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Abstract

as SUV type, sedan type, RV type.

We propose novel vehicle detection and classification methods based on images from visible light and thermal
cameras. These methods can be used in real-time smart surveillance systems. To classify vehicles by type, we extract
the headlight and grill areas from the visible light and thermal images. We then extract texture characteristics from
the images and use these as features for classifying different types of moving vehicles. We also extract several
features from images obtained at night and during the day, which are the contrast, homogeneity, entropy, and
energy. We validated our method experimentally and achieved that the accuracy of our visible image classifier was
92.7% and the accuracy of our thermal image classifier was 65.8% when vehicles were classified into six types such
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1 Introduction

Recently, as vehicle traffic levels have increased, issues
such as traffic accidents, congestion, and traffic-induced
air pollution have arisen. Among these issues, traffic ac-
cidents present a particularly challenging problem.
When conducting criminal investigations of traffic
accidents, it is important to have automated ways of
searching for suspicious vehicles. As a result, Intelligent
Transportation Systems (ITS) have been implemented in
many countries [1-3]. These systems detect and classify
vehicles based on data from video and infrared cameras
and acoustic and vibration sensors. However, the ex-
pense of traditional vehicle detection and classification
systems renders them impractical. Furthermore, these
systems are difficult to operate, as they require a large
amount of hardware. Nevertheless, in the past decade,
traffic surveillance cameras have been increasingly de-
ployed to monitor traffic on major roadways. Hence, the
effective utilization of these cameras for data collection
is of practical significance.

One of the essential components of real-time smart
surveillance systems in ITSs is that of moving vehicle
detection and classification. Moving vehicles are de-
tected from video frames by foreground extraction.
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There is a range of vehicle detection methods, based on
the inter-frame difference method [4], background ex-
traction method, and optical flow estimation method [5].
Background subtraction is the first step toward object
detection and can be performed using frame averaging, a
single Gaussian [6], or a Gaussian mixture model
(GMM). Friedman and Russel [7] proposed the basic
idea of using a GMM for vehicle detection. They
used three Gaussians to represent the road, shadow,
and the moving vehicle. This method was then
modified by Stauffer and Grimson [8], who used K
Gaussians, where K was fixed. Zoran Zivkovic [9]
used a Bayesian probability method to adaptively vary
the number of Gaussian components required to
model a pixel.

Hit-and-run is the act of causing to a traffic accident,
such as colliding with another vehicle, and then failing
to stop and identify oneself at the accident. Many hit-
and-run accidents involving parked cars occur while the
driver of the struck car is away from the car. Many stud-
ies have been devoted to the detection and classification
of hit-and-run vehicles. However, relatively few studies
have been conducted to identify the factors that contrib-
ute to the decision to run after a crash. There are many
issues affecting the detection and classification of differ-
ent types of vehicles. For example, it is important to
classify a characteristic region rather than the contour of
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Fig. 1 Flow chart of a vehicle detection and classification system to facilitate traffic surveillance
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a vehicle. However, image-processing techniques are
very sensitive to variations in the external environment,
so they tend to lose accuracy when the external environ-
ment changes rapidly.

2 Related work

Numerous researchers have proposed approaches for de-
tecting vehicles and classifying different types of vehicles.
In [10], standard Principal Component Analysis (PCA)
was used for feature extraction, together with a nearest-
neighbor classifier. However, as the evaluation database
used in that study was relatively small, it is difficult to
draw any firm conclusions from this work. In [11], a Haar
wavelet was combined with Gabor features to describe the
properties of a vehicle. Scale invariant feature transform
(SIFT) features [12] were used in [13] to detect the rear
images of vehicles. In [14], texture features were com-
puted from frontal images of vehicles. The authors built a
three-layer neural network and trained it with texture fea-
tures. Thus, the neural network was able to recognize the
make and model of moving vehicles.

In [15], a vehicle-detection and tracking system was
developed to detect vehicles entering. This system mea-
sured optical flow and tracked vehicles by classifying
their headlights, bonnet, front window, and roof area. In
[16], the authors proposed a vehicle model recognition
system based on a SIFT of an image of the vehicle’s
headlights and the homogeneity, which were calculated
based on the distribution of features. In [17], license
plates were extracted from ROIs and corner templates
based on edge detection. In [18], a distortion invariant
vehicle license plate and recognition algorithm were pro-
posed based on a Difference of Gaussians (DoG) filter.

In addition, after geometric distortion correction and
image enhancement, neural networks were used to
recognize the license plates.

The authors of [19] presented a vehicle detection
method based on extracting a histogram of oriented gra-
dient (HOG) features from a given region of an image.
In [20], a combination of speeded up robust features
(SURF) [21] and edges was used to detect vehicles in the
blind spot. Recently, researchers studying vehicle detec-
tion have moved away from complex image features
such as Gabor filters and HOGs to simpler, more effi-
ciently computable feature sets. As Haar-like features
are sensitive to vertical, horizontal, and symmetric struc-
tures, and they can be computed efficiently, they are well
suited to real-time vehicle detection applications [22].

In recent decades, traffic information was obtained
using a thermal camera [23]. In addition, a thermal cam-
era with UAV was used to detect objects in the ocean
surface [24]. In [25, 26], people were detected and classi-
fied by a moving thermal infrared camera with the low-
resolution images. In this paper, we propose a smart sur-
veillance system to detect and classify vehicles during
the day and at night. To achieve this, we first select re-
gions of interest (ROIs) of the vehicle from the visible
light and thermal images. Then, we measure the texture,
contrast, homogeneity, entropy, and energy of the ve-
hicle. We also estimate the aspect ratio of the headlight
area and the grill area in each frame.

3 Method

3.1 System architecture

Figure 1 shows a flow chart of the vehicle detection and
classification process. The vehicle detection and

a Raw data

b Foreground extraction

Fig. 2 Raw data and foreground extraction. a Raw data. b Foreground extraction
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Fig. 3 Moving vehicle detected from the obtained images

classification steps outlined in the flow chart are
followed by both the visual and thermal image classifica-
tion systems. The first step is to subtract the foreground
image from a corresponding reference background
image and decompose the image into regions that cor-
respond to objects. In the second step, we extract the
headlight and grill areas. In the feature extraction step,
we extract object features such as the color, texture, and
shape. The fourth step is to compare the features of dif-
ferent objects, either to identify them or to train the
classifier. Finally, we classify the type of vehicle.

3.2 Foreground subtraction and ROI extraction of visual
images

Foreground subtraction is a general method used to
separate foreground objects from the rest of an image.
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First, a reference image is produced based on the initial
images. Then, we compare the current image to the
reference image to identify the foreground. The refer-
ence image can be produced by averaging the initial
background images. The first step is to detect the ve-
hicles that we will then classify. We detect the vehi-
cles using the background modeling and subtraction
(BGS) model. To make a robust, accurate model that
can classify vehicles in real time, we also perform
Gaussian background subtraction and filtering using
functions provided by the OpenCV library [27]. We
use pixel-based and non-motion-based background
update methods to perform adaptive region-level
background learning and updating. We exclude dis-
tant regions by specifying an ROI for each camera.
To eliminate objects that are too small or too large,
we use adaptive filters to calculate the object size and
average vehicle height.

Figure 2 shows the obtained images and the results
of the object subtraction step. As shown in the figure,
when objects move through the image for a specified
period, we update the motion history by comparing
the current image to the first two images of the ve-
hicle. We store the location of the center and direc-
tion of the object in a buffer. The center of the
object in the next frame is determined as the point of
the shortest distance between the center of the object
in the previous frame and the center of the object in
the next frame. Figure 3 shows the results of the
foreground extraction step.

3.3 Feature extraction of visual images

In the feature extraction step, we detect Sobel edges
in the ROIs of two consecutive images and measure
vertical and horizontal projections in the grill and
headlight regions. Figure 4a, b show the extracted
edge image and horizontal projection of the ROlIs, re-
spectively. The grill and headlight regions are ex-
tracted using vertical projections and a median filter.

a Sobel edge image

Fig. 4 Sobel edge image and horizontal projection extracted from the detected vehicle as shown in Fig. 3. a Sobel edge image. b Horizontal projection

b horizontal projection
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Fig. 5 ROIs extracted from the detected vehicle as shown in Fig. 3
.

In Fig. 5, the ROIs extracted from the detected ve-
hicle are marked with red.

In general, vehicle models are identified using texture
descriptors. Texture descriptors [28, 29] have been
widely used to quantify the texture of objects. The
differences between the brightness of the pixels repre-
sent the texture of the image. The local binary pat-
tern (LBP) approach is a computationally simple
method that provides highly discriminative texture in-
formation [30, 31] that is invariant to monotonic
changes in gray level. We used histograms of LBP
patterns as texture descriptors and classified them
using a log-likelihood dissimilarity measure. The LBP
operator was extended to utilize neighborhoods of
different sizes [32].

We quantified textures by generating a gray level
concurrence matrix (GLCM) based on the spatial
relationships between pixels. The GLCM considers
the relationship between two pixels at a time. These
are denoted the reference pixel and the neighbor
pixel. The GLCM matrix elements GJi, j] represent
the probability distribution of all pixels that are
distance d between a pixel of level i and a pixel of
level j. As gray images generally have 256 levels,

the dimension of the GLCM is very large. Many
other kinds of texture descriptors can be defined,
such as the contrast, dissimilarity, and homogen-
eity. These are based on the brightness, momen-
tum, and entropy, which are related to properties of
the distribution statistics, such as the regularity, or
average, variance, and correlation. In this paper, we
used four basic texture descriptors in the GLCM
matrix G: the contrast, homogeneity, entropy, and
momentum.

The contrast, defined by Eq. (1), is the difference in
luminance or color. The contrast enables us to distin-
guish objects. In real scenarios, often, there may be a
low contrast between the background and the vehicle.
This makes it difficult to improve the accuracy of the de-
tection and classification schemes. The accuracy of exist-
ing vehicle classification schemes in low contrast
conditions is not sufficient to ensure the success of ITS.

Contrast = Zizjﬁ—ﬂzG[iJ] (1)

By homogeneity, we mean the spectral homogen-
eity, which is defined in Eq. (2). We used



Nam and Nam EURASIP Journal on Image and Video Processing (2018) 2018:5

homogeneity as a texture feature for a Bayesian
classifier. However, we cannot discriminate vehicle
types well using only the contrast and
homogeneity.

. Gli,j
Homogeneity = ZiZ}’ ﬁ (2)

Entropy is a measure of information content,
which is defined in Eq. (3) as the average
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uncertainty of the information source. Mutual data
measures the mutual dependence of two random
variables and can be used as a measure of
similarity.

Entropy = ) " Gli,j](~ logGli.j] (3)

Energy can usually be used to distinguish between
vehicle types. Energy is defined by the following
equation:

b Images obtained from a visual camera at night

b Images obtained from a visual camera at night

Fig. 6 Images obtained from a visual camera during the daytime and at night. a Images obtained from a visual camera during the daytime.
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Energy = ZHG i, j]2 (4)

3.4 Feature extraction of thermal images
We collected real-time videos from visual and thermal
cameras, operating both at day and night. The collected
video dataset comprises two sequences, one for the
visual images and one for the thermal images. The
thermal images were obtained from FLIR ONE [33],
which consists of a thermal camera with a resolution of
160 x 120 pixels and a recording speed of 10 frames-
per-second (fps), and a visual camera with a resolution
of 1280 x 720 pixels and a recording speed of 29 fps.

Figure 6 shows visual images obtained from FLIR
ONE during the daytime and during the night. Vehicles
can be classified by visual images obtained from a RGB
camera during the daytime, but vehicles cannot be clas-
sified by visual images obtained at night unless there is
sufficient illumination. Therefore, another type of data is
needed as input to a vehicle detector and classifier at
night. Thermal imaging data could be suitable for this
application.

Figure 7 shows thermal images from the FLIR ONE
taken during the day and at night. The thermal images
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obtained during the day contain fewer features that can
be used for classification purposes than visual images
obtained during the day. However, thermal images ob-
tained at night contain more features that can be used
for classification purposes than visual images obtained
during the night, as shown in Figs. 6b and 7b.

The vehicle can be identified by the headlight and the
shape including the ratio of the width of the vehicle to
the height of the vehicle then applied image segmenta-
tion and pattern analysis techniques. However, the head-
light makes it difficult to classify vehicle types using
visual video images taken at night, whereas thermal
video cameras have an obvious advantage in the case of
nighttime surveillance.

The headlights can be detected by identifying bright
masses of pixels in the ROIL These can be identified
using morphological operations [34] or via template
matching [35]. However, in practice, these methods are
not efficient when applied to all kinds of traffic scenes
and camera exposures. During the day, vehicle types can
be classified by the shape of the headlight or the distance
between the headlights. However, most vehicles have cir-
cular headlamps, which emit a circular beam of light at
night. This makes it very difficult to distinguish between
vehicle types using data captured from visual cameras at

b Images obtained from a thermal camera at night

b Images obtained from a thermal camera at night

Fig. 7 Images obtained from a thermal camera in the daytime and at night. a Images obtained from a thermal camera during the daytime.
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Table 1 Confusion matrix for the visual image classifier
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Table 3 Confusion matrix for the thermal image classifier

Classified Classified
di d2 d3 d4 d5 dé ni n2 n3 n4 n5 n6
Actual di 151 10 Actual di 81 9 8 7

d2 101 1 10 d2 10 42 21 8
d3 109 1 d3 1 80
d4 90 1 d4 20 61
d5 2 89 d5 21 21 9
d6 I 10 171 dé 32 7 9

night. The vehicle consists of various elements such as
the bumper, engine, windshield, and tiers, which have
their own heat identification depending on the type of
vehicles. With varying shapes, sizes, and position of each
element of vehicles, the vehicles can be classified into
vehicle types such as sedan, SUV(sport utility vehicles or
recreational vehicles), truck, and bus as shown in Fig. 7b.
In this paper, we measured the contrast, homogeneity,
entropy, and momentum using thermal images for vehicle
classification.

4 Results and discussion

We evaluated our classifiers using a dataset acquired on a
local, two-way road. The dataset comprised 767 visual ve-
hicle images and 447 thermal vehicle images. We classi-
fied the visual images into six types based on the texture
and the ratio of the width of the grill to the height of the
grill. We used 6671 visual images and 4005 thermal im-
ages as a training set and 767 visual vehicle images and
447 thermal vehicle images as a test-set. To classify the
thermal images, we identified vehicle objects then ex-
tracted the shapes of the fronts of the cars. We then clas-
sified the vehicles in six types based on their texture.

We improved the robustness and accuracy of the
model by performing a mixture of Gaussian background
subtraction and filtering using functions provided in the
OpenCV library. We then extracted a set of features

Table 2 Accuracy of vehicle classification by the visual image

from the GLCM for texture analysis. In Fig. 6a, we de-
fine the vehicle types d1, d2, d3, d4, d5, and d6, in a
clockwise direction, which are the full-size SUV, the
mid-size SUV, the small-size sedan, the full-size sedan,
the full-size RV, and the mid-size RV. Table 1 shows the
confusion matrix of the visual image classifier, and the
accuracy is summarized in Table 2. The overall accuracy
of this classifier is 92.7%.

When we divided a vehicle extracted from the visual
image dataset collected during the day into the headlight
and grill regions, there are sometimes bright blobs
caused by white bands on the ground. For example,
there are large bright blobs caused by one or more head-
lights reflecting off the bonnet of a white or light vehicle.
There may also be bright blobs caused by the reflections
of headlights on the pavement or by sunlight. In
addition, there are lots of small bright blobs caused by
highlights on the vehicles. There may even be more
complicated bright blobs with many components.

In Fig. 7a, we defined vehicle types by d1, d2, d3,
d4, d5, and d6, in a clockwise direction. Using the
GLCM, we classified the vehicles in terms of the ratio
of the width of the front to the height of the front.
Table 3 shows the confusion matrix of the thermal
image classifier, and the accuracy is summarized in
Table 4. The overall accuracy of this classifier is
65.8%.

Table 4 Accuracy of vehicle classification by the thermal image

classifier classifier
Type The number of Correct Accuracy(%) Type The number of Correct Accuracy(%)
vehicle image vehicle image

di 161 151 938 di 105 81 77.1

d2 122 101 838 d2 81 42 518

d3 110 109 99.1 d3 81 80 98.8

d4 91 90 99 d4 81 61 753

d5 91 89 97.8 d5 51 21 417

de 192 171 89.1 dé 48 9 17.8

Overall 767 711 92.7 Overall 447 294 658




Nam and Nam EURASIP Journal on Image and Video Processing (2018) 2018:5

Table 5 Confusion matrix for the visual image classifier (3 types)
(t1: sedan, t2: SUV, t3:truck)
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Table 7 Confusion matrix for the thermal image classifier (3 types)
(t1: sedan, t2: SUV, t3:truck)

Classified Classified
tl 2 3 1 12 3
Actual tl 155 4 2 Actual tl 186 12 16
12 3 114 3 2 26 8 2
3 2 108 3 26 4 12

When monitoring traffic using low- and medium-
mounted video cameras, nighttime conditions present
many issues. These conditions are challenging, firstly be-
cause the typical daytime surveillance framework, using
a RGB camera, cannot work at night, due to the contrast
and light sensitivity of the camera, which are generally
the moving reflections emerging from the headlights.

Even though thermal images obtained from FLIR ONE
at night provide more reliable features for vehicle
classification, we cannot distinguish vehicles using
thermal images obtained at night because the resolution is
insufficient and less identical features. Therefore, it is ne-
cessary to identify appropriate types of sensor data and
find new methods to detect and classify vehicles at night.

For additional experiments, we defined vehicle types
by sedan, SUV, and truck. Table 5 shows the confu-
sion matrix of the visual image classifier, and the ac-
curacy is summarized in Table 6. The correct rates
for classes, sedan, SUV, and truck, were 96.3, 95.4,
and 98.2%, respectively. The overall accuracy of this
classifier is 96.4%. The results show that the proposed
method could identify the valid vehicle ROIs in differ-
ent types effectively. From the table, we found that
the regions of sedan and SUV were misclassified due
to the similar shapes.

Table 7 shows the confusion matrix of the thermal
image classifier, and the accuracy is summarized in
Table 8. The correct rates for classes, sedan, SUV, and
truck, were 86.9, 22.2, and 28.6%, respectively. The over-
all accuracy of this classifier is 70.5%. From the table, we
found that the regions of SUV and truck were misclassi-
fied due to the similar shapes. In particular, the regions
of SUV were similar to those of sedan because the

Table 6 Accuracy of vehicle classification by the visual image
classifier (3 types)

thermal image shapes of the SUV were similar to those
of sedan.

5 Conclusions

In this paper, we have presented a smart surveillance
system to detect and classify vehicles. We collected vid-
eos during the day and at night using FLIR ONE. We se-
lected the front, grill, and headlight of each vehicle as
ROIs. For feature extraction, we measured the texture,
contrast, homogeneity, entropy, and energy from front
view images. This enabled us to classify six types of ve-
hicle. We increased the accuracy of the classification by
estimating the ratio of the width to the height of the
headlight and the grill. In the experiments, when vehi-
cles were classified into six types, the accuracy of the
classifiers based on visible light and thermal images were
92.7 and 65.8%, respectively. When vehicles were classi-
fied into three types, the accuracy of the classifiers based
on visible light and thermal images were 95.9 and 70.5%,
respectively. Even though thermal images at night pro-
vide more reliable features for vehicle classification, the
accuracy of the classifier using thermal images is lower
than that of using visual images in the daytime because
the resolution is insufficient and less identical features.
To classify vehicles more accurately at night, more reli-
able features and a thermal camera with a higher reso-
lution are necessary. In the future, we will improve our
method for detecting vehicles at night. In addition, we
will improve our method by considering various types of
vehicles by mixture and validate our method using a
wider range of experimental data. In addition, we will
conduct additional experiments to show that the pro-
posed method is robust to the weather conditions.

Table 8 Accuracy of vehicle classification by the thermal image
classifier (3 types)

Type The number of Correct Accuracy(%) Type The number of Correct Accuracy (%)
vehicle image vehicle image

tl 161 155 96.3 1 214 186 869

@2 120 114 95.0 2 36 8 222

t3 110 108 982 t3 42 12 286

Overall 391 377 964 Overall 292 206 705
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