
RESEARCH Open Access

Using BayesShrink, BiShrink, Weighted
BayesShrink, and Weighted BiShrink in
NSST and SWT for Despeckling SAR Images
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Abstract

Synthetic aperture radar (SAR) images are inherently degraded by multiplicative speckle noise where thresholding-
based methods in the transform domain are appropriate. Being sparse, the coefficients in the transformed domain
play a key role in the performance of any thresholding methods. It has been shown that the coefficients of
nonsubsampled shearlet transform (NSST) are sparser than those of stationary wavelet transform (SWT) for either
clean or noisy images. Therefore, it is expected that thresholding-based methods in NSST outperform those in the
SWT domain. In this paper, BayesShrink, BiShrink, weighted BayesShrink, and weighted BiShrink in NSST and SWT
domains are compared in terms of subjective and objective image assessment. As BayesShrink try to find the
optimum threshold for every subband, BiShrink uses coefficients, name “parent,” to clean up coefficients called
“child,” and the weighted methods consider the coefficients’ noise efficiency, which implies that subbands in the
transform domain may be affected by noise differently. Two models for considering the parent in the NSST domain
are proposed. In addition, for both BayesShrink and BiShrink, considering the weighting factor (coefficients noise
efficiency) would improve the performance of the corresponding methods as well. Experimental results show that
the weighted-BiShrink despeckling approach in the NSST domain gives an outstanding performance when tested
with both artificially speckled images and real SAR images.

Keywords: BayesShrink, BiShrink, Weighted BayesShrink, Weighted BiShrink, Nonsubsampled shearlet transform,
Stationary wavelet transform, SAR images despeckling

1 Introduction
Synthetic aperture radar (SAR) can be used in a wide
variety of applications in the military, geology, scientific
discoveries, mapping, and surveillance of Earth. The
main advantages of SAR is its ability to operate under
diverse weather conditions such as darkness, rain, snow,
fog, and dust, where SAR exhibits speckle noise. It must
be stressed that speckle is noise-like, but it is not noise;
it is a real electromagnetic measurement. Therefore,
when the radar scans a uniform surface, the SAR images
emerge as dramatic changes in gray, with some reso-
lution cells shown as a dark spot, and others shown as a
bright spot, depicting granular ups and downs. The

spots rooted in a coherent superposition of the radar
echo are called speckle noise.
For any coherent imaging like SAR, such as sonar

and ultrasound, despeckling is an important process
for image enhancement. Removing speckles and
preserving edges are the main goals of enhancement
approaches. In general, the despeckling of SAR im-
ages is carried out in either the spatial or transformed
domain [1]. Despite their low computational complex-
ity, the performance of spatial domain filters is often
not as well as the transformed domain algorithms [2].
Wavelet [3] is a well-known multiscale transform that
can effectively mitigate point singularities for one-
dimensional signals. For linear singularities in images,
two-dimensional separable wavelets were used. How-
ever, the lack of directionality motivated researchers
to propose the curvelet [4] and contourlet [5, 6]
methods, which use the multiscale transform followed
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by the directional filter bank. Their basis functions
with wedge-shaped or rectangular support regions
provide good sparse representations for high dimen-
sional singularities. Recently, shearlet transform (ST)
based on an affine system [7], which can sparsely rep-
resent an image and has flexible orientation, has been
proposed [8]. This new representation is based on a
simple and rigorous mathematical framework that not
only provides a more flexible theoretical tool for the
geometric representation of multidimensional data, but is
also easy to implement. In addition, shearlet exhibits highly
directional sensitivity and is spatially localized [8–10]. ST
has been applied in various practical problems such as
total variation for denoising [11], deconvolution [12], SAR
despeckling [2, 13], and Bayesian shearlet shrinkage for
SAR despeckling via sparse representation [14]. Further,
Markarian and Ghofrani [15] proposed a new method
based on compressive sensing for speckle reduction of
SAR images. However, image processing and video coding
have made remarkable progress in recent years [16, 17].
Thresholding is a common method for denoising in

the transform domain [18], where finding the optimum
threshold value is the main problem. Regarding the
methods, VISUShrink [19] obtains the universal threshold
value, whereas SUREShrink [20], BayesShrink [21, 22], and
bivariate shrinkage (BiShrink) [23–26] obtain the thresh-
old values adaptively for every subband. Among these
approaches, BayesShrink is a well-known method used in
the nonsubsampled shearlet transform (NSST) domain [27],
and BiShrink functions using the Bayesian estimation theory
applied in the wavelet [20, 23, 28], contourlet [24, 29], and
shearlet [25] domains are used as well.
In this paper, we compare the performances of BayesSh-

rink, BiShrink, weighted BayesShrink, and weighted BiSh-
rink in NSST and stationary wavelet transform (SWT)
domains in terms of subjective and objective image assess-
ment. As BayesShrink tries to find the optimum threshold
for every subband, BiShrink uses coefficients named
parent to clean up coefficients called child, and the
weighted methods consider the coefficients’ noise effi-
ciency, which imply that the subbands in the transform
domain may be affected by noise differently. Two
models for considering the parent in the NSST domain
are proposed. In addition, for both BayesShrink and
BiShrink, considering the weighting factor (coeffi-
cients noise efficiency) would improve the perform-
ance of the corresponding methods as well. The novel
Bishrink despeckling method named BI-NSST is
developed, and the weighted Bishrink are used in
NSST and SWT domains for the first time, where the
approaches are named WBI-NSST and WBI-SWT,
respectively. Considering the coefficients’ noise effi-
ciency in SWT and NSST to obtain the weighting fac-
tor and the optimum threshold value is the main

contribution of this paper. However, the performance
of three proposed methods in SWT and four new ap-
proaches in NSST are compared with five state-of-the-art
papers ([2, 13, 15, 27, 30]) in terms of subjective and ob-
jective image evaluations when artificially speckled and
real SAR images are denoised.
The paper is organized as follows: Section 2 pre-

sents the preliminary of the speckle noise model, the
BayesShrink and BiShrink methods, as well as noise
estimations and signal variances. Further, ST and the
following NSST are explained in Section 3. The
proposed methods based on BiShrink in the NSST
domain are explained in Section 4. Section 5 shows
the experimental results and finally, Section 6 con-
cludes the paper.

2 Threshold-based SAR image despeckling
Determining the optimum threshold value is the main
problem in any thresholding-based method. VISUShrink
[19] obtains the universal threshold value whereas SUR-
EShrink [20], BayesShrink [21, 22, 28], and BiShrink
[23–26, 31] determine the adaptive threshold values for
every subband. In the following, the speckle noise model
is introduced, the BayesShrink and BiShrink methods
are explained, and finally, the median for power noise
estimation in the transformed domain is expressed.

2.1 Speckle noise model
In general, for any coherent imaging systems such as
SAR, multiplicative speckle noise degrades the image.
The speckle noise is modeled as,

Iy ¼ Ix þ IxNs ð1Þ
where Ix and Iy refer to the noise free signal and the ob-
served signal, and Ns is speckle noise in spatial domain.
Writing Eq. (1) as, Iy = Ix(1 +Ns). in order to convert the
multiplicative noise into additive noise, the homo-
morphic framework is used, which means using the
logarithm transform before processing and the exponen-
tial transform at the end (see Fig. 1),

y ¼ xþ n ð2Þ
where y = log(Iy), x = log(Ix), and n = log(1 +Ns) are in
order noisy signal, noise free signal, and additive noise.

2.2 BayesShrink denoising in transformed domain
As said above, the multiplicative noise is converted into
the additive noise by using logarithm. So, applying a lin-
ear transform to Eq. (2), we have,

Yk ¼ Xk þ Nk ð3Þ
where k refers to the decomposition subband, Yk, Xk,
and Nk are noisy, clean, and noise coefficients in
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order. The goal of Bayesian denoising method [21] is
estimating X̂ k , from the observed data, Yk. In order to
simplify the notations, the superscript k, which indi-
cates the subband, is dropped off (i.e., Y = X +N). For
Eq. (3), Bayesian maximum a posteriori (MAP) esti-
mator is [5, 23, 32],

X̂ Yð Þ ¼ arg max½
X

pXjY XjYð Þ� ð4Þ

According to the Bayes rule, the conditional probabil-

ity density function (PDF) is p XjYð Þ ¼ p Y jXð Þp Xð Þ
p Yð Þ ; there-

fore, ignoring p(Y) because of being constant, X̂ Yð Þ is,

X̂ Yð Þ ¼ arg max
X

pY jX Y jXð ÞpX Xð Þ
h i

¼ arg max
X

pN Y−Xð ÞpX Xð Þ½ � ð5Þ

where pX is the prior distribution of the noise free
coefficients and pN is the noise PDF assumed zero--
mean Gaussian withvariance σ2

N [13, 27], pN Nð Þ
¼ 1

σN
ffiffiffiffi
2π

p exp − N2

2σ2N

� �
.

By applying the logarithm function, Eq. (5) is written as,

X̂ Yð Þ ¼ arg max
X

−
Y−Xð Þ2
2σ2N

þ f Xð Þ
" #

ð6Þ

where f(X) = log(pX(X)) [33]. Finding X̂ is equivalent
to solve Y−X̂

σ2N
þ f 0 X̂

� � ¼ 0.
If pX(X) is assumed Gaussian with zero mean and vari-

ance σ2, then f Xð Þ ¼ − log
ffiffiffiffiffiffi
2π

p
σ

� �
−X2=2σ2 and the esti-

mated X̂ Yð Þ is [23, 34],

X̂ Yð Þ ¼ σ2

σ2 þ σ2
N
Y ð7Þ

If pX(X) is assumed Laplace with zero mean and vari-

ance σ2, pX Xð Þ ¼ 1ffiffi
2

p
σ
exp −

ffiffi
2

p jXj
σ

� �
; then f Xð Þ ¼ − log

σ
ffiffiffi
2

p� �
−

ffiffiffi
2

p j X j =σ and the estimated X̂ Yð Þ is [23],

X̂ Yð Þ ¼ sign Yð Þ jY j−
ffiffiffi
2

p
σ2N
σ

� �

þ
ð8Þ

Eq. (8) is the classical soft shrinkage function [33] de-
fined as,

soft g; τð Þ ¼ sign gð Þ jgj−τð Þþ ð9Þ

jgj−τð Þþ ¼ j g j −τ if j g j ≥τ
0 if j g j< τ

	
ð10Þ

Based on the classical soft shrinkage function, Eq. (8)

is rewritten X̂ Yð Þ ¼ soft Y ;
ffiffi
2

p
σ2N
σ

� �
.

2.3 BiShrink denoising in transformed domain
In 2002, a novel denoising method named BiShrink was
proposed [23, 35]. In fact, BiShrink is a simple nonlinear
shrinkage function in the transformed domain, with
subbands known as child and parent. To obtain the
threshold value for denoising a child subband, BiShrink
also uses the coefficients of the parent subband.
Suppose X1 and X2 as child and parent coefficients in

transformed domain, then the vector form of Eq. (3) is,

Y ¼ X þ N ð11Þ

where X = (X1, X2), Y = (Y1,Y2), and N = (N1,N2). Similar
to the Bayesian MAP estimator explained in Section 2.2,
the PDFs of the clean coefficients pX(X) and the noise
coefficients pN(N) are to be known for estimating the
noise free coefficients X̂ Yð Þ from the observed data. In
literatures [23, 24, 36], noise is often assumed Gaussian,

pN Nð Þ ¼ 1
2πσ2N

exp −
N2

1 þ N2
2

2σ2N

� �
ð12Þ

and in [23], the noise-free coefficients pX(X) were
given by,

Fig. 1 Block diagram of BiShrink despeckling in transformed domain
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pX Xð Þ ¼ 3
2πσ2

exp −

ffiffiffi
3

p

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2

q� �
ð13Þ

According to Eq. (6), the bivariate MAP estimator is,

X̂ Yð Þ ¼ arg max
X1;X2

−
Y 1−X1ð Þ2
2σ2

N
−

Y 2−X2ð Þ2
2σ2N

þ f Xð Þ
" #

ð14Þ

Estimating X̂ 1 and X̂ 2 needs solving equations, Y 1−X̂ 1
σ2N

þf 1 X̂
� � ¼ 0 and Y 2−X̂ 2

σ2N
þ f 2 X̂

� � ¼ 0 where f1 and f2 rep-

resent the derivative of f(X) with regard to X1 and X2,

respectively. According to Eq. (13), we have f Xð Þ ¼ log

3
2πσ2
� �

−
ffiffi
3

p
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2

q
, f 1 Xð Þ ¼ df Xð Þ

dX1
¼ −

ffiffi
3

p
X1

σ
ffiffiffiffiffiffiffiffiffiffiffi
X2

1þX2
2

p , and f 2

Xð Þ ¼ df Xð Þ
dX2

¼ −
ffiffi
3

p
X2

σ
ffiffiffiffiffiffiffiffiffiffiffi
X2
1þX2

2

p . Under assuming that the noise

power of different subbands is invariant [36], i.e., σN1 ¼ σN2

¼ σN , and defining r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þ X2
2

q
, we have:

Y 1 ¼ X̂ 1 1þ
ffiffiffi
3

p
σ2N

σr

� �
ð15Þ

Y 2 ¼ X̂ 2 1þ
ffiffiffi
3

p
σ2N

σr

� �
ð16Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

1 þ Y 2
2

q
−

ffiffiffi
3

p
σ2
N

σ

� �

þ
ð17Þ

Substituting Eq. (17) into Eq. (15), the joint shrinkage
function is [36],

X̂ 1 Yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

1 þ Y 2
2

q
−

ffiffi
3

p
σ2N
σ

� �
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
1 þ Y 2

2

q Y 1 ð18Þ

In BiShrink denoising method based on Eq. (18), dead
zone region where X̂ 1 Yð Þ ¼ 0 is,

Dead zone ¼ Y 1; ;Y 2ð Þ : ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

1 þ Y 2
2

q
≤

ffiffiffi
3

p
σ2N
σ

g ð19Þ

To compare the NSST and SWT BiShrink functions
and to observe the circular shape dead zone, we have
chosen the “Barbara” image of size 512 × 512 pixels and
256 Gy levels. The test image is corrupted by the
additive Gaussian noise with two noise levels (σN = 10,
30), and the corresponding dead zone region based on
Eq. (19) are shown in Fig. 2. As shown in Eq. (19) and
observed in the image, a direct relationship exists be-
tween the radius of the circular-like dead zone and the
noise power. Since NSST is sparser than SWT, it yields
the smaller radius of dead zone.

2.4 Estimating noise and signal variance

The noise and signal variance σ̂ 2
N and σ̂ 2, respectively, are

required for the implementation both the BayesShrink
[21] and BiShrink [23] algorithms. Using the median esti-
mator [34] in the transformed domain for noise variance
estimation is common:

σ̂N ¼ median jY ℓjð Þ
0:6745

ð20Þ

where Yℓ refers to the coefficients of ℓth decomposition
level. For any arbitrary subband in the transformed
domain, σ2

Y ¼ σ2 þ σ2N . Since the observed signal in the
transformed domain is modeled as zero mean [27], the
variance of each subband is obtained by

σ̂ 2
Y ¼ 1

M

XM
i;j¼1

Y 2
ℓ

� �
i;j ð21Þ

where M is the size of square-shaped window. The vari-
ances of every window are obtained, and the average
value is computed. Using σ̂ 2

Y and σ̂ 2
N , the signal standard

deviation σ̂ is [33]

σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2
Y−σ̂

2
N

� �
þ

q
ð22Þ

3 Nonsubsampled shearlet transform (NSST)
A novel multi-scale directional representation system
called shearlets was proposed in 2005 [7]. Two properties,
multi-resolution and sparsity, render the ST attractive in
science and engineering [10, 11, 37]. In the following, the
continuous and discrete STs are explained briefly.
The continuous shearlet transform for an arbitrary

signal f is:

Sf a; s; tð Þ ¼ f ;ψasth i ð23Þ
where a ∈ R+, s ∈ R, and t ∈ R2 refer to the scaling, shear-
ing, and translation parameters, respectively, and the
shearlet function is given by ψast xð Þ ¼ a−3=4ψ M−1

as x−tð Þ� �

and Mas ¼ 1 s
0 1

� �
a 0

0
ffiffiffi
a

p
� �

¼ a
ffiffiffi
a

p
s

0
ffiffiffi
a

p
� �

.

The discrete version of ST [10] used in digital signal
processing is

Sf j; ℓ; kð Þ ¼ f ;ψj;ℓ;k

D E
ð24Þ

where j, ℓ ∈ Z, k ∈ Z2, ψj, ℓ, k = |detA0|
j/2ψ(B0

j A0
ℓx − k), and

A0 ¼ 4 0
0 2

� �
and B0 ¼ 1 1

0 1

� �
.

In general, using subsampling operations causes
variant shifts in a transform. Therefore, by omitting
the up- and down-sampling blocks, SWT [30] in 2003
and NSST [10] in 2008 were proposed. In the
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nonsubsampled transform version, as the coefficients
do not decimate between the decomposition levels, all
subband sizes are the same as the original input

image. Therefore, SWT and NSST require more com-
putation and storage room in comparison with the
conventional WT and ST.

Fig. 2 a–f Dead zone of BiShrink for Barbara in SWT and NSST domains and for two noise variances
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NSST, as a multi-scale directional representation, is
able to give a good sparse representation of an image.
To show the sparsity of NSST in contrast with SWT,
the Barbara of size 512 × 512 pixels and 256 Gy levels
is used. The original test image and the one cor-
rupted by Gaussian noise are decomposed by SWT
and NSST into three levels. As shown in Fig. 3, for
SWT in each decomposition level, there are three
subbands, whereas for NSST there are 16, eight, and
four subbands at the first, second, and third levels,
respectively. Figure 3 shows the histogram of SWT
(1st and 4th subbands) and NSST (9th and 1st sub-
bands, all subbands to the next coarser) coefficients.
The histograms in Fig. 3 conclude that the NSST is

sparser than the SWT for both noisy and noise-free
images. Sparsity, which means that most coefficients
are approximately zero, plays a key role in any
thresholding algorithm. The sparsity is a typical
characteristic of the transform domain where noise is
uniformly spread throughout all coefficients, and the
data is represented by a small subset of big coeffi-
cients [38]. Therefore, coefficients with small magni-
tudes can be considered as noise and set to zero. The
approach in which each coefficient is compared with
a threshold in order to decide whether it constitutes
a desired part of the original data is called the thresh-
olding approach. Obviously, using a thresholding
approach in a sparser transform is outstanding; since the

Fig. 3 Histogram for noise-free and noisy (σN2 = 0.05) coefficients in SWT and NSST domains
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basic functions of the NSST have multi-directional
wedge-shaped support regions [2], it provides better
sparse representation than the SWT.
In this paper, in addition to showing the histo-

grams, we also compute the average standard devi-
ation (Sd) for an objective comparison between NSST
and SWT in terms of sparsity. In this regard, the Sd

parameter of all normalized subbands are obtained
and the average Sd for noise-free and noise-variant
“Lena” and Barbara images with sizes 512 × 512 are
presented in Table 1. Increasing the power noise
corresponds to a bigger Sd value. However, for both
test images, and under different noise powers, the
NSST is sparser than the SWT. Therefore, as antici-
pated, the performance of the threshold-based denois-
ing filter is better in the NSST domain than the SWT
domain.

4 Proposed methods
In the first part of this section, the image assessment
parameters to evaluate denoising methods are
explained, and the mutual information (MI) to

Table 1 The Sd parameter for noise-free image and three different
noise power

Sd Free noise σ2N ¼ 0:05 σ2N ¼ 0:1 σ2N ¼ 0:15

Barbara SWT 0.1864 0.1936 0.1969 0.1986

NSST 0.1563 0.1760 0.1812 0.1843

Lena SWT 0.1731 0.1913 0.1950 0.1969

NSST 0.1366 0.1759 0.1813 0.1841

Fig. 4 MI for a SWT and b NSST
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measure the statistical dependency between a child
and its corresponding parent coefficients is expressed.
Subsequently, the models for BiShrink in the transformed
domain are proposed and the weighted BiShrink in the
NSST and SWT domains are applied for the first time.

For Figs. 4 and 5, we have used eight test images,
named Barbara, Lena, House, Boat, Goldhill, Fingerprint,
Cameraman, and Peppers, of size 512 × 512 pixels and
256 Gy levels. To achieve measurement reliability in a
noisy environment, the algorithm was run 10 times for

Fig. 5 (a1, b1) The numbered subbands, (a2, b2) average MSEs for three noise variances where eight test images were used, (a3, b3) the
computed weighting factor for each decomposition level and every subband in SWT and NSST
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the processing of every image; therefore, the average
values for 80 (i.e., 8 × 10) completely independent trials
are obtained.
Figure 1 shows the block diagram of the BiShrink

despeckling method in the NSST and SWT domains.

In general, the BiShrink denoising algorithm consists
of a three-step process: estimating σ̂N for every sub-
band according to Eq. (20), estimating σ̂ 2

Y and σ̂ 2

based on Eqs. (21) and (22), and obtaining the
noise-free coefficients using Eq. (18).

Fig. 6 Child-parent from sample image ‘Zone Plate’ with sizes 512 × 512 pixels in SWT and NSST domains

Fig. 7 Obtained weighting factor based on a flat image and for 80 independent trials: a SWT, and b NSST
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4.1 Image assessment parameters
Among the image assessment parameters used to evalu-
ate the performance of a despeckling algorithm, in this
paper, we have chosen the peak signal-to-noise ratio
(PSNR) [39] and structural similarity (SSIM) [40] as full
references and equivalent number of looks (ENL) [13],

respectively; and mean square difference (MSD) [41] and
edge save index (ESI) [13] as no references.
PSNR measures an image quality:

PSNR ¼ 20 log10
256ffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð25Þ

Fig. 8 a Barbara as the original test image, b noisy image (σ2N ¼ 0:1), c–f despeckled images by B-SWT [30], WB-SWT, BI-SWT, WBI-SWT, and g–l
despeckled images by B-NSST [2], WB-NSST [27], BI-NSST(1), WBI-NSST(1), BI-NSST(2), and WBI-NSST(2)
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where MSE ¼ 1
mn

Pm
i¼1

Pn
j¼1

Î x i; jð Þ−Ix i; jð Þ
 �2
is the mean

square error (MSE), mn is the image size, and Ix and Î x
are the input and retrieved images, respectively (see
Fig. 1 for the mentioned notations).
The SSIM index measures the similarity between the

original and the despeckled image through a local statis-
tical analysis (i.e., mean, variance, and covariance be-
tween the unfiltered and despeckled pixel values from
the sliding window). SSIM ∈ (‐1, 1) and a bad similarity
between the original and the despeckled image corre-
sponds to SSIM→ ‐ 1, whereas a good similarity will be
indicated by values SSIM→ 1.
ENL and MSD both measure the speckle suppression:

ENL ¼ Î x
2

NV
ð26Þ

MSD ¼ 1
mn

Xm
i¼1

Xn
j¼1

Î x i; jð Þ−Iy i; jð Þ
 �2 ð27Þ

where NV ¼ 1
mn

Pm
i¼1

Pn
j¼1

Î x i; jð Þ−Î x
h i2

and Î x ¼ 1
mn

Pm
i¼1

Pn
j¼1

Î x i; jð Þ. As ENL carries no information about the image
resolution degradation, it is often used jointly with

other parameters such as MSD. Large values for ENL
and MSD indicate significant filtering. As ENL is to be
computed over a uniform region, the image is divided
into cells of size 16 × 16 and 25 × 25 pixels, where the
ENL is computed for every block and finally, averaged
to obtain the ENL value.
The ESI [13] reflects the edge preservation capabil-

ity of a despeckling technique and is measured in
both the horizontal and vertical directions:

ESIh ¼
P
i¼1

m P
j¼1

n−1 j Î x i; jþ 1ð Þ−Î x i; jð Þ j
P
i¼1

m P
j¼1

n−1 j Iy i; jþ 1ð Þ−Iy i; jð Þ j ð28Þ

ESIv ¼
Pn
j¼1

P
i¼1

m−1 j Î x iþ 1; jð Þ−Î x i; jð Þ j
Pn
j¼1

P
i¼1

m−1 j Iy iþ 1; jð Þ−Iy i; jð Þ j
ð29Þ

MI [25, 42–44], a parameter for measuring the de-
pendency between X1 as the child and X2 as the parent, is
expressed as

Table 2 Two objective assessment parameters for Barbara to compare with methods in SWT and NSST domains

σ2N ¼ 0:05 σ2N ¼ 0:1 σ2N ¼ 0:15

PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

SWT B-SWT [30] 26.2485 0.999962 24.5411 0.999883 23.5183 0.999734

WB-SWT 26.3588 0.999963 24.5631 0.999886 23.6646 0.999738

BI-SWT 27.6081 0.999963 25.4481 0.999894 24.0742 0.999740

WBI-SWT 27.6893 0.999963 25.4621 0.999894 24.1642 0.999741

NSST B-NSST [2] 28.2209 0.999969 26.1606 0.999894 24.7003 0.999747

WB-NSST [27] 28.2413 0.999969 26.1921 0.999894 24.7371 0.999746

BI-NSST(1) 28.2823 0.999969 26.2552 0.999894 24.8769 0.999742

WBI-NSST(1) 28.2971 0.999969 26.2861 0.999894 24.9112 0.999744

BI-NSST(2) 28.6433 0.999974 26.5448 0.999904 25.0982 0.999764

WBI-NSST(2) 28.6819 0.99974 26.5694 0.999905 25.1537 0.999763

Table 3 Obtained PSNRs for denoising the eight test images in NSST domain when σ2n ¼ 0:1. The algorithm was run 30 times for
every image, and the average PSNR is reported

PSNR(dB)

Barbara Lena House Boat Goldhill Fingerprint Cameraman Peppers

NSST B-NSST 26.16 28.27 28.41 25.89 26.13 20.66 28.32 27.75

WB-NSST 26.19 28.28 28.41 25.86 26.10 20.68 28.32 27.76

BI-NSST(1) 26.25 28.42 28.52 26.06 26.28 20.81 28.39 27.77

WBI-NSST 26.28 28.42 28.52 26.05 26.25 20.84 28.40 27.78

BI-NSST(2) 26.54 28.47 28.46 26.33 26.74 22.06 28.01 27.50

WBI-NSST(2) 26.56 28.50 28.52 26.34 26.72 22.08 28.03 27.52
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I X1;X2ð Þ ¼
X
x1∈X

X
x2∈X2

p x1; x2ð Þ log p x1; x2ð Þ
p x1ð Þp x2ð Þ ð30Þ

where (x
1, x2) is a pair of random variables with joint

p(x1, x2) and marginal p(x1) and p(x2) PDFs. The MI or

I (X1, X2) is zero if the child and parent are totally inde-
pendent. However, increasing the MI means more de-
pendency between the child and parent coefficients in
the transformed domain. Therefore, the best child-
parent coefficients are those that are totally dependent
(i.e., the most positive MI).

Fig. 9 a original SAR image Air Craft with size 512 × 512, b–e despeckled images by B-SWT [30], WB-SWT, BI-SWT, WBI-SWT, and f–k despeckled
images by B-NSST [2], WB-NSST [27], BI-NSST(1), WBI-NSST(1), BI-NSST(2), and WBI-NSST(2)
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4.2 Parent and child coefficient models
Although a fair amount of research on image denoising
in the transformed domain has been carried out [31, 35],
thresholding due to simplicity is still attractive [19, 20].
However, thresholding in a bivariate MAP that exploits
the dependency between coefficients [25, 45] gives ap-
propriate results.
The implementation of BiShrink for denoising,

based on Eq. (18), requires a child coefficient X1 and
its parent coefficient X2. In the SWT transformed do-
main, for an arbitrary coefficient considered as child,
X1, three parents named X2(N), X2(SS), and X2(NC)
can be considered where X2(N) refers to the neighbor
subband at the same level, X2(SS) is a subband at the
same orientation but at the next coarser level, and
X2(NC) denotes all the subbands that belong to the
next coarser level. For example, by noticing the
numbered SWT subbands shown in Fig. 3, if the 1st
subband is X1, the 2nd or 3rd subband can be con-
sidered as X2(N), the 4th subband is X2(SS), and all
4th–6th subbands are X2(NC). Similarly, in the NSST
transformed domain, for an arbitrary child X1, three
parents called X2(N), X2(NC), and X2(OPP) are con-
sidered, in which X2(OPP) refers to a subband at the
same level as X1 but in the opposite orientation. For
example, by noticing the numbered subbands for the
NSST shown in Fig. 3, if the 9th subband is X1, the
8th or 10th subband can be considered as X2(N), and
all 17th–24th subbands are X2(NC), and the 1st sub-
band is X2(OPP). For the sample image “Zone Plate,”
the child-parent in the SWT and NSST domains are
shown in Fig. 6.
As mentioned in Section 4.1, the best child-parent

coefficients are those that are totally dependent (the
most value of MI). We now use the eight test images
mentioned and add Gaussian noise with zero mean

and standard deviation σN = 30. Noisy images are
decomposed by SWT and NSST into three levels, and
the MI for different subbands as a child considering
the three introduced models are obtained. As
expected and shown in Fig. 4, the MI for both trans-
formed domains is not zero because of the dependency
between a child and the inter- or intra-subbands. Figure 4
shows that I(X1,X2(NC)) > I(X1,X2(SS)) > I(X1,X2(N)) for
the SWT, and I(X1,X2(NC)) > I(X1,X2(N)) > I(X1,X2(OPP))
for the NSST. In this paper, we use X2(SS) as the classical
parent in the SWT domain, based on previous studies [23,
26, 28, 35]. For the NSST domain, we propose the following
two following:

Model 1: considering X2(OPP) as the parent, the
method is named BI-NSST (1).

Model 2: considering X2(NC) as the parent, the
method is named BI-NSST (2).

Although model 1 was proposed for the ST domain [25],
we used it in the NSST domain as well. In addition, pro-
posing model 2 in the NSST domain according to the MI
shown in Fig. 4 is the contribution herein, where model 2
is expected to outperform model 1 in the NSST domain.

4.3 Weighted shrinkage method
Most shrinkage denoising techniques, including BiShrink
[23, 25, 31, 35], assume that the noise power for differ-
ent subbands are the same. Although this assumption
for WT [23] is true, it was shown to be not entirely cor-
rect for the nonsubsampled contourlet transform [42]
and NSST [13, 27] (i.e., noise power of different sub-
bands are not the same). Although the weighted
BayesShrink in the NSST domain [27] was previously
used, the weighted BiShrink in the NSST domain, called
the WBI-NSST method, is proposed in this paper. To
show the validity of the assumption above, the original
noise-free test images and the noisy images are decom-
posed to three levels by SWT and NSST, and the MSE of
noise-free and noisy image coefficients are obtained for
each decomposition level ℓ and subband k,

MSEℓ;k ¼ 1
mn

Xm
i¼1

Xn
j¼1

Y ℓ;k i; jð Þ−Xℓ;k i; jð Þ
 �2 ð31Þ

As the nonsubsampled version is used, all subband
sizes are the same as the input image (i.e., mn). The
MSE of all subbands for the eight mentioned test images
in the SWT and NSST domains is obtained, and the
average values are shown in Fig. 5. As expected, all
subbands of the SWT (Fig. 5a2) are affected by noise ap-
proximately equal to the subbands in NSST where some
subbands are more robust against noise than others
(Fig. 5b2).

Table 4 Four no reference parameters for Peninsula SAR image
to compare with methods in SWT and NSST domains

Peninsula (real SAR image)

ENL ↑ MSD ↑ ESIv ↑ ESIh ↑

SWT NOISY 2.9993 0.0000 1.0000 1.0000

B-SWT [30] 21.2362 0.0005 0.3020 0.0829

WB-SWT 25.4732 0.0005 0.2524 0.1022

BI-SWT 32.8736 0.0005 0.3580 0.2509

WBI-SWT 60.3220 0.0006 0.2920 0.3107

NSST B-NSST [2] 58.4842 0.0006 0.8174 0.6288

WB-NSST [27] 97.9584 0.0006 0.8125 0.6401

BI-NSST(1) 106.9630 0.0006 0.8164 0.6299

WBI-NSST(1) 119.1139 0.0006 0.8071 0.6407

BI-NSST(2) 112.0674 0.0006 0.8096 0.6558

WBI-NSST(2) 152.9135 0.0006 0.7936 0.6706
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According to Eq. (18), the BiShrink threshold values
[36] named TBI for every decomposition level ℓ and
subband k is

TBIℓ;k ¼
ffiffiffi
3

p
σ2N

σXℓ;k

ð32Þ

where σ2
Xℓ;k

(or σ2) is the power of the noise-free signal
in the transformed domain. In this paper, the noise vari-
ance is approximated by the robust median estimator of
Eq. (20), and the power of the noise-free signal is esti-
mated using Eq. (22); thus, the Bishrink weighted thresh-
old named TWBI is

TWBIℓ;k ¼ αℓ;kTBIℓ;k ð33Þ
where α is the weighting factor that depends on the de-
composition level ℓ and subband k, expressed as

αℓ;k ¼ MSEℓ;k

MSEℓ

ð34Þ

where MSEℓ is the average MSE of all subbands that

belong to the same level, MSEℓ ¼ 1
K ℓ

P
k¼1

K ℓ

MSEℓ;k and Kℓ is the

number of subbands for the ℓ− th level decomposition.
Using the weighting factor, αℓ, k results in the optimum

threshold value in Eq. (33), which is then applied to the
coefficients as the soft thresholding in Eq. (18). The
corresponding methods are named WBI-SWT, WBI-
NSST(1), and WBI-NSST(2).
Obtaining the values of αℓ, k is the main challenge

for implementing the weighted Shrinkage method. In
this paper, two approaches for determining the
weighting factor, αℓ, k, for test images and real SAR
images are proposed. For the test images, the MSE
between the noiseless and noisy coefficients gives the
optimum weighting factor, αℓ, k at each decomposition
level and for every subband as well, see Fig. 5a3, b3.
In real applications, including SAR images, clean or
noise-free signals are nonexistent. Therefore, a white or a
flat image (whose pixels have the same gray scale) with the
same size as the input image (512 × 512 pixels herein) is
used as the noiseless signal. As mentioned above and with
regard to Eq. (34), the MSE between the noiseless and noisy
coefficients gives the optimum weighting factor, αℓ, k at each
decomposition level and for every subband as well, see
Fig. 7. According to Fig. 5a3, b3, we conclude that the
values of the weighting factor are irrespective of either
image type or noise variance, but depend on the transform

Fig. 10 Real SAR images called Farmland, Peninsula, and Shipping
Terminal are shown on the first row, the results for High-TV [15], GΓD ‐
NSST [13], NIG ‐NSST [13], our proposed methods, BI-NSST(1), WBI-NSST(1),
BI-NSST(2), and WBI-NSST(2) are shown in order from rows 2 to 7
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or the coefficients’ noise efficiency. In the next section, the
obtained weighting factors, αℓ, k shown in Fig. 7, are used
for any weighted versions of shrinkage methods in the
NSST or SWT domains when the purpose is to despeckle
either the test images or the true SAR images.

5 Experimental results and discussion
In this paper, we used the images Barbara, Lena, House,
Boat, Goldhill, Fingerprint, Cameraman, and Peppers of
size 512 × 512 pixels and 256 Gy levels as the test im-
ages: images Farmland, Peninsula, and Shipping Ter-
minal [46] of sizes 500 × 500 pixels and Aircraft [47] of
size 512 × 512 pixels as the real SAR images. The three
images (Farmland, Peninsula, and Shipping Terminal)
[46] are part of the SAR images collected by
RADARSAT-1 in the Fine Beam 2 mode on June 16,
2002. Most of the illuminated scenes was in Delta,
British Columbia, Canada. The radar was operating in
the C-band with HH polarization. These three parts have
good image characteristics such as having grains, as well as
many high- and low-frequency parts. The mini SAR image
“Aircraft” [47] was collected from the Kirtland AFB region
on August 27, 2007 in the Ka-band and Ku-band.
An input signal is decomposed into three levels

using SWT and NSST. According to the numbered
subbands shown in Fig. 5a1, b1, the SWT has three
subbands in each level whereas the NSST has 16,
eight, and four subbands for the 1st, 2nd, and 3rd de-
composition levels, respectively. The block diagram in
Fig. 1 indicates that the homomorphic framework
(using the logarithm function at the first and expo-
nential at the end) is used for both test images and
real SAR images. The method to obtain the threshold
value for the shrinkage methods and the weighted
versions are explained in detail in Section 4.3.
Here, in the SWT domain, we evaluate the performance

of BayesShrink (B-SWT) [30], weighted BayesShrink (WB-
SWT), BiShrink (BI-SWT), and weighted BiShrink (WBI-

SWT); in the NSST domain, we present the results
achieved from BayesShrink (B-NSST) [2], weighted
BayesShrink (WB-NSST) [27], BiShrink based on model 1
and model 2 ((BI-NSST(1), BI-NSST(2)), and weighted
BiShrink based on model 1 and model 2 ((WBI-NSST(1),
WBI-NSST(2)) in terms of subjective and objective criteria.
Furthermore, two methods in the NSST domain, GΓD ‐
NSST [13], NIG ‐NSST [13], and a high-order total
variation method based on compressive sensing called
High-TV [15] are also applied to compare the achieved per-
formance among the proposed methods and state-of-the-
art papers under the same circumstances. For this purpose,
we had to implement all the methods ([2, 13, 15, 27, 30]).
For Barbara as a sample test image, which is corrupted

by speckle noise with variance σ2N ¼ 0:1, the image results
in the SWT and NSST domains are shown in Fig. 8. The
objective full reference parameters [39, 40] (PSNR, SSIM)
are obtained (for average values, the algorithm was run 30
times) for the test images and presented in Tables 2 and 3.
Although all methods in the NSST domain outperform
those in the SWT domain, no considerable improvement
of weighted versions over the direct ones (for example
WB-NSST versus B-NSST) was observed for artificial
speckle noise.
Using Air Craft of size 512 × 512 pixels as a real SAR

image (see Fig. 9) shows that the proposed methods in
the NSST domain is better than the approaches in the
SWT domain based on visual qualification, i.e., noise re-
duction and edge preservation. Table 4, according to
four no reference parameters, also proves that for “Pen-
insula” of size 512 × 512 pixels as a real SAR image, not
only do the methods in the NSST domain outperform
those in the SWT domain but also the performance of
the weighted versions are significantly better than the
directed ones; for example, see WBI-NSST(2) and BI-
NSST(2).
According to the results above for artificial speckle

noise, and the shrinkage methods in the SWT do-
main, in the following, we only considered the real
SAR images, using four proposed methods in the

Table 6 ENLh to compare the performance of our proposed
methods and references [13] and [15] for despeckling a real SAR
image called Farmland, Peninsula, and Terminal Shipping

ENLh Farmland Peninsula Terminal Shipping

High-TV [15] 68.8133 51.8599 90.1469

GΓD-NSST [13] 116.3365 82.1719 110.0757

NIG-NSST [13] 145.8000 120.8965 218.7877

BI-NSST(1) 128.2550 111.9838 185.3405

WBI-NSST(1) 133.9873 120.9091 224.8171

BI-NSST(2) 145.1024 130.5634 196.1714

WBI-NSST(2) 167.4749 154.0545 306.1236

Table 5 Four no reference parameters to compare the
performance of our proposed methods and references [13]
and [15] for despeckling a real SAR image called Farmland

Farmland (real SAR image)

ENL ↑ MSD ↑ ESIv ↑ ESIh ↑

NOISY 3.0833 0.000000 1.0000 1.0000

High-TV [15] 43.9698 0.001603 0.0200 0.0476

GΓD-NSST [13] 70.3518 0.001639 0.0994 0.2848

NIG-NSST [13] 88.3271 0.001693 0.0626 0.1908

BI-NSST(1) 81.4881 0.001693 0.0705 0.1877

WBI-NSST(1) 91.3149 0.001638 0.1085 0.3195

BI-NSST(2) 84.9580 0.001703 0.0651 0.1632

WBI-NSST(2) 110.4275 0.001639 0.1093 0.3162
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NSST domain, and compared them with [13] and
[15]. While the visual results shown in Fig. 10 do not
distinguish the methods precisely, the no reference
parameters presented in Table 5 indicate that WBI-
NSST(2) is the best approach. Since the ENL is one
of the very important parameters that indicate speckle
suppression in real SAR images, in this paper, we
compute this parameter in two ways: (1) splitting an
image into blocks with sizes 16 × 16 and 25 × 25
pixels for the real SAR images with size 500 × 500
and 512 × 512, respectively, obtaining the ENL for
every block, and then writing the mean value ENL in
Tables 4 and 5; (2) considering a homogeneous region
of size 50 × 50 pixels and obtaining the ENL value
named as ENLh, see Table 6.
At the end, Fig. 11 shows the ratio images [2, 48] for

Farmland, Peninsula, and Shipping Terminal using four
proposed methods in the NSST domain and compared

with [13] and [15] by considering Iratio ¼ Iy= I
_

x , where Iy

is a real SAR image and I
_

x is the despeckled image. In
general, the ratio image provides significant information
on speckle suppression and edge preservation. Any geo-
metric structures or details correlated with the original
image in the ratio image indicates that some possible
relevant information (e.g., edges or bright scatterers)
have been removed or modified using the despeckling
method. Note that any content within the ratio image
apart from the pure speckle indicates that some modifi-
cation on the nonhomogeneous areas (edges, mainly)
has been performed by the filter. An ideal filter would
not alter such edges or bright scatterers, and therefore,
ratio images would show a pure speckle pattern. There-
fore, if the ratio image does not have any structure
(completely noisy shape) or does not show any edges or
details from the inside, the algorithm is appropriate. In
this case, see Fig. 11 that shows the image ratios of our
proposed methods in the NSST domain in comparison
with references [13] and [15].

6 Conclusions
In this paper, three methods in SWT and four approaches
in NSST are developed according to BayesShrink, BiShrink,
weighted BayesShrink, and weighted BiShrink. For BiShrink
implementation in the NSST domain, two models to
choose the child-parent are proposed with regard to the MI
parameter. Although the model recommended by the MI
value outperforms for synthesized image with highly

Fig. 11 Real SAR images called Farmland, Peninsula, and Shipping
Terminal are shown on the first row, ratio images of the results for
High-TV [15], GΓD ‐ NSST [13], NIG ‐ NSST [13], our proposed
methods, BI-NSST(1), WBI-NSST(1), BI-NSST(2), and WBI-NSST(2) are
shown in order from rows 2 to 7
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detailed content, it is not appropriate for true SAR images
and synthesized images with many smooth regions.
Because, in this study, we showed that any thresholding-
based methods in the NSST domain outperform the SWT
domain, finding new parameters to choose the suitable
child-parent in the NSST is future research work.
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