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Abstract

This study proposes a novel algorithm that enhances the distinctiveness of the traditional vector of locally
aggregated descriptors (VLAD) using spatial distribution clue of local features. The algorithm introduces a new
method to compute the spatial distribution entropy (SDE) of clusters. Unlike conventional methods, this algorithm
considers the distribution of full spatial information provided by local feature detectors rather than only utilizing the
spatial coordinate statistics. For each cluster, the corresponding spatial distribution is computed using a histogram
of spatial locations, scales, and orientations of all local features inside the cluster. Entropy is calculated from the
spatial distributions of all clusters of an image to create a distribution function, which is further normalized and
concatenated with the VLAD vector to generate the final representation. Image retrieval and classification
experiments on public datasets are performed. Experimental results show that the proposed algorithms produce
better or comparable retrieval performance than several state-of-the-art algorithms. In addition, we extend our SDE
to the convolutional neural network (CNN) feature, which further improves the CNN feature result in image
retrieval.

Keywords: Image retrieval, Vector of locally aggregated descriptors, Spatial distribution entropy, Quantization error,
Normalization

1 Introduction
With the rapid development of camera and internet
technology, numerous large image and video data-
bases continue to increase. Searching for similar
results to a query image in these large databases with
high search accuracy, high efficiency, and low mem-
ory usage is the main challenge in image retrieval
research field. Many visual search systems are avail-
able for retrieving relevant multimedia content to the
query, and the most simple and direct method is rely-
ing on textual label with the multimedia content.
However, these systems significantly suffer from the
semantic gap [1]. Content-based image retrieval
(CBIR), which returns result images that share certain
visual elements with the query image, was proposed
to address the semantic gap problem.

Initially, the effect of CBIR was unsatisfactory. Until
the early 2000s, two pioneering works considerably im-
proved CBIR. The first one is the scale-invariant feature
transform (SIFT) [2]. Lowe [2] proposed the feature de-
tector that detects local features from an image. These
features are consistent with variations, such as view-
point, illumination, and other viewing conditions. The
second one is the bag-of-visual-words (BoW) method
[3]. The BoW descriptor represents the distribution of
visual words and shows considerable distinctiveness and
robustness; hence, this descriptor has been widely used
in the field of CBIR. Based on these pioneering works,
aggregated vector-based methods emerged, including
vector quantization [3], sparse coding [4], locality-
constrained linear coding [5], and soft assignment [6].
Aggregated vector-based encoding methods succeed in
various image retrieval applications [3–5, 7–9]. The
vector of locally aggregated descriptors (VLAD) [8] is
one of the most widely adopted aggregated vector-based
methods.
Nevertheless, quantization-based methods, such as BoW

[3], VLAD [8], or Fisher vector (FV) [10], inevitably have a
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few drawbacks [11]. One of the most critical drawbacks is
the tradeoff between quantization error and searching
accuracy. In a quantization-based method, high search ac-
curacy relies on an enormous vocabulary to reduce the
quantization error and improve the distinctiveness of global
representations. Improving the distinctiveness of the
quantization-based global representation (such as VLAD
[8]) is the focus of this study. Although most quantization-
based global representations are based on local image
descriptors (such as SIFT [2] and SURF [12]), a few
important spatial relevant information of these local fea-
tures are generated by the local feature detectors [13], such
as coordinates, scale, orientation, or saliency of local feature
points apart from the local feature descriptors. This kind of
feature resource could be utilized.
The spatial relationship in an image exists between dif-

ferent regions of the image; however, spatial information
is always neglected due to the orderless representation
of the image using quantization-based methods [14].
Although methods based on query expansion [15], soft
quantization [16], and large vocabulary size [17] can en-
hance the image retrieval performance, these methods
lack spatial information that provides discriminating
details.
Despite these improvements, most quantization-based

methods do not consider the geometric relationships
between local features, which strongly limit their perform-
ance in large-scale image search systems. A final re-
ranking step is typically performed to improve the quality
of the initial ranking either by checking the geometric
consistency of the matches [17–19] or providing
additional information modeling the preferences or visual
attention of users to overcome this limitation [20]. Such
re-ranking methods are commonly used only for a subset
of images because they are often computationally expen-
sive and significantly increase the retrieval time.
The following three constraints should be consid-

ered in large-scale image retrieval applications: search
accuracy, efficiency, and memory usage [8]. In this
study, we aim to boost the distinctiveness of the ag-
gregated vector with additional detailed spatial infor-
mation. Simultaneously, the proposed method should
use low memory and be efficient for large-scale image
retrieval applications. To this end, we attempt to
adopt a simple yet effective mechanism. We build
spatial distribution entropy (SDE) of every cluster
based on the spatial information of local features and
utilize it as a complementary clue to the original
VLAD representation.
We provide a detailed analysis of SDE utilization to

improve the original VLAD representation in image
retrieval problem and describe the most appropriate
configurations. In addition, we demonstrate that the
SDE method can be combined with other add-ons to

the original VLAD representation applied in image
retrieval.
The proposed SDE shows significant compatibility.

Except for the traditional VLAD method, we attempt
to combine triangulation embedding (T-embedding)
and democratic aggregation [21] method with the
proposed SDE. In our experiment, our SDE further
improves the retrieval accuracy of T-embedding. In recent
years, deep convolutional neural network (CNN) has dem-
onstrated state-of-the-art performance in various tasks on
image recognition and retrieval. In this study, we also inte-
grate our SDE with CNN-based methods to further im-
prove the retrieval accuracy.
Figure 1 shows an example of image retrieval using

the proposed method.
The rest of this paper is organized as follows. We first

review the related work on global representation in
large-scale image retrieval in Section 2. Then, we intro-
duce the method of building the SDE-boosted VLAD
representation and discuss the motivations in Section 3.
Detailed experiments and main results are provided in
Section 4 to validate the effectiveness of our proposed
method. Finally, we summarize the paper with conclu-
sive remarks in Section 5.

2 Related work
CBIR has been a long-standing research topic in the
computer vision society. In CBIR research, images are
indexed by their visual features, such as texture and
color. A straightforward strategy in CBIR is to employ
global representation to retrieve images that are similar
to the query. Many CBIR systems are based on local fea-
tures, such as SIFT [2], RootSIFT [22], and SURF, to
simultaneously attain the invariance and distinctiveness
[12]. Among these global image representations, BoW
[3] used to be the most widely adopted method, which
was first proposed in 2003 and was then applied in
image classification in 2005. In BoW architecture, local
features are extracted from images, and each local fea-
ture is assigned to the nearest visual word computed
from a pre-trained vocabulary.
Aggregated vectors, such as VLAD [8] and FV [10],

are proven to be more effective than BoW in terms of
efficiency and memory cost in large-scale image re-
trieval. Aggregated vectors use a small-sized codebook
and can be further reduced by dimension reduction
while preserving excellent performance.
VLAD computes a residual vector between centroids

and local features and could be taken as the non-
probabilistic version of FV. Although a full-size FV ob-
tains better performance than VLAD, the short vector
representation generated by the principal component
analysis (PCA) of VLAD performs equally well as or
even better than the FV [8]. Owing to its efficient
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computation, VLAD is a common choice in many large-
scale image retrieval systems. VLAD descriptor can be
reduced to a small size when applied to large-scale
image retrieval. PCA can be employed on aggregated
vectors to achieve dimensionality reduction. In addition,
the vector can be further quantized into compact codes
after dimension reduction by locality-sensitive hashing
(LSH) [23] and spectral hashing (SH) [24].

2.1 Visual burstiness
The existence of a few large values in the VLAD vector
will weaken the role of its other components. This prob-
lem is called visual burstiness. We need some processing
to deal with visual burstiness in VLAD.
Notably, different local features unequally contribute

to the VLAD descriptor when residuals are summed
together to generate VLAD descriptors. Several
normalization approaches are proposed to solve this
problem [25–27]. The BoW method solves the visual
burstiness by square-rooting and renormalizing the

BoW vectors [25]. Similarly, VLAD uses intra-
normalization [27] to solve visual burstiness. In this
method, the residuals of each centroid are L2-
normalized [8] within each VLAD block. The original
VLAD vector is also further power normalized [8];
then, L2-normalized [8] in the quantization stage.
Intra-normalization is useful for suppressing visual
burstiness while power normalization reduces the
effect of large values in the descriptor, and L2
normalization facilitates a good invariance of VLAD
descriptors for the number of local features. Recently,
Jegou et al. [21] proposed T-embedding method,
which computes the residuals between all local
features and centroids. Moreover, T-embedding can
suppress burstiness through “democratic” weighted
aggregation [21].

2.2 Quantization effect
In the image retrieval process, using different data-
sets for training the codebook will produce different

Fig. 1 Examples of images retrieved from (a) Holidays and (b) Oxford datasets. For each query (left), results obtained by the original VLAD (the
first row) and spatial distribution entropy boosted VLAD (SDEVLAD) (the second row) are demonstrated. The green border indicates that the
retrieval result meets the ground truth
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results. Arandjelovi´c [27] proposed cluster adapta-
tion mechanism to improve retrieval performance
when the cluster centers used for VLAD are incon-
sistent with the training dataset. The adapted cluster
center is the mean of all local features in the data-
sets assigned to the original cluster center. This
method can reduce the sensitivity of changing the
training sets or real-world large-scale retrieval where
images are added to the database with time.

2.3 Fine-grained quantization
The size of the codebook plays an important role in
aggregating the local features. Generally, a large
codebook leads to a high retrieval accuracy.
However, a large codebook will lead to a consider-
able time overhead and take up additional storage
space. Hence, the codebook size should be small in
large-scale image retrieval. The codebook size in
VLAD is very small; hence, VLAD produces a multi-
dimensional residual vector for each cluster center
to preserve the retrieval accuracy. In other studies,
Liu et al. [28] and Liu et al. [29] proposed methods
of multiple clustering. Although small-sized code-
books lead to quantization error, the multiple clus-
tering method can reduce the quantization error by
providing a detailed division of the local features
based on the original assignment. Wang et al. [30]
proposed a hierarchical quantization method, which
uses a tree structure to significantly increase the
computing speed when VLAD descriptors are gener-
ated using a large codebook.

2.4 Additional improvements for image descriptors
2.4.1 Reduce visual burstiness and quantization error
The residuals in VLAD describe the distance between
the local feature points and the cluster centroids.
Moreover, the local features have other useful informa-
tion. Peng et al. [11] proposed an improved VLAD by
adding shape and skewness information of each cluster
to the original VLAD. The improved descriptor is called
H-VLAD*. This method achieves higher retrieval accur-
acy but requires a descriptor that is two to three times
the size of the original VLAD. H-VLAD* [11] is time-
consuming for large-scale image retrieval. Fine-residual
VLAD [29] and VLAD+intra+adapt [27] proposed their
solutions for visual burstiness and quantization error.
Zhou et al. [31] proposed a method of calculating the
distribution entropy for the features in each cluster. The
distribution entropy can be concatenated with VLAD to
obtain a double-sized VLAD descriptor, or it can be
fused with the original VLAD without increasing the
length of descriptors. Adding distribution entropy is ef-
fective for improving image retrieval accuracy.

2.4.2 Spatial information
Many methods use spatial information as a supple-
ment to the descriptor. Mehmood et al. [32] proposed
a combination of local and global histograms based
on BoW [3] descriptors. BoW [3] computes a global
histogram of visual words. Mehmood et al. [32]
constructed local histogram over the local rectangular
region of the image. Local histogram provides a de-
tailed statistics on visual vocabulary. The combination
of local and global histograms agrees well with BoW
[3]. Compared with our SDEVLAD, Mehmood et al.
[32] did not use additional sources to enhance
retrieval accuracy, and SDEVLAD shows better
scalability. Krapac et al. [33] introduced an extension
of BoW [3] image representations to encode spatial
layout which improves the result of image
categorization. Krapac et al. [33] also computed the
spatial mean and variance of clusters using the Fisher
kernel. The spatial layout is combined with the Fisher
kernel after being processed by the Gaussian mixture
model. In addition, the coordinates of the local
feature are used in the calculation of spatial layout.
Notably, the descriptor of [33] is large. Koniusz et al.
[34] leveraged spatial coordinate coding to simplify
the representation of spatial pyramid in object cat-
egory recognition. Koniusz et al. [34] also changed
the way of introducing spatial information during the
formation of histograms to provide a compact and
effective representation. This change further improved
the performance of soft assignment in the classifica-
tion process. Sánchezet et al. [35] improved the result
of object classification based on FV. For the variance
due to the limits of local statistics and the variation
in the proportion of object-dependent information,
Sánchezet al. [35] proposed to augment the descrip-
tors with their spatial locations and create a bounding
box for the local features. In our proposed method
SDEVLAD, we use entropy to describe the spatial
distribution. SDEVLAD is very compact and shows
large scalability in our experiment. A detailed analysis
of SDEVLAD will be provided in Section 3.

2.4.3 CNN-based methods
In recent years, the popularity of SIFT-based models
is surpassed by the CNN [36], which is a hierarch-
ical structure that has been shown to outperform
hand-crafted features in many vision tasks [37, 38].
In the image retrieval research field, Arandjelovic et
al. [39] proposed a CNN architecture that aggregates
mid-level convolutional features extracted from the
entire image into a compact single vector represen-
tation. To this end, they designed a new trainable
generalized VLAD layer. The resulting aggregated
representation is then compressed by PCA to obtain
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the final compact descriptor of the image. Gong et
al. [40] proposed a method of combining CNN fea-
tures of different scales. They used the CNN features
from different scales to calculate the residual vectors
and eventually combined them to produce the final
representation. The combination of VLAD and CNN
[36] enhances the potential of the VLAD-based
approach.

2.5 Joint dimension reduction
In large-scale retrieval application, high-dimensional
global image representations are often dimensionally
reduced to short image representations by PCA,
which can be further encoded in compact codes
using binarization or product quantization
techniques. Jegou and Chumstudy [41] investigated
the effects of PCA on BoW and VLAD representa-
tions and advocated joint dimensionality reduction
with multiple vocabularies to reduce quantization
artifacts. Subsequently, Radenovicet et al. [42] ex-
perimentally showed that generating diverse multiple
vocabularies has crucial effects on search perform-
ance. Moreover, each of the multiple vocabularies
was learned on local feature descriptors obtained
with varying parameter settings.

3 Proposed method
3.1 Spatial information of local descriptor
Image representation is one of the key issues for large-
scale image retrieval applications. Popular global image
representations, such as BoW [3], VLAD [8], and FV
[10], are all based on local features (e.g., SIFT [2]). In
general, three main steps are followed to build compact
image representations: (1) feature extraction, (2) embed-
ding, and (3) aggregation. The feature extraction output
is a set of local image features, and each descriptor of
the local features is mapped into a high-dimensional
vector, which is called embedding. In the last step, all
the embedded vectors of an image are integrated into a
single vector. Clearly, the starting point of this flow is
the set of local feature descriptors extracted in the fea-
ture extraction step.
Local feature extraction always comprises two main

stages: feature detection and feature description [43].
Local feature detector detects points or regions
covariant with a class of transformations, and local
feature description selects the most appropriate
descriptor to characterize the points or regions. The most
widely used feature detectors are Harris–Laplacian [13],
Hessian–Laplacian [13], DoG [44], Harris affine [13, 45],
Hessian affine [13], and MSER [46]. Meanwhile, the most
popular local feature descriptors are SIFT [2] and
SURF [12]. Therefore, the complete local image fea-
ture should include two parts of information as

follows: feature detector output, which is always de-
noted as location, scale, orientation, saliency, and
shape parameters; and feature descriptors, which are
often recorded in high-dimensional vectors, such as
128-dimensional SIFT descriptors. In most CBIR sys-
tems, global image representations (such as BoW [3],
VLAD [8], and FV [10]) are based on local image de-
scriptors, whereas the output of the feature detector
information is ignored. In this study, we attempt to
leverage the spatial information provided by the local
feature detector to build a more discriminative global
image representation compared with the original ag-
gregated vectors.
In CBIR systems, the Hessian-affine detector [13] is

the most adopted local feature detector due to its
performance. The Hessian-affine detector is an affine-
invariant region detector, and its main steps include
initial region detector with Hessian matrix and auto-
matic characteristic scale selection, shape estimation
with the second moment matrix, and affine region
normalization to the circular one. The typical outputs
of the Hessian-affine detector include location and
affine region parameters. However, the scale and
orientation of the location can also be detected with
the main results.

3.2 SDE
We attempt to find a simple but effective way of in-
tegrating spatial information of local features to the
final global image representation to improve the dis-
tinctiveness of the representation. In our previous
work [31], we attempted to add distribution entropy
of descriptors in each cluster to the VLAD vector,
and the results proved its feasibility. One drawback
of this approach is the high-dimensional vector and
complexity burden due to the generation with 128-
dimensional SIFT descriptors within each cluster.
However, this shortcoming inspires us to utilize
distribution entropy as a complementary clue to the
original image representation to improve retrieval
performance.
The entropy of a relative frequency distribution is a

useful measure of dispersion for ordinal and nominal
data. Entropy is calculated using the following for-
mula [47]:

H ¼ −
Xk

i¼1
pilnðpiÞ;

where H is the entropy of distribution, k is the number
of possible outcomes, and pi is the relative frequency of
the ith outcome.
We can use entropy to describe the spatial distribution

of local features. Intuitively, we may leverage the spatial
coordinates to build the SDE. However, the spatial
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information of local features in CBIR applications is gen-
erated by the Hessian-affine detector. The detective scale
is simultaneously generated with the spatial coordinate.
Furthermore, the orientation attributes of the local
features are provided in most popular large-scale image
retrieval datasets, such as Holidays [19] and Oxfor5K
[17]. From these geometric files, spatial coordinates and
scale and orientation must be jointly used to differenti-
ate local features. Therefore, we select the spatial coord-
inate (Lx, Ly), scale σ , and orientation θ together to
build the SDE.
After the quantization stage in the original VLAD

algorithm, every SIFT descriptor is assigned to a clus-
ter center (visual word) μi. Herein, we introduce the
SDE in each cluster as follows: considering an input
image of size H × W pixels, the biggest scale of all
local features is σ∗, and the biggest orientation of all
local features is θ∗.
First, a set of SIFT descriptors Xi = {xi1,……xin} is

assigned to μi, and the SDE is built on the spatial clue of
these local features.
From the preceding discussion, the spatial clue of

every local feature could be denoted as (Lx, Ly, σ, θ),
where Lx and Ly represent the spatial coordinate, σ rep-
resents the scale, and θ represents the orientation. A 4-
dimensional spatial histogram is built with this spatial
information.
The 4-dimensional spatial histogram on a spatial grid

G is as follows:

h ¼ h m; n; t; sð Þj1≤m≤M; 1≤n≤N ; 1≤ t≤T ; 1≤s≤Sf g;

where h(m, n, t, s) is the number of local feature occur-
rences in the spatial grid located on the image region of
m−1ð Þ H

M ;m H
M

� �� n−1ð ÞWN ; nW
N

� �� t−1ð Þσ�T ; tσ
�
T � � s−1ð Þθ�s ; sθ

�
s �

��
.

The total number of the grids on the 4-dimensional
histogram is MNTS.

Second, the probability density of cluster μi can be fur-
ther computed as follows:

p m; n; t; sð Þ ¼ h m; n; t; sð Þ=
XM

m¼1

XN

n¼1

XT

t¼1

XS

s¼1

h m; n; t; sð Þ:

Using the 4-dimensional spatial histogram h and the
probability density p, the entropy measure Ei of cluster
μi is computed as follows:

Ei ¼ −
XM

m¼1

XN

n¼1

XT

t¼1

XS

s¼1
p m; n; t; sð Þ

ln p m; n; t; sð Þð Þ:

Hence, spatial entropy Ei for cluster μi is generated.
Figure 2 shows an example to describe the advantage of
SDE and intuitively demonstrate its role. Herein, we only
use the coordinate information of local feature points
because the coordinates are suitable for demonstration
in the figure. In Fig. 2, the local feature points are quan-
tized into two clusters, C1 and C2 are the centroids.
Evidently, the distribution of the clusters is different.
However, these clusters may share the same residuals,
which represent the distance between the points and
cluster centers. SDE will lead to different C1 and C2;
hence, we added SDE to the original residual vector as a
complementary clue.

3.3 Adding SDE to VLAD representation
VLAD is a feature descriptor that aggregates the local fea-
tures of an image. VLAD uses a dictionary to aggregate
local features, and the local features extracted from the
image are partitioned to the nearest cluster by computing
the Euclidean distance. For VLAD algorithm, each local
feature is used to obtain the residual vector with the cor-
responding cluster, and the residuals of each cluster are
summed up to generate a VLAD descriptor. The calcula-
tion process is shown as follows, where xj is the local fea-
ture assigned to μi according to their Euclidean distance,
and in is the number of local descriptors belonging to the
ith cluster:

V i ¼
Xin

j¼1

xj−μi:

Such a VLAD representation can be discriminatory.
Although the distribution of their local features is differ-
ent, directly adding residuals will lead to different
clusters share similar residual vectors. We use the 4-
dimensional spatial information of the local feature to
compute our SDE to describe the spatial distribution of
all the local features assigned to each cluster and provide
a discriminative VLAD descriptor.

Fig. 2 Two clusters that share the same residuals but possess
different spatial distribution entropy
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In the original VLAD workflow [8], a fixed-length vec-
tor representation V from a set of local D-dimensional
descriptors are produced. Similar to BoW [3], if a pre-
trained visual dictionary is used, then the size of V
would be K ∗D. The residual vector Vi of cluster μi
would be D-dimensional similar to the local features.
When adding SDE to VLAD representation, the simplest
method is to concatenate residual vector and SDE vector
as follows:

EV i ¼ V i ;Ei½ � j 1≤ i≤K :

As previously discussed, Ei vector would be one-
dimensional, and the final EV representation would be
K ∗ (D + 1)-dimensional.
Although direct concatenation can fuse the two types

of vectors to enhance the discrimination of the final
presentation, a few adjustments are still necessary. As
the VLAD vector could adopt different kinds of
normalization stages [8, 26, 27] to deal with the visual
burstiness problem and further improve the retrieval
performance, we adopt a similar method for the SDE
vector before its fusion with the VLAD vector, which is
called difference normalization [31]:

Ei ¼ exp Eið Þj jε:

The VLAD vector is also residual normalized [26] and
intra-normalized [27] before fusion with entropy vector.
After the fusion, the EV vector is further power-
normalized [8] and L2-normalized [8] to generate the
final representation.

3.4 Adaptation and LCS
In our experiment, we also apply a few other improve-
ments to generate the final representation, such as adap-
tation and local coordinate system.

3.4.1 Adaptation [27]
After quantization using K-means, we can obtain the
clusters of the images and identify which cluster a local
feature belongs to through the algorithm of the nearest
neighbors. On these bases, we use all the features
assigned to a cluster to obtain their mean value which
represents their geometric center. We use this geometric
center rather than the original cluster.

3.4.2 LCS [22]
The LCS provides a method of training a rotation matrix
for each cluster. LCS could be understood as locally
performed PCA. For each word in the vocabulary, a
rotation matrix will be formed by the corresponding
eigenvectors. These pre-trained rotation matrices will be
applied to the VLAD descriptor formation. Then, a

VLAD vector with residual normalization [26] and LCS
is generated as follows:

V i ¼
Xin

j¼1
RLCS � xj−μi

xj
�� −μik

:

RLCS is the rotation matrix corresponding to cluster μi.

3.5 Computation process of SDEVLAD

Herein, we holistically describe SDEVLAD. The
proposed SDEVLAD is a combination of the preced-
ing methods described. Algorithm 1 clearly presents
the computation process of SDEVLAD. This algo-
rithm has four input elements, where S represents
the set of local features, R is the rotation matrix in
LCS corresponding to centroids C, and SD is the
spatial information of local features. In Algorithm 1,
we first assign local features to the nearest centroid.
We assign the spatial information to each centroid
according to the assignment of local features. Then,
we use the spatial information (SSD) of each
centroid to compute the entropy Ei and concaten-
ate Ei together to obtain our SDE. Finally, SDE is
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concatenated with VLAD after power normalization
[8] and L2 normalization [8].

3.6 Complexity analysis
Our method calculates the distribution entropy of spatial
information in the range covered by each cluster center;
that is, the dimension of SDE is equal to the number of
cluster centers K for an image. We separately divide the
4-dimensional spatial information of the feature points
into M, N, T, and S parts. If we use B to denote the bin
amount of 4-dimensional spatial histogram, then B
should also be equal to M ∗N ∗ T ∗ S. The preceding dis-
cussion clearly indicates that the computation complex-
ity of the spatial entropy generation part is O(K*D*B),
where K is the size of vocabulary, D is the dimension of
local features, and B is the product of M, N, T, and S.
Finding the most appropriate parameter M, N, T, and S
to attain the best performance will be discussed in the
parameter analysis part.
The dimension of the descriptor for the original VLAD

is the dimension D of the SIFT multiplied by the
number of clusters K, and the dimension of SDEVLAD
is (D + 1) * K. Adding SDE to the VLAD descriptor only
deals with the additional K-dimensional data, and the
workload is close to that of the original VLAD.

3.7 Parameter analysis
In this section, the main parameters of the proposed
method are analyzed on the Holidays dataset. The com-
plexity analysis clearly shows that the BIN amount B of
spatial information, which is equal to M ∗N ∗ T ∗ S, is
important in SDE computation. On the one hand,
increasing B can facilitate an accurate expression of
spatial information. On the other hand, if B is extremely
large, then the spatial information distribution will be
extremely sparse.
Table 1 shows the results of our test on B of SDE.

Herein, we set M ∗N ∗ T ∗ S to different ranges of
values. The distribution of the scale and orientation is
similar, and the case is similar for the two dimensions
of coordinates. Therefore, we set M = N and S = T.
We also maintain the value of M and N to be larger
than the value of S and T in that the values of coor-
dinates are more extensive. In the preceding discus-
sion, the result should increase from a small value as
the value of M ∗N ∗ T ∗ S increases, reaches a max-
imum point, and then decreases. As shown in Table 1,
the result significantly improves when we increase B from
100. When the value of B becomes extremely large (after

150,000), the result begins to decrease. Restricted by our
minitype server, we did not provide the results when B is
larger than 3,000,000. In Table 1, the retrieval accuracy
reaches the maximum with M ∗N ∗T ∗ S equal to 150,000.
Then, we make a slight adjustment on M, N, T, and S with
M ∗N ∗ T ∗ S approximately at 150,000. Finally, we set M,
N to 25 and S,T to 16.

3.8 Datasets
Experiments are conducted on the following widely used
benchmark collections for image retrieval.
INRIA Holidays [19] is a dataset comprising 1491

high-resolution personal holiday photos of different lo-
cations and objects, 500 of which are used as queries.
The collection includes a large variety of scene types
(natural, manmade, water, and fire effects). The search
quality is measured by mAP, with the query removed
from the ranked list.
Oxford5k Buildings [17] contains 5062 images down-

loaded from Flickr and is often referred to as Oxford 5K.
A total of 55 queries are specified by an image and a
rectangular region of interest, and the accuracy is mea-
sured by mAP.
In training sets for Holiday and Oxford5K, we use

Flickr60k [19] and Paris datasets [16] as vocabulary
training sets, respectively.
We use Holidays to evaluate the performance of

large-scale image retrieval. We add one million im-
ages collected from Flickr, which are referred to as
Flickr1M [19], to the original Holiday dataset.

4 Results and discussion
4.1 Full-size representation comparison
In this section, we separately tested SDEVLAD on Holidays
[19] and Oxford [17] datasets. We first apply the root op-
tion to the SIFT [22] and then the adaptation and LCS im-
provements. We found that the combination of power [8]
and L2 normalization [8] is an excellent choice to perform
the normalization for VLAD representation. Herein, we use
64 clusters to generate our VLAD and SDEVLAD
representation.
VLAD and FV express the distribution of local fea-

tures. VLAD descriptor is a simplified non-probabilistic
version of the FV. Improved Fisher [9] proposes a
normalization procedure and a binarization strategy to
provide a suitable FV for retrieval. The result of the im-
proved Fisher [9] is 0.626(mAP), which is better than the
VLAD result of 0.526. VLAD has improved scalability.
Table 2 shows many improvement methods for VLAD.
Among the improved methods, VLAD+SSR [8] obtains
0.598 and 0.378 for Holiday and Oxford, respectively.
The method fine-residual VLAD [29] for quantifying the
residual of VLAD obtains 0.614 on Holidays. VLAD
+intra+adapt [27] achieves 0.646 on Holidays. These

Table 1 The influence of B on retrieval accuracy

B 100 1500 15,000 150,000 1500,000 3,000,000

Result
(mAP)

0.690 0.707 0.712 0.714 0.712 0.711
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methods mainly propose their solutions for visual bursti-
ness and quantization error. In our proposed method, the
clusters are precisely adjusted, the descriptors are normal-
ized in the production process, and a decorrelation step is
performed on local features through the LCS [22]. These
operations are effective in reducing visual burstiness and
quantization error. Simultaneously, our SDE provides a dis-
tinguishable SDEVLAD using spatial information. Finally,
our SDEVLAD achieves 0.714(mAP) on Holidays and
0.505(mAP) on Oxford.
Notably, the result of the VLAD+intra+adapt [27]

method on Oxford is 0.555 and the result of the
HVLAD [28] method on Oxford is 0.567, which are
better than the SDEVLAD result of 0.505 on Oxford.
For the VLAD+intra+adapt [27] method, the image de-
scriptor is of medium dimensionality (20 to 32 k-dimen-
sional), which is larger than the SDEVLAD dimension of
8256. HVLAD [28] combines hierarchical VLAD with a
few other improvement methods, such as multiple as-
signment [28], thereby allowing HVLAD to exceed the
SDEVLAD result on Oxford. However, the SDEVLAD
result of 0.714 on Holidays is still better than the 0.698
of HVLAD. CEVLAD [31] and EEVLAD [31] calculate
the distribution entropy value based on the VLAD [48]
vector. CEVLAD [31] and EEVLAD [31] obtain
0.676(mAP) and 0.678(mAP) on Holidays, respectively,
while SDEVLAD achieves 0.714(mAP). Compared with
our local spatial information-based distribution entropy,
our SDE obtains better results.
In our experiments, we prefer to add improvements

based on the VLAD method because VLAD is compact
and extensible. T-embedding and democratic aggregation
[21] method achieves 0.756(mAP) on Holidays in our

experiment, which is better than the result of SDEVLAD.
Hence, we also attempted the combination of SDE with T-
embedding descriptors. Our SDE further increases the re-
sult of T-embedding [21] on Holidays to 0.763(mAP) and
shows considerable compatibility. Compared with SDEV-
LAD, T-embedding [21] achieves better results on Holidays
and Oxford. However, the computation of T-embedding
[21] is complicated. And T-embedding did not obtain a sat-
isfying result when reduced to 128-dimensional compared
with SDEVLAD in [21].
In Table 2, we obtain 0.681(mAP) and 0.492(mAP) on

Holidays and Oxford, respectively, through the improved
VLAD. The improved VLAD is similar to SDEVLAD
but without the SDE. Adding SDE improves the results
to 0.714(mAP) and 0.505(mAP) on Holidays and Oxford,
respectively.
We also provide other methods that employ spatial in-

formation for comparison. Spatial pyramid VLAD [49]
repeatedly subdivides the image into subregions, and
each division forms one layer of the pyramid. This
method mainly considers the similarity of local regions
between the images. VLFeat [50] provides the geometry-
extended VLAD method, which directly concatenates
local features with their location information after
normalization. Geometry-extended VLAD involves loca-
tion information in the calculation of the residual vector
to describe the distribution of local features. For image
retrieval task on Holidays, the spatial pyramid VLAD
[49] achieves 0.600(mAP), the geometry-extended VLAD
achieves 0.658(mAP), and the result of our SDEVLAD is
0.714(mAP). Compared with the spatial pyramid VLAD,
SDEVLAD provides a more refined calculation for all
the local features. Geometry-extended VLAD directly
concatenates location information with local features. In
our SDEVLAD, we use the spatial information to com-
pute the spatial entropy which has improved stability. In
recent years, CNN-based methods have performed well
in image retrieval and recognition tasks. The combin-
ation of spatial information with CNN features will be
discussed in subsequent chapters.
In addition, we divide our method into three parts

to specifically determine the effect of our method: (1)
intra-normalization and centroid adaptation, (2)
residual normalization and LCS, and (3) SDE. The
gradual addition of these parts together will result in
0.622(mAP), 0.681(mAP), and 0.714(mAP) on
Holidays dataset. The SDE significantly improves the
retrieval accuracy. We also tested the time spent on
full-size SDEVLAD descriptors on Holidays dataset.
Obtaining one SDEVLAD descriptor of the Holidays
dataset takes 0.162 s on average when our procedure
is run on the minitype server with 12 labs. Of the
0.162 s, 0.086 s is used to compute the SDE. Our
SDEVLAD significantly improved the result by adding

Table 2 Image retrieval task on Holidays and Oxford for full-size
representation comparison

Methods K D Holiday Oxford

VLAD [48] 64 8192 0.526 –

Improved Fisher [9] 64 16,447 0.626 0.418

VLAD+SSR [8] 64 8192 0.598 0.378

VLAD+intra+adapt [27] 64 – 0.646 0.555

HVLAD [28] 64 8192 0.698 0.576

Fine-residual VLAD [29] 64 8192 0.614 –

CEVLAD [31] 64 8192 0.676 0.489

EEVLAD [31] 64 16,384 0.678 0.496

T-embedding [21] 64 8192 0.756 0.670

T-embedding [21]+SDE 64 8256 0.763 0.675

Spatial pyramid VLAD [49] 64 40,960 0.600 –

Geometry-extended VLAD [50] 64 4224 0.658 –

Improved VLAD 64 8192 0.681 0.492

SDEVLAD 64 8256 0.714 0.505

Liu et al. EURASIP Journal on Image and Video Processing  (2018) 2018:9 Page 9 of 14



spatial information to VLAD. The coordinates, scale,
and orientation of local features are used to compute
a 4-dimensional SDE. In our test, we spend twice the
time for VLAD descriptor computation to obtain an
SDEVLAD. The difference of the time spent can be
further reduced when a large server is used.

4.2 Compact-size representation comparison
(128-dimensional)
In this section, we use PCA to reduce the VLAD repre-
sentation to 128-dimensional to measure the perform-
ance of compact representation of our proposed
method. The calculation method of VLAD is still the
same as that in Section 4.1.
The VLAD vector can be reduced to a very compact

vector expression by PCA. In addition to the general
PCA, several other methods are used to further improve
the search accuracy, such as the application combining
PCA with the L2 normalization [8] used before the PCA
projection. The three steps of the PCA are appropriately
used [41], and the main processes are described below.
After calculating the VLAD vector, we first need to
center the VLAD vector, that is, subtract the mean of
these vectors and then calculate the eigenvalues and
eigenvectors of the VLAD. Then, 128 of the eigenvalues
and their corresponding eigenvectors are used to reduce
the VLAD representation.
Table 3 shows the results of 128-dimensional compact

VLAD on Holidays and Oxford, and the VLAD is gener-
ated using 256 clusters. In addition, another joint dimen-
sionality reduction method called Multiroot [42] is used in
this experiment. The original SIFT and the RootSIFT with
parameters 0.4, 0.5, and 0.6 are used to compute the
VLAD. These methods are merged and then reduced to

128-dimensional. This approach is similar to Multivoc
[41]. The Multivoc method generates multiple VLAD rep-
resentations by multiple quantizations, and then, the PCA
method is performed to filter duplicate parts to obtain
additional useful information. The VLAD representation
obtained from the Multivoc is somewhat repetitive.
However, if we use RootSIFT features with different
parameters, then repetitiveness can be reduced, and the
compact VLAD representation will contain additional use-
ful information.
Table 3 indicates that the compact-size SDEVLAD can

yield an evident performance gain. On the Holidays
dataset, the best result of the method without adding the
distribution entropy is HVLAD for 0.640(mAP). VLAD
[48] achieves 0.510(mAP) when K is assigned to 64, and
Multivoc-VLAD [26] achieves 0.614(mAP) using four
codebooks of 256 centroids. Our method reached
0.736(mAP) in the absence of multiple assignment
method [28]. The result can also be further improved to
0.764 with Multiroot. T-embedding and democratic
aggregation [21] obtain 0.72(mAP) and 0.615(mAP)
when reduced to 1024 and 128 in [21], respectively.
CEVLAD and EEVLAD obtain 0.681 and 0.715 on
Holidays, respectively. Our method achieves 0.736,
which is better than EEVLAD and CEVLAD. The two
types of entropy are added based on the VLAD repre-
sentation, while SDE is calculated based on the spatial
information of local features. The spatial information is
of high distinguishability; hence, SDE obtains a better re-
sult than EEVLAD and CEVLAD. In addition, improved
VLAD achieves 0.712(mAP) on Holidays. Improved
VLAD is similar to SDEVLAD but without the SDE.
Adding SDE improves the result to 0.736(mAP), which
further validates the effect of our SDE. Similar findings
could be obtained from the results of Oxford.

4.3 Large-scale retrieval (Flickr1M)
In this section, we examine the extensibility of
SDEVLAD by combining Flickr1M as an interference
with the Holidays dataset. We still use the method
in Section 4.2 to calculate the VLAD descriptor of
Holidays and Flickr1M dataset. First, we use the
method of Section 4.1 to compute the full-size
VLAD descriptor for Holidays and Flickr1M. Then,
the Multiroot [42] is used to obtain the 128-
dimensional VLAD. We combine the VLAD descrip-
tor of Holidays and Flickr1M to calculate the
retrieval accuracy. In addition, we use 256 clusters
trained from Flickr60k and the Multiroot joint
dimensionality reduction to reduce the VLAD repre-
sentation to 128 dimensions. Finally, Table 4 shows
the results. Compared to the best performance of
other methods in large-scale image retrieval applica-
tion which achieves 0.430 [28], the proposed

Table 3 SIFT descriptor results of image retrieval task on
Holidays and Oxford for compact-size representation
comparison

Methods K D’ Holiday Oxford

VLAD [48] 64 128 0.510 –

Multivoc-VLAD [26] 4*256 128 0.614 –

Improved Fisher [9] – 128 0.565 0.301

VLAD+SSR [8] 64 128 0.557 0.287

VLAD+intra+adapt [27] – 128 0.625 0.448

HVLAD [28] 256 128 0.640 –

Fine-residualVLAD [29] 256 128 0.622 –

CEVLAD [31] 256 128 0.681 0.538

EEVLAD [31] 256 128 0.715 0.552

Improved VLAD 256 128 0.712 0.559

SDEVLAD 128D 256 128 0.736 0.571

SDEVLAD 128D +Multiroot 4*256 128 0.764 0.584
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SDEVLAD achieves 0.537, and the result can be fur-
ther improved to 0.568 by Multiroot [42]. Our
SDEVLAD also shows excellent extensibility.

4.4 Image classification
SDEVLAD is also effective in the image classification ex-
periment on PASCAL VOC2007 dataset [51]. Nearly
10,000 images of 20 categories are present in PASCAL
VOC2007. In this task, recognizing objects in the
pictures and assigning them to different categories are
necessary. The result is represented by the mean of aver-
age precision (mAP) over 20 categories.
The image classification approach is provided by

the VLFeat toolbox [50]. We densely extract local
features at nine different scales. In this case, the
number of local features in an image is enormous.
Hence, we use a subset of 5 K SIFT descriptors to
obtain a vocabulary with 256 centroids. Then, the
computing process of SDEVLAD is similar to that in
Section 3.5. In addition, our image classification
method adopted another way of extracting local fea-
tures in image retrieval. The number of local fea-
tures increases, while only nine values are available
for the scale of local feature points in our image
classification. The change of scale is extremely
smaller than the coordinates of local feature points,
and the case is similar in the orientation values. In
this case, directly computing a 4-dimensional SDE
will lead to excessive time overhead. Therefore, we
slightly adjust our SDEVLAD for image classification
to partly utilize the scale and orientation information
of the local features. First, we compute the coordin-
ate distribution entropy for each cluster using the
coordinate information of local features assigned to
the clusters. Then, we use the scale and orientation
information of all local features in an image to compute
the scale and orientation distribution entropy for the
entire image. Finally, we concatenate the K-dimensional
coordinate distribution entropy with the 1-dimensional

scale and orientation distribution entropy to obtain our
improved SDE for image classification.
Table 5 shows that our method improves the classifi-

cation result of VLAD from 0.5601 to 0.5804. Our
SDEVLAD also achieves a better result than CEVLAD
(0.5665) and EEVLAD (0.5714) from a recent work in
[31], which computes the distribution entropy of VLAD
vector. In addition, improved VLAD, which is similar to
SDEVLAD but without the SDE, achieves 0.5580.
Adding SDE improves the result to 0.5804, which further
validates the effect of our SDE. In conclusion, our
SDEVLAD is effective for image classification.

4.5 Image retrieval based on CNN features
In the previous experiments, we demonstrated that
our SDE can be fused with the VLAD descriptors to
further improve the accuracy of image retrieval. These
descriptors were generated based on SIFT features. In
recent years, CNN features have achieved outstanding
performance in image retrieval, classification, and
recognition. In addition, a few methods are available
to generate VLAD descriptors using CNN features.
Hence, we can further integrate our SDE with these
CNN-based methods. In this section, we use the
MOP-CNN [40] and NetVLAD [39] methods to com-
bine with our SDE.

4.5.1 Mop-CNN [40]
In this section, we attempt to combine the SDE with
MOP-CNN [40] features. In the previous chapters, we
have introduced a method called Multiroot [42],
which combines the descriptors obtained using differ-
ent parameters to obtain an improved descriptive
descriptor. Similar to Multiroot [42], MOP-CNN [40]
extracts CNN features from different scales and sub-
sequently combines them after further processing.
The processing of CNN features is a procedure of re-
sidual vector calculation. CNN features are assigned
to different cluster centers, and residuals of each clus-
ter center are then accumulated. In our experiment,
the descriptors of each image are 50,000 dimensions
and are then reduced to 4096 dimensions by PCA.
Table 6 shows the results. In MOP-CNN [40], CNN
features of patch sizes 128 and 64 are used to obtain
the VLAD descriptor. Moreover, the CNN features of

Table 5 Results of image classification task

Methods mAP

VLAD 0.5601

CEVLAD [31] 0.5665

EEVLAD [31] 0.5714

Improved VLAD 0.5580

SDEVLAD 0.5804

Table 4 Comparison of 128-dimensional results in large-scale
image retrieval on Holidays with Flickr1M

Methods mAP

VLAD with Intra Norm+Adaptation [27] 0.378

VLAD with Multivoc+SSR [41] 0.370

VLAD with LCS+RN [26] 0.392

HVLAD [28] 0.430

FVLAD [29] 0.376

SDEVLAD 0.537

SDEVLAD+Multiroot 0.568
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patch size 256 are directly concatenated with the
VLAD descriptors generated from patch sizes 64 and
128. Our SDE is generated in the VLAD calculation.
Hence, we only add SDE on patch sizes 128 and 64.
When the patch size is 64, our SDE improves the re-
sult from 0.7633 to 0.7657. When the patch size is
set to 128, our SDE improves the result from 0.7686
to 0.7708. When descriptors of three different patch
sizes are combined, such combination is imperfect
because the features of patch size 256 were not
processed through VLAD. However, our SDE still
improves the result from 0.7906 to 0.7958, and the
result of combining three different patch sizes in [40]
is 0.7882. The SDE further improves the results of
MOP-CNN [40].

4.5.2 NetVLAD
NetVLAD [39] was originally designed for place recogni-
tion. NetVLAD mimics the standard image retrieval
pipeline to provide robustness for translation and partial
occlusion. Arandjelovic et al. [39] proposed the trainable
CNN architecture the main component of which is a
new generalized VLAD layer. This architecture uses
CNN to extract dense descriptors from images. A new
pooling layer similar to VLAD is added at the end of this
architecture. The VLAD layer aggregates CNN features
to obtain VLAD descriptors. The architecture of NetV-
LAD [39] is also effective for image retrieval tasks. In
previous experiments, we use the SDE to describe the
distribution of local features during aggregation. In the
VLAD layer of NetVLAD [39], we also use SDE to de-
scribe the distribution of local features. The SDE is com-
bined with original VLAD descriptors. In experiments,
the descriptors are reduced to 256-dimensional by PCA,
and the vocabulary size (K) is set to 64. The retrieval
accuracy of NetVLAD [39] is 0.821(mAP) on original
Holidays dataset. As shown in Table 7, SDE improves
the result to 0.864(mAP). SDE increases the distinguish-
ability of NetVLAD descriptors.

5 Conclusions
In this paper, we propose the method of adding SDE to
VLAD representation. The original VLAD method is
represented by calculating the residuals between the
centroids and the local feature points. The local features
with different coordinates, scales, or orientations may
share a similar residual vector through this way. Taking
less account of the differences of spatial information be-
tween local features will lead to incorrect matches.
Compared to original VLAD, our SDEVLAD descriptor
only add K dimensions where K is the number of the
clusters. And in the course of experiment, we have tried
to integrate SDEVLAD with many other improvement
of VLAD most of which get better results when com-
bined with our SDE.
In this paper, SDE uses the coordinate, scale, and

orientation information of the feature points and
obtains a good result. So, we could try to find more
distinctive information of the feature points, and we
can use the information to calculate another multi-
dimensional distribution entropy. The current SDE is
the distribution of spatial information in the area cov-
ered by each cluster, and we can also try to divide
the image into several regions by other methods to
get a more suitable way for representing the spatial
information of feature points. In Section 4.5, we use
the MOP-CNN [40] and NetVLAD [39] methods to
combine with our spatial distribution entropy. With
the development of CNN, we will explore different
ways to combine spatial distribution entropy with
CNN features to make SDEVLAD improved.
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