, and € is a smoothness parameter. Note that
for both filters, the filter kernel varies according to the
coordinates of the center pixel (x,y). In the tree-based
cost aggregation methods [17, 18], a connected, undi-
rected graph G = (V,E) is established for I;, where the
set of vertices V is the image pixels and the edges E con-
nect neighboring pixels. In all these kernels, the weight
between two pixels is defined as the difference between
their intensity values.

One important reason that the state-of-the-art cost
aggregation methods can work very fast is that the similar-
ity kernels can be computed very efficiently, with simple
arithmetic operations mostly. However, this is not the case
when feature vectors rather than pixel intensity values are
used. For example, if the pixel difference term ||[;(x,y) —
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Li(x + i,y + j)|l2 in Eq. (3) is replaced with the feature-
vector-based dissimilarity term c(f({;; x, y), £(I;; x+i, y+7)),
we would incur a sharp increase in the computation.

2.2 Feature-vector-based cost aggregation

To formulate the feature-vector-based cost aggregation
problem as a filtering problem, we first need to compute
the cost volume C:

C(x;y, d) - C(f(ll;x»y): f(Ir;x + d:)’)), (5)

where x €[1, W],y €[1,H], and d € [dmin> Amax)- The
dissimilarity measure c(f(I;; x, y), f(I;; x+d, y)) is problem-
dependent. For example, a commonly used dissimilarity
measure is the Euclidean norm of the difference between
the two feature vectors. To avoid repeatedly computing
and comparing feature vectors, the cost C(x,y,d) is com-
puted in a row-wise manner. For each row y, we form two
L x W matrices:

F) =[fU; 1,), €U 2,9), . . .. £Lis%,9), . ... £ W, 9)], (6)
Fg: [f(lr» 1;)’), f(lr'! 2,_)/)1 cee f(Ir') x,_)/), cee f(lr') W,J/)] N

The x-th column of Fly contains the feature vector com-
puted at pixel (x,y) in the left image I;. The x-th column
of F) contains the feature vector computed at pixel (x,y)
in the right image /. To compute c(f(I;; x, ), £(I;; x+d, y)),
the feature vectors f(I;; x, y) and f(I,; x + d, y) are retrieved
directly from Fly and F) rather than being re-computed.
Next, we present in detail the proposed method for cost
aggregation.
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2.2.1 Feature-vector-based weighting strategy
Our feature-vector-based weighting strategy is inspired
by the edge-preserving bilateral filter [12], but is mod-
ified to accommodate feature-vector-based dissimilarity
measures. Figure 1 shows the difference between the con-
ventional bilateral filter and the proposed bilateral filter.
In the conventional bilateral filter, the weights K(i, /) of
Eq. (3) are computed with a single center pixel as the refer-
ence. However, in the proposed bilateral filter, the weights
are computed with multiple center pixels as the reference.
Consider a support window of size 2w + 1) x (2w +
1) located at pixel (x,y) in an image. The weights of the
proposed bilateral filter are defined as

( i ) < c(fI %,y + ), €U+ i,y +j)))
=exp|—— )exp|— )

01 02

(7)

where —w < i,j < w, and parameters o7 and o con-
trol the spatial and color similarity. From Eq. (7), if i = 0,
G"(i,j) = 1. In other words, all the pixels in the middle
column of the support window share the same weights,
and act as “center” or “reference” pixels. As in the case
of KY (i, j), the weights of GP (i, j) are normalized so that
Y, GG ) =1

The rationale of the proposed bilateral filter can be
explained as follows. Because the feature vector c¢(f(I;; x, y)
describes a local area around a pixel (x,y) instead of just
the pixel itself, the cost c(£({};x,y), f(I;x + i,y + ) is less
spatially sensitive than ||I;(x,y) — [;(x + i,y + j)||2. This
property enables us to use multiple center pixels for the
proposed bilateral filter instead of a single center pixel as

B tIN \

.2 AR R S BN AN

Configuration of the conventional bilateral filter

a»@&e
4»@&«
%%Q&%
4»@&%
a»@«e

Configuration of the proposed bilateral filter

Q center pixel

points to the center pixel with respect to
" which the weight is computed

the reference

Fig. 1 Difference between the conventional bilateral filter and the proposed bilateral filter. Left: weights for the conventional bilateral filter are
computed with one single center pixel as the reference. Right: weights of the proposed bilateral filter are computed with multiple center pixels as
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for the conventional bilateral filter. Furthermore, Eq. (7) is
computed along the horizontal scan lines. If a single cen-
ter is used, the term c(f(I;; %, y), f(I;;x + i,y + j)) needs to
be computed across the scan lines, leading to a significant
increase in the storage requirement. As confirmed later
in Section 3.4, the proposed multi-center bilateral filter
operates more efficiently while achieving a similar stereo
matching accuracy compared with the single-center case.

2.2.2 Per-column cost matrix

The proposed weighting strategy works efficiently when
combined with a new concept called the Per-Column Cost
matrix. To illustrate this concept, Fig. 2 shows an example
of three support windows of size 3 x 3 pixels (i.e., w = 1)
centered at locations (x,%), (x + 1,) and (x + 2,y) in the
left image. The three support windows share a common
column (colored with red). For any of these three sup-
port windows, the counterparts of this red column in the
d-shifted support windows in the right image occupy the
same consecutive region of (2w + 1) x M pixels (shaded
with gray). This fact implies that if we record the accumu-
lated costs associated with the red column when matching
either of the three support windows in the right image, we
can reuse the accumulated costs and reduce the computa-
tional load by a factor of (2w + 1). This observation leads
us to construct a matrix I'y to store the column-based
accumulated costs:

w
Ty +da) =Y c®Upxy+)flsx+dy+j) (8)
j=—w
w
=Y Cy+jd),

j=—w

where the subscript y indicates that it is constructed for
the y-th row.

The matrix I'y, of size W x W, can be computed quite
efficiently. First, it is quite sparse: for the x-th row of Iy, all
entries except those with indices from (x + dpjy) to (x +
dmax) are empty. Second, starting with I',,4;, the matrix
I’y for y > w + 1 can be computed recursively as follows:
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Ty (i) = Ty 10 j) + CGyy+w,i—j) — CGry— 1 — w,i—)).
)

An important property of I'y is that it is shared across
different disparities, as opposed to Integral Images and
Box-Filtering, which are limited to a single disparity level.

Next, we incorporate the weighting strategy described
in Section 2.2.1. From Eq. (8), each element of I'; accu-
mulates the unweighted costs from one column of the
support window. However, the weights in Eq. (7) are
computed pixel-wise. To address this incompatibility, we
compute the average of the weights within one column
of the support window. This averaged weight is used as
a common weight for the accumulated costs within one
column of the support window.

Now, we present an explanation for the above approx-
imation. In Eq. (2), the weights K (i, /) are normalized so
that they sum to one for a given support window. To
simplify the discussion, we rewrite Eq. (2) as

2w+1 2w+1 @w+1)2

C=> Y KyuCy= Y KiCy
=1 t=1 n=1

where s is the column index, ¢ is the row index, and # is
the linear index of the pair (s, t). Here, C,, is the cost, and
K, is the positive weight associated with the #-th element
in the support window, ), K, = 1. Now we divide the
elements in the support window into (2w+1) columns, the
column-wise common weights (described above) amount
to approximating Eq. (10) by

(10)

~ 2w+1 2w+1 _ 2w+1 _ 2w+1
Cre Y Y KCu=D Ky Co (11)
s=1 t=1 s=1 t=1

where the common weight for column s is denoted as
Ky = 35 Y2 K. Note that Y 2w + DK, =

2wl g2wHl e

s=1 t=1 Hst

Now that Y ?*F!K;, represents the accumulated
weights within one column of the support window, we can
compute it in a similar way as for the PCC matrix I'. To
this end, we initialize a Per-Column-Weight matrix ® of
size W x W. To facilitate the computation of ®, we use a
3D Per-Pixel-Weight array P of size W x H x 2w + 1).

Left image

region of pixels in the right image (shaded with gray)

x+1+d,in

Fig. 2 An example showing the 3 x 3 support windows (w = 1) of three consecutive pixels (x,y), (x + 1,y) and (x + 2,y) in the left image. These
three support windows share a common column (colored with red). For a given support window in the left image, a series of d-shifted support
windows in the right image are matched against. The counterparts of this red column in these d-shifted support windows occupy an identical

x+1+d,0,

Right image
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The pseudo-code for the proposed feature-vector-based
cost aggregation algorithm is given in Algorithm 1. In
the pseudo-code, we use Fly, P, ®, and I'y to explic-
itly emphasize that the corresponding computations are
according to the y-th scanline. For simplicity, we do not
consider the “border problem” However, this restriction
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can be avoided by replicating the border pixels. The major
steps of Algorithm 1 are also summarised in Fig. 3.

An estimated disparity d is considered reliable if its
aggregated cost a(d) is smaller than (2w + 1) 7, where t
is a predefined threshold. Otherwise, we regard the pixel
as occluded. A large aggregated cost indicates the feature

Algorithm 1 The proposed feature-vector-based cost aggregation algorithm

Inputs and parameters:

- rectified stereo image pair {Ij, I} of W x H pixels in size

- disparity search range D = [dmin, dmax] of length M

- feature vector length L
- support window size 2w + 1) x 2w + 1)

Outputs:
- disparity map 2 of size W x H

> Initialization of the following data to zero
- 3D cost volume array C of size W x H x M

- 3D Per-Pixel-Weight array P of size W x H x 2w + 1)

1:
2
3
4: - Per-Column-Cost matrix I' of size W x W
5. - Per-Column-Weight matrix ® of size W x W
6: - two matrices F; and F, of size L x W

7. - weighted aggregated costs vector a of length M
8: - weights vector w of length 2w + 1

9: > Computation of C and P
10: for each row y do
11: Compute Fly and F/ using Eq. (6).

12: Compute C(x, y,d) for each x and d € D using Eq. (5).

13: Compute P(x, y,z) = exp ( - IZ') exp [—U%c(f(ll;x, V), £l x + z, y))] for each x and

o1
z €[ —w,w].
14: end for

15: > Computation of the weighted aggregated costs
16: for eachrowy e[w+1,H — w] do
17: ify = w+ 1 then

18: Compute @y (x + z,x) = Dy(x,x +2) = Z?;fw P(x,y + t,z) for each x and z €[ —w, w].
19: Construct I'y using Eq. (8).

20: else

21: Update @, (i,j) = 10, )) + PG,y +w,i —j) = P,y — 1 —w,i — ).
22: Update I'y using Eq. (9).

23: end if

24 for each x do

25 Compute w(z) = &y (x + z,x) for each z €[ —w, w].

26: Normalize w(z) to sum to 1.

27:

28: Compute a(d) =Y, _, 2‘;/(31 I'y(x+2z+d,x+z) foreachd e D.

29: Set Q(x,y) = arg ming a(d).

30: end for

31: end for
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Inputs:
rectified stereo pair,
disparity search range

Initialization
Lines 1-8

C KT,o,
F,Foaand w

updated C
and K

Computation of]
|:> CandK |:>
Lines 10-14

[

weighted
aggregated
costs vector a

Outputs:
disparity map

= =

Computation of|
wand a
Lines 25-28

Construction or
update of each row y
of I and @

Lines 16-23

T, and @,

- =

Fig. 3 Block diagram of the proposed method

vectors are not well matched, usually because the local
regions lack distinctive visual appearance.

2.2.3 Computation complexity

Before discussing the algorithm complexity, we first dis-
tinguish between three types of operations involved in
our method: (a) feature vector computation, (b) feature
vector comparison, and (c) basic floating-point arithmetic
operation. Operation (a) is the computation of a feature
vector at a given pixel. Operation (b) is the computation
of the dissimilarity between two feature vectors. Opera-
tion (c) obviously is much less computationally-intensive
than Operations (a) and (b). For this reason, we use O,(1),
0Op(1) and O, (1) to denote the time complexity for each of
these three operations, respectively.

The computation of the feature vectors for all pixels in
the left and right image has a time complexity of O,(2 x
W x H). To construct the cost volume array C, the term
c(f(;;x,9),f(I;x + d,y)) needs to be computed for each
location (x,y) in the left image and each disparity candi-
date d in D, which leads to a time complexity of O,(W x
H x M). Similarly, the construction of array P needs a time
complexity of Op(W x Hx[2w + 1]).

The initial construction of matrix I has a time com-
plexity of O, (Wx [2w + 1]% XM). Note that W x M is the
number of valid entries in I". Then, updating each valid
entry requires only three single floating-point arithmetic
operations, see Eq. (8). Thus, we have a time complexity of
OBxWxH-=-2w—1)xM)~0,(3x W x HxM)
for this purpose. Similarly, the construction and update of

2
matrix ® require a time complexity of O, (% x W

and O.(3/2 x W x H x (2w + 1)), respectively. Note that
the 1/2 factor is due to the symmetry of .

Once @ and I" are computed, for each pixel (x,y) in the
left image, the evaluation of a needs 3 x (2w + 1) x M
floating-point arithmetic operations. The evaluation of w
requires an extra (2w+2) floating-point arithmetic opera-
tions, which is negligible compared with that of evaluating
a. Therefore, for all the pixels in the left image, the time
complexity with respect to this step is O.(3 x 2w + 1) x
W x H x M).

Now we analyze the storage required for implementing
the algorithm. The cost volume array C and the array P

require storage of W x H x M and W x H x 2w + 1)
floating-point numbers, respectively. They account for the
largest share of storage requirement. However, if storage
is limited, this requirement can be significantly reduced.
In fact, only the top (2w + 1) rows participate in the initial
construction of I', and we only need a small portion of C
corresponding to these (2w + 1) rows, which consists of
(2w+1) x W x M floating-point numbers. Afterwards, I" is
iteratively updated by “removing” the oldest contributing
“row” of C and adding a new one, which means we only
need to keep two “rows” of C, or 2 x W x M floating-
point numbers. Summarizing these two cases, it would be
sufficient to use 2w+1) x W x M floating-point numbers
to dynamically keep those “rows” of C that are needed for
the construction or update of I'. Similarly, (2w + 1)2 x W
floating-point numbers are required for the construction
or update of P.

The matrices F; and F, both have L x W elements, and
the storage requirement is dependent on the type of the
chosen feature vector. For feature vectors such as DAISY
and SIFT, each element is one floating-point number. For
feature vectors such as BRIEF and BRISK, each element is
one bit. The matrices ' and ® each require W? floating-
point numbers for storage, and can be re-used for each
row. The storage requirement can be further reduced if
their sparsity can be exploited. Finally, the vectors a and w
require M and (2w + 1) floating-point numbers for stor-
age, respectively. The time and storage complexity for the
proposed method are summarized in Table 1.

3 Results and discussion
In this section, we first introduce the test data in
Section 3.1 and the DAISY descriptor in Section 3.2.
Then, we explain how to select the parameters of the
proposed method in Section 3.3. Next, we compare the
proposed feature-vector-based weighting strategy with
several other weighting strategies in Section 3.4. Finally,
we compare the performance of the proposed cost aggre-
gation method with two benchmark methods on two
datasets in Section 3.5.

The proposed algorithm was implemented using C++.
The experiments were done on a desktop computer
equipped with an Intel Core i7-4770@3.40 GHz CPU, 8
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Table 1 Time and storage complexity of the proposed feature-vector-based cost aggregation algorithm

Time complexity

Feature vector computation
Feature vector comparison
Construction and update of I'
Construction and update of ®

Cost aggregation for all pixels
Storage complexity

The cost volume array C

Array P

Matrices F; and F,
Matrices I" and &
Vector a

Vector w

02 x W x H)

Op(W x H x M) for Cand Op(W x H x 2w + 1)) for P

Oc (@w+1)? x W x M) and Oc(3 x W x H x M), respectively
o} (M x W) and 0.(3/2 x W x H x (2w + 1)), respectively
OBx 2w+ 1) x W x Hx M)

Unit: Number of floating-point numbers

Maximum: W x H x M

Minimum: Cw 4+ 1) x W x M

Maximum: Qw + 1) x W x M

Minimum: Qw 4+ 1)2 x W

L x W entries, depending on the type of feature vector
W2

M

2w+ 1

GB memory, and 64-bit Windows 7 Enterprise operating
system.

3.1 Wide-baseline stereo image data

The experiments in this work used two groups of wide
baseline stereo image data: i) the Fountain and HerzJesu
dataset; and ii) the 2014 Middlebury Stereo dataset.

3.1.1 The fountain and HerzJesu dataset

The first group of test data is from the public dataset
released by Strecha et al. [37]. Specifically, we used two
data sets: the “Fountain” data set and the “HerzJesu” data
set. Both data sets contain gray-scale images of size 768 x
512 pixels, along with their ground-truth depth maps and
occlusion maps. The camera calibration parameters asso-
ciated with each gray-scale image are available, allowing
these images to be rectified. The rectified images are of
size 768 x 512 pixels.

For the “Fountain” data set, eleven wide-baseline stereo
images were used in our experiments. One stereo
image was used for the parameter selection experi-
ment, presented in Section 3.3. The other ten stereo
images were divided into two sub-sets, denoted as
Fountain-A and Fountain-B. Each sub-set contained
five consecutive images. For each sub-set, one image
was considered as the left image while the other four
images were considered as the right images. This was
repeated five times, giving twenty stereo pairs for
each sub-set. For the “HerzJesu” dataset, five images
were selected to form another sub-set. In all, the
first group of test data contained 60 stereo pairs. For
brevity, we call this set “Fountain and HerzJesu Dataset”
hereafter.

For this group of test data, the performance of a given
stereo matching method was measured using precision,
recall and running time. Let m be the number of cor-
rectly estimated non-occluded pixels, #n the number of
non-occluded pixels, and N the number of ground truth
non-occluded pixels. For a given non-occluded pixel, if the
relative error between its estimated depth value and the
ground-truth depth value is less than 5%, the estimation
is considered to be correct. The precision and recall are
defined as

precision = —, (12)

recall =

SENIE

3.1.2 The 2014 Middlebury stereo dataset
The second group of test data is from the 2014 Middlebury
Stereo Dataset [38]. The stereo image pairs in this dataset
were generated using a structured lighting system, and
were meant to present new challenges for the next gen-
eration of stereo algorithms. Of the 33 stereo image pairs
in the 2014 Middlebury Stereo Dataset, only 23 of them
have accompanying ground-truth disparity maps. There-
fore, we used these 23 stereo pairs in quarter resolution
to form the second group of test data: 1) adirondack, 2)
jadeplant, 3) motorcycle, 4) piano, 5) pipes, 6) playroom,
7) playtable, 8) recycle, 9) shelves, 10) vintage, 11) back-
pack, 12) bicyclel, 13) cable, 14) classrooml, 15) couch,
16) flowers, 17) mask, 18) shopvac, 19) sticks, 20) storage,
21) swordl, 22) sword2, and 23) umbrella.

Because this group has no accompanying occlusion
maps, the performance of a given method is measured by
the overall disparity estimation accuracy, which is defined
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as the fraction of pixels with correctly estimated disparity
values. If the difference between the estimated dispar-
ity and ground-truth disparity of a pixel is less than two
pixels, the disparity is considered as correctly estimated.

3.2 Implementation of the DAISY feature vector

In this work, we selected the DAISY feature descriptor
to implement and test the proposed method. The DAISY
descriptor gets its name from its flower-like shape. The
center of the flower is located at the center of an image
patch. There are Q concentric rings surrounding the
flower center, each ring containing T evenly distributed
circles. These Q x T circles form the flower petals. The
interested reader is referred to Fig. 6 of [28] for a visual
appearance of the DAISY descriptor. The flower center
and petals are each described by a histogram of length H,
which is the convolved orientation map computed at the
flower center or a petal. Thus, a DAISY descriptor con-
tains H x (Q x T+ 1) elements. Our experiments used the
default parameters published in [28]: Q = 3, T = 8, and
H = 8§, for a feature vector of 200 elements.

The DAISY feature descriptor has been shown to out-
perform SIFT and SURF in wide-baseline stereo matching
[28]. In addition, DAISY is more computationally efficient
than SIFT because it reuses the descriptor computation
of other pixels. A disadvantage of the DAISY descriptor
is that it is not scale- and rotation-invariant. However,
since we use rectified images as input, the scale and rota-
tion disparities between the stereo image pair are mostly
compensated during the image rectification step. A C++
implementation of the DAISY descriptor is publicly avail-
able from http://cvlab.epfl.ch/software/daisy.

For two DAISY descriptors f; and fy, their dissimilarity
is defined as

S
1
e, ) = < DI = K, (13)
k=1

where § is the total number of non-occluded histograms,
and £} and f¥ are the k-th normalized histogram of f; and
f, respectively [28]. Of the (Q x T'+1) = 25 histograms of
a DAISY descriptor, some may be occluded because their
corresponding petals lie outside the image plane. Hence,
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only the non-occluded histograms are used for match-
ing. Each of the non-occluded histograms is normalized
to unity norm. The dissimilarity measure c(f, f;) ranges
between 0 (perfect match) and 2 (complete non-match).

3.3 Parameter selection for the proposed method

The proposed method has two important parameters, the
support window size (determined by w) and the threshold
value 7. The algorithm was run with various combina-
tions of w and t on two stereo pairs shown in Fig. 4.
These two stereo pairs were not included in the Foun-
tain and HerzJesu Dataset described in Section 3.1. The
7 values were varied between 0.1 and 0.9 with a step of
0.1. The running times for different sizes of the support
window were averaged. The results in terms of precision
versus recall and average computation time are shown
in Fig. 5. Each t value corresponds to a cross on the
precision-recall curves. Figure 5 shows that for every sup-
port window size, the recall increases and the precision
decreases for increasing t. Another observation is that a
large support window size does not necessarily increase
the performance in terms of precision-recall, despite an
increase in running time. As discussed in Section 2.2.1, a
feature vector describes the statistics in an image patch
around a pixel. For all the pixels inside a support window,
the union of their corresponding image patches exceeds
the support window itself. For this reason, we can use a
small support window, instead of a large one as is often
required by pixel-intensity-based stereo matching. Based
on this analysis, a combination of w = 3 and 7 = 0.3 was
used in the subsequent experiments.

3.4 Analysis of weighting strategies

In this simple experiment, we analyzed the proposed
feature-vector-based weighting strategy and three other
weighting strategies. The experiment used the two stereo
pairs presented in Section 3.3.

We first compared the proposed method with two
weighting strategies: i) the conventional bilateral filter
with intensity difference [12]; ii) the bilateral filter with
a single center. The first weighting strategy is repre-
sented by Eq. (3). The second weighting strategy is an

Fig. 4 Two stereo pairs used for parameter selection for the proposed method
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extension of Eq. (3), by replacing the term || [;(x,y) — ;
(x + i,y + j)||2 with the feature-vector-based dissimilarity
term c(f(I;; x, ), U x + i,y + ).

For fair comparison between the proposed method
and the first two strategies, the DAISY feature vec-
tor was used to compute the initial cost volume in
Eq. (1), instead of the truncated absolute differences.

This way, the performance differences in cost aggrega-
tion were solely determined by the different weighting
strategies.

Figures 6 and 7 show the precision versus recall of the
three weighting strategies on the two stereo pairs, for
different support window sizes. The proposed weighting
strategy significantly outperforms the bilateral filter with
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Fig. 6 Performance comparison of the proposed and two other bilateral-filtering-based weighing strategies on the stereo pair in Fig. 4(a)
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intensity difference. The recalls of the proposed weighting
strategy are only slightly lower than those of the bilateral
filter with a single center. However, the proposed weight-
ing strategy is much faster than the bilateral filter with a
single center.

Next, we analyzed another weighting strategy, which is
based on the guided-image filter [15]. The cost volume
was computed in two ways. One way was to use a com-
bination of the truncated absolute difference of the color
and the gradient, as in [15]. The other way was to use the
DAISY feature vector. On the two stereo pairs, this strat-
egy did not produce good disparity estimates, even using
both ways of computing the cost volumes. This result
suggests that the weighting strategy based on the guided-
image filter may not be suitable for wide-baseline stereo
matching.

3.5 Comparison with other methods

In this section, we compare, using the two datasets
described in Section 3.1, the proposed cost aggrega-
tion method with two benchmark methods: Min et al.’s
method [14], and the census transform [39, 40].

Min et al. developed an approximate strategy to opti-
mize cost aggregation [14]. This strategy, originally based
on the truncated absolute difference (TAD) matching cost,
consists of two parts: disparity candidate selection and
joint histogram-based aggregation. In our implementa-
tion, the strategy was extended to feature vectors, by
replacing the TAD matching costs with the dissimilari-
ties between feature vectors. To enable a fair comparison,
the DAISY descriptors were stored in the memory for the
disparity candidate selection.

The census transform is one of the most popular tech-
niques to compute matching costs for stereo vision. This
method creates an encoded bit string for the pixels in
a window. If the intensity of a pixel is lower than that
of the center pixel of the window, the corresponding bit
is set to one; otherwise, it is set to zero. This way, the
census transform describes the spatial structure in the
window. A census-transformed image pair is matched by
computing the Hamming distance between the bit strings.
Our C++ implementation of the census transform was
adapted from Banks and Corke’s source code that accom-
panies their publication [41]. In the experiments, we used
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Table 2 Performance comparison of three methods on the fountain and HerzJesu dataset

Method Fountain-A Fountain-B HerzJesu Time (sec)
Precision Recall Precision Recall Precision Recall

Min et al. [14] 0.904 0.838 0.831 0.765 0.907 0.845 128

Census transform [41] 0.981 0.788 0.975 0.714 0.978 0.759 105

Proposed method 0.953 0.809 0.934 0.751 0.967 0.823 53

a census window size of 31 x 31 pixels, which is compatible
with the computation of the DAISY feature vector.

Both benchmark methods rely on the left-right cross-
check to detect pixels with unreliable disparities. That is,
the disparity map for both the left and right images are
computed. First, for a pixel p in the left image, its coun-
terpart g in the right image is found. Then, for pixel g
in the right image, its counterpart p’ in the left image is
found. Finally, the disparity value for pixel p is consid-
ered as correctly estimated if ||[p — p'|| < €, where € is a
small threshold. For a fair comparison, we also applied the
left-right crosscheck with the proposed method. An eval-
uation of different values for € indicated that € = 2 gave
a good trade-off between the precision and recall rate.
Therefore, in the following experiments we selected € = 2.

3.5.1 Comparison on the fountain and HerzJesu dataset

In this experiment, we compared three methods on the
Fountain and herzJesu Dataset. Table 2 presents the per-
formance in terms of precision, recall and running time of
the three methods on the Fountain and HerzJesu Dataset.
Min et al.’s method [14] yields the highest recall rate and
the lowest precision rate among the three methods. The
census transform provides the lowest recall rate and the
highest precision rate among the three methods. The high

precision rate by the census transform is attributed to its
ability to capture the spatial structure of local windows
using the encoded bit strings. In comparison, the pro-
posed method yields a middle rank in terms of precision
and recall rates among the three methods. In terms of
processing time, the proposed method is 2.42 times faster
than Min et al.’s method, and 1.98 times faster than the
census transform.

To further investigate stereo matching performance,
we compute the proportion of correctly estimated non-
occluded pixels, which is the product of the precision and
recall rates, see Eq. (12). The results, shown in Fig. 8, indi-
cate that the proposed method has a higher precision x
recall score than the other two methods in most of the 60
stereo pairs. The average value of the precision x recall
for the proposed method is 0.757, higher than that of the
census transform (0.738) and Min et al.’s method (0.721).

Figure 9 presents representative results of depth esti-
mation on this dataset. In this figure, Columns 1 and 2
are the input stereo pair; Column 3 is the output of the
proposed method, where occluded pixels are shown in
pink color. Column 4 compares the proposed method and
Min et al’s method [14]: If the depth of a pixel is cor-
rectly estimated by the proposed method but incorrectly
estimated by Min et al.s method, it is represented with
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Fig. 9 Representative examples of depth estimation from the Fountain and HerzJesu Dataset. Columns 1 and 2: the stereo pairs. Column 3: depth
estimation results by the proposed method, where pink pixels denote occluded pixels. Column 4: comparison of the proposed method with Min et
al's method [14]. If the depth of a pixel is correctly estimated by the proposed method but incorrectly by Min et al.'s method, the pixel is shown in
green color; otherwise, it is shown in red color. Column 5: comparison of the proposed method with the census transform using the same color
convention. A blue border around the image indicates the case where the proposed method performs worse compared to the other methods

green color; otherwise, it is represented with red color.  the proposed method outperforms Min et al.’s method in
Similarly, Column 5 compares the proposed method with ~ most parts of the image. However, for sharp boundaries
the census transform using the same color convention. (e.g., the boundaries between the red wall and the white
In Columns 4 and 5, a blue border around the image wall in the last two rows of Fig. 9), the census transform
indicates the case where the proposed method performs  works better. This performance gap can be attributed to
worse than the other method. The distribution of the color  the different ways of forming the feature descriptors. The
pixels in Columns 4 and 5 also reveal the stength of a  DAISY descriptor samples at sparse locations in a local
given method in different parts of the image. Generally, area (only at the center and petals of the DAISY “flower”),

o
o

e
13

o
~

i pe s et C . Sl et e i

disparity estimation accuracy

i
|
A N R s s S S FT ! I
! ! ! —*— Min et al., mean = 0.431 ! ! ; ! ! !
02 b ! b~~~ —6—Census transform, mean = 0.621 |~~~ -~ ~ - - =4 -~ —d -~ — R e Aol
! ! I || —9— Proposed, mean = 0.624 ! ! ! ! ! !
| | | | T T T T T T | | | | | |
0.1 1 I 1 1 1 1 1 I 1 1 1 1 I 1 1 i
1 2 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23

Stereo Pair

Fig. 10 Performance comparison of three methods on the 2014 Middlebury Stereo Dataset
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while a bit string used in the census transform takes every
location in the local area into account. Consequently, the
DAISY descriptor may miss out some boundary pixels
if its sample locations are far from them. This perfor-
mance gap between the proposed method and the census
transform can be reduced by using more advanced feature
descriptors.

3.5.2 Comparison on the 2014 Middlebury stereo dataset
In this experiment, we compared three methods on the
2014 Middlebury Stereo Dataset. Figure 10 presents the
disparity estimation accuracy of the three methods on this
dataset. For a fair comparison of the three methods, we
discarded borders of half the census window width from
the results. This is because the census transform gener-
ated zero pixels along the borders of census-transformed
images. The proposed method and the census transform
perform significantly better than Min et al.’s method. The
average disparity estimation accuracy for the proposed
method, the census transform, and Min et al’s method
is 0.624, 0.621, and 0.433, respectively. Of the 23 stereo
pairs, the proposed method achieves the highest disparity
estimation accuracy for 13 stereo pairs.

Note that the 2014 Middlebury Stereo Dataset contains
less texture compared with the Fountain and HerzJesu
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Dataset. This result indicates that the proposed method
and the census transform are more stable for textureless
scenes.

Figure 11 presents representative examples of dispar-
ity estimation on the 2014 Middlebury Stereo Dataset.
Columns 1 and 2 are the input stereo pairs. Column
3 is the output of the proposed method, where pixels
with incorrect disparity estimations are shown in pink.
Columns 4 and 5 compare the proposed method with
Min et al’s method and the census transform, using the
same color convention as in Fig. 9. However, because this
dataset has ground-truth disparity maps instead of depth
maps, the outputs are overlaid on the ground-truth dis-
parity maps. The results again show that at sharp bound-
aries (e.g., the “sticks” stereo pair in the last row of Fig. 11),
the proposed method may perform less successfully than
the census transform.

4 Conclusion

In this paper, a feature-vector-based cost aggregation
algorithm was proposed for wide-baseline stereo match-
ing, and evaluated using the DAISY feature vector. The
proposed algorithm improved the efficiency of cost aggre-
gation by combining a Per-Column-Cost matrix and a
feature-vector-based weighting strategy. The paper also

compared to the other methods

Fig. 11 Representative examples of disparity estimation from the 2014 Middlebury Stereo Dataset. Columns 1 and 2: the stereo pairs. Column 3:
disparity estimation results by the proposed method, where pink denote pixels with incorrect disparity estimations. Column 4: comparison of the
proposed method with Min et al.'s method [14]. If the disparity of a pixel is correctly estimated by the proposed method but incorrectly by Min et
al's method, the pixel is shown in green color; otherwise, it is shown in red color. Column 5: comparison of the proposed method with the census
transform using the same color convention. A blue border around the image indicates the case where the proposed method performs worse
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presented a detailed analysis of both time and storage
complexity of the proposed method. The new method
was extensively tested and compared with two benchmark
methods on two wide-baseline datasets. With growing
research in feature detectors and visual descriptors, it can
be envisaged that the proposed method will be attractive
for stereo matching applications where feature vectors are
used.

Among several possibilities, one direction for future
work is to further accelerate the speed of the proposed
method. For example, once the Per-Column-Cost matrix
I' and the Per-Column-Weight matrix & are computed,
the disparity values for the pixels in a row can be com-
puted in parallel. Another direction is to combine the
proposed method with feature vectors that are found via
deep learning [31-34].
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