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A novel method for 2D-to-3D video
conversion based on boundary information
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Abstract

This paper proposes a novel method for 2D-to-3D video conversion, based on boundary information to automatically
generate the depth map. First, we use the Gaussian model to detect foreground objects and then separate the
foreground and background. Second, we employ the superpixel algorithm to find the edge information. According to
the superpixels, we will assign corresponding hierarchical depth value to initial depth map. From the result of depth
value assignment, we detect the edges by Sobel edge detection with two thresholds to strengthen edge information.
To identify the boundary pixels, we use a thinning algorithm to modify edge detection. Following these results, we
assign the depth value of foreground to refine it. We use four kinds of scanning path for the entire image to create a
more accurate depth map. After that, we have the final depth map. Finally, we utilize depth image-based rendering
(DIBR) to synthesize left and right view images. After combining the depth map and the original 2D video, a vivid 3D
video is produced.
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1 Introduction
In the field of visual processing, 3D image processing
has become very popular in recent years. To produce a
better display than the traditional 2D visual experience,
3D displays offer a number of new applications, includ-
ing education, games, movies, cameras, etc., with 3D
video generations still growing. The user only watches
3D animation or 3D movies made by a special camera
on a computer. The lack of 3D videos makes 2D-to-3D
image conversion quite practical.
Synthesis technology from a 2D image to a 3D image

is performed in two steps: an estimation of the original
2D image depth map and then taking advantage of this
depth map to synthesize a 3D stereoscopic image. Thus,
the quality of the depth map largely affects the quality of
the 3D image. According to whether human interven-
tion, we can divide 2D to 3D image synthesis in two
ways: automatic and semi-automatic [1]. In automatic
methods, human-computer interactions are not in-
volved. The process has different visual cues, ranging
from motion information to perspective structures. In
[2] they proposed a geometric and material-based

algorithm, but the major issue of a fully automatic
method is creating a robust and stable solution for any
general content. This brought about semi-automatic
methods that contain some human-computer interac-
tions to balance quality. The stereo quality and conver-
sion cost are determined by key frame intervals and the
accuracy of depth maps on key frames. Guttman et al.
set up a semi-synthetic depth map method [3] with a
sparse labeling depth estimation method. It handles
depth with several key images for the semi-automatic
method and uses others with an automatic synthesis to
improve accuracy. Obviously, how to determine the key
image influences the accuracy of the entire depth map.
Regardless of the algorithm being fully automatic or

semi-automatic processing, a static scene with moving
parts is one of the most common issues. To generate a
depth map in this scenario, a static background is typic-
ally a layer of depth values, deriving an accurate capture
of mobile objects. In [1] they utilized motion estimation
[4] to present a conversion which requires only a few
user instructions on key frames and propagates the
depth maps to non-key frames. Huang et al. used H.264
codec to encode the motion vectors and combined two
kinds of depth cues: motion information and the geo-
metric perspective [5]. Raza [6] presented a method for
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a dynamic scene. It needs several kinds of information to
process, including object shape, movement amount, shield-
ing geometry edges, and scene, to get depth information.
Since depth information is the most important issue

for 2D-to-3D conversion, how to technically produce an
accurate depth map is critical. Depth map generation
can be classified into single-frame and multi-frame
methods. Multi-frame methods are based on stereo/
multi-view with the related depth information. Depth
from motion is realized by the information of relative
velocity [7–9]. In [7], they used the depth from motion
and solved a multi-frame structure from the motion prob-
lem. The method uses the epipolar criterion to segment
the features belonging to the independently moving
objects. In [9], they applied a block-based method and
cooperated with the bilateral filter to diminish the block
effect and to generate a comfortable depth map.
Multi-frame methods are achieved based on high-cost

equipment to acquire multiple video scenes. Conversely,
a single-frame method is derived based on only one-
view information with its depth information. Depth from
the perspective geometry has been used in [10–13].
These methods mostly took vanishing line detection to
identify the depth information. Battiato [10] proposed a
method based on the position of the lines and the van-
ishing points to derive a suitable assignment of depth. In
[12] they gave a semi-automatic method aimed to gener-
ate stereoscopic views estimating depth information
from a single input video frame and to decrease compu-
tation resources. Depth from a model is also used to es-
timate the depth value in [14, 15]. In [14] they
approximated 3D structures of natural scenes to gener-
ate stereo images, using warm or cool color theories to
generate depth data with simple models. Some utilized
the defocus method to extract depth information, as in
[16–19]. In [17] they employed blur information based
on the number of high-value coefficients by wavelet
transform. Depth from visual saliency is also used to
analyze visual attention and saliency in [20–22]. In [20]
they set up a method based on visual saliency to extract
the regions of interest from a color image. Additional
methods have applied a combination of several depth
cues to determine the depth information, such as in
[3, 5, 6]. Jung et al. [23] proposed a depth-map estima-
tion algorithm under the assumption that the depth of
image will increase from bottom region to upper re-
gion. Table 1 lists the classification of the methods on
depth map generation. Referring to the 3D image/
video generation techniques, depth image-based ren-
dering (DIBR) is commonly used for 3D image/video
generation [24]. Different from classical method which
requires the two streams of video images [25], DIBR
requires a single image and the second images usually
are depth images. In addition, the depth maps can be

coded more efficiently than two streams of natural im-
ages, thus reducing the bandwidth requirement.
In this work, we proposed a 2D-to-3D conversion

method based on single-frame method and fully auto-
matic conversion to generate stereo visual results. We
use GMM (Gaussian mixture model) and SLIC (simple
linear iterative clustering) to generate initial depth map
and then utilize edge information and repeat four kinds
of scanning path mode to refine the depth value. After-
wards, we have a precise final depth map. By DIBR, we
produce the left and right view images to complete 2D-
to-3D conversion. This paper is organized as follows.
Section 2 provides an overview of the proposed method.
Section 3 describes the Gaussian mixture model. Section 4
discusses the technique on superpixels. Section 5 amends
depth map generation. Section 6 provides the experi-
mental results and discussion. Finally, a conclusion is
given in Section 7.

2 Overview of the proposed method
The proposed method is based on two concepts: (1) the
moving object is a part of the focus; (2) the object ap-
proach to the bottom part of the screen should be close to
the camera; on the contrary, the object should be far away
from the camera. The second assumption applies in
most cases, such as the works in [23, 26]. Taking these
two concepts, we use foreground detection and super-
pixel algorithms to extract the object information.
Boundary information is the important result that we
can manipulate. Several important characteristics are as
follows.

1. Fully automatic conversion is contained;
2. Foreground detection and edge information help

unify the depth value on the object;
3. Superpixel algorithm clusters pixels with close

information;
4. Six kinds of initial gradient hypothesis for initial

depth map;

Table 1 The classification of the methods on depth map
generation

Depth cue Comments Algorithm

Multi-frame Depth from motion Use relative velocity
to judge depth
information

[7–9, 32]

Single-frame Depth from perspective
geometry

Vanishing line
detection

[10–13]

Depth from model Color theory [14, 15, 23, 34]

Depth from defocus Use blur information
to get depth value

[16–19]

Depth from visual
saliency

Estimation in region
of interest

[20–22]
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5. Four kinds of scanning modes to fix the depth
map;

6. Through a Hough transform, we only extract
one-line information to get the slope of the line.

Figure 1 shows the structure of the proposed frame-
work. The proposed 2D-to-3D conversion method in-
cludes several major stages. First, the foreground
segmentation stage segments foreground object and as-
signs background initial depth values. The Gaussian
model detects foreground objects. As a result, the de-
tected foreground benefits the depth value refinement
compared with the methods without foreground infor-
mation. The superpixels stage clusters pixels and assigns
depth values based on edge information. We employ this
algorithm to refine the edge information. Pixels with
similar color and position information are clustered.
Edge information is then included to assign the same
depth value. We utilize the Hough transform with six
initial depth maps. According to the pixels clustered
by superpixels, we give initial depth values. At the

in-depth value refinement stage, we apply four scan-
ning modes to modify depth values and then apply
Sobel edge detection with two-threshold decision to
get different results of edge detection. To identify
the boundary’s pixel, we use a thinning algorithm to
the extracted edge so that only one pixel is presented
on a boundary. Based on the derived depth map,
two-view images are rendered by DIBR. Finally, we
display it on a 3D displayer.

3 Gaussian mixture model
Foreground is defined as an object that has different mo-
tion vectors relative to the most similar motion vectors
between each neighbor frames. Since the moving object
is usually called the foreground, we determine the
motion vector of the object to classify foreground and
background, as shown in Fig. 2.

3.1 Background modeling
In our approach, the adaptive background subtraction
method is based on moving object detection and

Depth Value
Assignment

DIBR
Object

Extraction
SLIC

Superpixels
Depth Value
Refinement

Six Kinds of Initial Depth Gradient Hypothesis

Four Kinds of Scanning Path Mode

Fig. 1 Framework of the proposed 2D-to-3D conversion method

Fig. 2 Moving object detection results. a Original image. b Background. c Segment result
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background modeling. The adaptive background subtrac-
tion method uses the models as a mixture of Gaussians
and an on-line approximation to update the models [17].
We employ Gaussian distribution to determine the back-
ground and only use the luminance value of the YUV
color space with frame shifting. When a pixel is at time t,
it can be written as X = {X1,…, Xt}. This pixel is combined
by the amount of k Gaussian distribution. The probability
of observing the current pixel value P(Xt) is shown in (1).

P Xtð Þ ¼
XK

i¼1
wi;t

�pðXt
;μi;t;Σi;tÞ ð1Þ

where K is the number of distributions, ωi,t is an esti-
mate of the weight of the ith Gaussian in the mixture at
time t, μi,t is the mean value of the ith Gaussian in the
mixture at time t, ∑i,t is the covariance matrix of the ith
Gaussian in the mixture at time t, and p is a Gaussian
probability density function shown as:

P Xt ; μ;Σð Þ ¼ 1

2πð Þn2 Σj j12
e
−1
2 Xt−μtð ÞTΣ−1

Xt−μtð Þ ð2Þ

According to each Gaussian’s parameter, we can evalu-
ate which is the most accurate distribution of the

background. Based on the variance and the persistence
of each mixture of Gaussians, we determine which
Gaussians may correspond to the background colors. Be-
cause there is a mixture model for every pixel in the
image, we use [27] to execute our algorithm. Each new
pixel value Xt is checked with the existing K Gaussian
distributions until a match is found. A match is defined
as a difference between a pixel value and mean within a
threshold of covariance. If one of the K distributions
matches the current pixel value, the parameters of the
distribution are updated. When Gaussian distributions
have greater weight and smaller variance, they are usu-
ally identified as the background model. Figure 2 shows
the results of the background model.
The update for Gaussian distribution is continuously

performed on the matched and unmatched parts. As a
result, the convergence issue dominates the speed and
complexity. Based on (1, 2), we modify it as:

ρ ¼ α � p
�
Xt jμk;t ; jΣk;t

�
ð3Þ

ηk;t ¼
ρ

counterk;t þ 1
þ ρ ð4Þ

where η(t) is a convergence factor. In traditional
methods, this factor is set as a constant value or variable
that decreases at constant time. This induces low con-
verge speed or hard to converge, respectively. Our modi-
fication solves these issues.

3.2 Moving object detection
According to the background modeling, every Gaussian
has a value of ω/σ, where σ is the covariance of distri-
bution. When Gaussian distributions have a maximum
ω/σ, they become background modeling. Moving

S S

2S

Fig. 3 Reducing search range on superpixels

a b
Fig. 4 SLIC algorithm. a Original SLIC flow chart. b Modified SLIC flow chart
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objects can then be distinguished from the original 2D
image through the ith Gaussian with the maximum ω/σ
background model. We then binarize the moving object
and background. For easy representation, the pixel of a
moving object is assigned a white color, and its
background is black. The determination is as follows:

A x; yð Þ ¼ 255; I x; yð Þ−μk > T

0; I x; yð Þ−μk ≤T
�

ð5Þ

where A(x, y) is the binary result of moving objects’ de-
tection, I(x, y) is the current pixel value of the image,
and T denotes a threshold. Figure 2a, c shows the results
of moving object detection.

4 SLIC superpixels
This section introduces SLIC superpixels. According to
[28], using SLIC to generate superpixels is faster than
other superpixel methods, i.e., normalized cuts algo-
rithm. It exhibits state-of-art boundary adherence more
efficiently and improves the performance of the segmen-
tation algorithm. We further modify the SLIC method to
speed up this process.

4.1 Concept of SLIC algorithm
Simple linear iterative clustering is an adaptation of
K-means for superpixel generation. The only param-
eter of the algorithm is k, which represents the

number of approximately equally sized superpixels.
For color images, we transform color space from
YUV to CIELAB. The clustering program begins with
an initialization step where k initially clusters centers,
called Ck. The clustering of grid size is S = √N/K,
where N is all the pixels of an image, and Ci = [li, ai,
bi, xi, yi]

T is the color space for each pixel. The pixel
tag of an image is − 1. The distance value D is
assigned as infinity.
Figure 3 illustrates the difference between the standard

and SLIC methods. The standard K-means method searches
the entire image by clustering the center. The complexity is
O (kNI), where I is the number of iterations. Within 2Sx2S
clustering center, SLIC is applied to search this limited re-
gion. Thus, the complexity is reduced to O (N).

4.2 Distance measurement
This algorithm is used on CIELAB color space, where
[l a b]T is the color space, and [x y]T is the location
information of the pixel. The distance value D helps
analyze the correlation among pixels and decides
whether they can be classified as the same superpixels
or not. We separate color information and location
information to calculate them, shown in (6, 7).

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj−li
� �2 þ aj−ai

� �2 þ bj−bi
� �2q

ð6Þ

Fig. 5 Using vanishing line to decide initial map

Input Image

Calculate Possible Feature Points

Find the Slope of Line

Which Initial Depth Map Be Used

Six Kinds of Initial Depth Gradient Hypothesis

Fig. 6 Flowchart of depth values assignment
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ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj−xi
� �2 þ yj−yi

� �2
r

ð7Þ

In order to calculate these two results, we use spatial
distance coefficient NS and color space coefficient NC to
normalize the distance value. We can express D’ as:

D
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

Nc

� 	2

þ ds

Ns

� 	2
s

ð8Þ

where S is the largest distance of the grid, and NC is a
variety of coefficients according to different images or
initialized grid. We apply a parameter m to control the
tightness of the edge close to the image. Therefore, (8) is
changed as follows:

D
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

m

� 	2

þ ds

s

� 	2
s

ð9Þ

After the calculation on distance value D, the label of
each pixel is updated. If the pixel has the smallest

distance value D with kth grid center, the label of the
pixel will be updated by k. After each pixel has a corre-
sponding label value, we average the color information
and location with the same label value to get the grid’s
new center. The process is repeated until convergence.
Searching always derives many times of iteration. Since

this is very time-consuming, we need to consider its effi-
ciency. Based on our several experiments, a one-
iteration result is sufficient since there is almost no dif-
ference compared with multiple-iteration results. Thus,
we only execute a one-iteration result for SLIC in order
to reduce processing time. Figure 4 shows the flowchart
of SLIC, and the parameter E in Fig. 4a means the re-
sidual error.

5 Depth extraction and depth fusion process
We employ edge information and superpixels to gener-
ate depth map. After finding foreground, similar depth
value is assigned to whole object by using edge infor-
mation of the object in current frame. The extraction
and fusion on the depth are the key technique for

Initial Depth Gradient Hypothesis

Width

Height

Slope Slope

Slope
Height

Width Width

(a) (b) (c) (d) (e) (f)

Fig. 7 Six kinds of initial depth gradient hypothesis

Fig. 8 Example of thinning. a Gray image. b Thinning result
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synthesizing 3D visual quality. In our approach, we give
the corresponding hierarchical depth map after the
superpixel information. We then use Sobel edge detec-
tion and a thinning algorithm to capture the objects. Fi-
nally, we utilize four kinds of directions to scan the
entire image and correct the depth value to obtain the
full depth map.

5.1 Depth from prior hypothesis
In most conversion techniques, vanishing line detection
is needed to determine the initial depth map. Traditional
vanishing line detection can get the one vanishing point.
This is accomplished by a Hough transform [9] with

some extracted lines. At least two detected lines are able
to decide a vanishing point, as illustrated in Fig. 5. In
our method, we do not use vanishing line detection. In-
stead, with the processing of a Hough transform, we just
extract one line of information to get the slope and
points of the line. With the slope of the vanishing line,
we can determine the initial depth map. Without the de-
cision on vanishing point and the related two vanishing
lines, this simplifies this process.
We take the slope of one line to define the initial

depth map from six kinds of initial gradient hypoth-
esis, as shown in Fig. 6. In [26], they used five kinds
of initial gradient hypothesis to decide this. We add

Four kinds Scaning path

Current pixel Compared pixel

[0][0]

[0][n]

[m][0]

[m][n]

Fig. 9 Four kinds of scanning path

Fig. 10 Experimental results. a Original image. b Results of simple linear iterative clustering. c Results of foreground detection. d Initial depth
map. e Final depth map. f Anaglyph image
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another situation to satisfy the scene of an indoor
case. In this case, the depth map is always from the
outside to inside scene. Here, we identify it more pre-
cisely. Referring to the decision on initial value, [26]
used a block-based method to approximate it. Since
we have implemented SLIC on a cluster, we can easily
decide it based on this information. Figure 7 shows
the six kinds of initial gradient hypothesis.
After determining the hierarchical initial depth map

from six kinds of initial gradient hypothesis, we cal-
culate the depth value for each pixel. The six cases
are labeled from (a) to (f ) as illustrated in Fig. 7. For
case (a), the depth map is bottom-to-up and is calcu-
lated as:

1. Depth ¼ White−i� White
Height

� �
;where 1 < slope or

−1 > slope; i ¼ 1; 2; 3…; heightf g (10).

For cases (b) and (c), the depth map is left-to-right
and right-to-left, respectively. It is calculated as:

2. Depth ¼ White−i� White
Width

� �
;where slope ¼ 0;

i ¼ 1; 2; 3…;widthf g (11).

For cases (d) and (e), the depth map is from lower left
to upper right and lower right to upper left, respectively.
It is calculated as:

3. Deptht ¼ White−i� Whiteffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Width2þHeight2

p
� 	

Depth ¼ Deptht−j�
i� Whiteffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Width2þHeight2
p

� �
N

0
@

1
A;

where 1 > slope or−1 < slope; j
¼ 1; 2; 3…; heightf g ð12Þ

where Depth is the value assigned to the depth value;
Width is the width of the image; and Height is the height
of the image. Based on our experiment results, since the
bottom-to-up model is one of the most common modes
in the real world, we assign the bottom-to-up mode as the

default mode. Depth ¼ White−i� White
Height

� �
:

5.2 Sobel edge detection
We use Sobel detection to acquire the edge informa-
tion of an object. A 3 × 3 Sobel operator is defined to
detect horizontal gradient Gx and vertical gradient Gy.
After deriving the gradients, we use (13) to make the
weighted gradient Gz.

Fig. 11 3D stereo anaglyph. a Highway. b Subway. c Station. d Hall
monitor. e Laboratory. f Bridge close. g Bridge far. h Flower
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pixel pð Þ ¼ 255; Gz ≥ threshold
0; Gz < threshold

�
;

where Gz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
ð13Þ

We take a threshold to compare with the gradient
value of pixel P to decide the existence of an edge. To
present a good result, we propose a two-threshold
method to implement this. By these two thresholds, we
have two different edge data. The large threshold main-
tains strong edge information and masks the noise on
boundary pixels. The small threshold represents week
edge information and thus maintains more noise infor-
mation. Through this two-threshold mechanism, the re-
sult is more precise than a single threshold solution.
Because the thickness on an edge is not unified, we exe-

cute a thinning algorithm [29] to represent a one-pixel
thickness on a contour. The benefits are eliminating edge
noise and refining the depth map in the following process.

Figure 8 shows the example of thinning result. We itera-
tively delete the boundary pixels of an object. From the re-
lationship of each pixel, we can iteratively keep or delete
the boundary pixels of an object, thus deriving a skeleton.

5.3 Depth refinement
After the above steps, we have the depth map that is
generated by two different Sobel thresholds. We use four
kinds of scanning modes to fix the depth map [30]. The
scanning paths are listed as follows:

1. From the lower right to the upper left: if the pixel’s
depth information is smaller than the right, it will be
replaced by the right;

2. From the lower left to the upper right: if the pixel’s
depth information is smaller than the left, it will be
replaced by the left;

3. From the upper left to the lower right: if the pixel’s
depth information is smaller than the upper, it will
be replaced by the upper;

Fig. 12 Profiling on computation time for each procedure. a 1.040 s/frame on PC environment, and b 4.13 s/frame on PandaBoard
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4. From the upper right to the lower left: if the pixel’s
depth information is smaller than the lower, it will
be replaced by the lower.

As shown in Fig. 9, we repeat the above four scanning
modes until it self-stabilizes and compared the depth
map with the other depth map in different thresholds.
This evaluation eliminates the edge profile. We then use
adjacent depth information to fill in an edge profile.
Finally, we compare with the foreground information to
get the completed depth map.

6 Experimental results and discussion
6.1 Simulation results
Figure 10 illustrates the experiment results with its
detailed processing steps. First, the result by SLIC is
shown in Fig. 10b. After the foreground detection, the
object as foreground is extracted in Fig. 10c. Figure 11d–f
shows the initial depth map, final depth map, and the ana-
glyph image, respectively. We provide several simulation

results including Hall, Subway, Station, Hall monitor, La-
boratory, Bridge close, and Flower. In brief, we only show
the depth map result and the synthesized view as
illustrated in Fig. 11.
We implement our method on a workstation equipped

with Intel 3.4GHz Core i7-3770 CPU and 8GB RAM. To
evaluate the performance fairly, the entire algorithm is run
with a single thread. Every test sequence is restricted to a
352 × 288 frame size. The profiling result is shown in Fig. 12
and Table 2 lists execution time of each sequence. Further-
more, we profile it on PandaBoard platform, which is based
on the Texas Instruments OMAP4430 system. As shown in
Fig. 12, the average execution time is 1.040 s per frame in a
PC environment and 4.13 s per frame on an embed-
ded platform. SLIC occupies most of the computation
time, no matter in the PC environment or embedded
platform.

6.2 Evaluation and comparison
We evaluate and compare the visual quality of the pro-
posed algorithm with the others. In comparison with the
depth map of ground truth, our method easily reveals
the stereo effect. From [31], they used their method to
the videos and also provided the ground truth of video.
We apply one of the videos, Kendo, as shown in Fig. 13.
We pop out three frames in a video to express the con-
tinuous result. Each frame of Fig. 13 shows the original
image in the upper part. From the lower left to the right
part, it shows the ground truth and the depth map by
the proposed method, respectively. Since this video has
high-motion characteristic, it is not easy to process well.
It always induces some defects such as motion blurring,
non-continuous depth, and uncomfortable feeling to
viewers. Our method can perform this sequence as well
as can be done in ground truth. Notably, the contour of
sword is still clear even though movement arises.

Table 2 Execution time for each sequence (on PC environment)

Sequence Time (s)

Highway 1.073

Subway 1.050

Station 1.059

Hall monitor 1.054

Laboratory 1.053

Bridge close 1.077

Bridge far 1.071

Flower 1.018

Champagne 0.993

Balloon 0.999

Kendo 0.992

Average 1.040

Fig. 13 Comparisons of depth maps in Kendo sequence. a Frame 1. b Frame 16. c Frame 25. Images from upper, left to right are original images,
ground truth, and depth maps of the proposed method
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Another simulation is made based on the ground
truth in [6]. Three frames pop out as shown in Fig. 14.
From the upper, the lower left, and the lower right, the
images are the original, the ground truth, and proposed
result, respectively. It shows that our method can gen-
erate the depth map with a clear edge in objects, such
as a car and a cloud. In comparison with ground truth,
a cloud is ignored, but we are able to keep it well and
make it easily protrude. A car should be treated as an
object in Fig. 14. The ground truth is not very well dis-
tinguishable. We can focus the car quite well with dif-
ferent depth values around the neighbor. Three videos
are also simulated and the results shown in Fig. 15,
where the display order of each image is the same as in
Figs. 13 and 14.
Because most reference works did not provide their

simulated video sequences, we evaluate them by charac-
teristics. Kim et al. [32] used motion analysis which cal-
culated three cues that were used to decide the scale
factor of motion-to-disparity conversion. However, it is
hard to detect blending between shots. Li et al. [33] used

several simple monocular cues to estimate disparity
maps and confidence maps of low spatial and temporal
resolution in real-time, but it is less sensitive to the
variety of scenes. In [34], it proposed a simplified algo-
rithm that learns the scene depth from a large repository
of image depth pairs. It can provide high performance
but takes much computation time. In comparison with
[26], they performed edge information to segment the
objects. A similar work [30] also used edge detection
and scan path to fill the depth values. If only the edge
information is used, then it induces a same object with a
different depth value. In our method, we not only use
edge information, but also foreground detection to unify
the depth value within the same object. Furthermore,
two-threshold decision benefits the result on precise
edge information and also avoids the disconnected result
on an object and its depth value. Referring to [6], they
learned and inferred depth values from motion, scene
geometry, appearance, and occlusion boundaries. Al-
though this can segment the images into spatio-temporal
super-voxels and predict depth values with random forest

Fig. 14 Comparisons of depth map for Sequence_1 in [6]. a. Frame 85. b Frame 93. c Frame 94. Images from upper, left to right are original
images, ground truth, and depth maps of the proposed method

Fig. 15 Comparisons of depth map for three sequences in [6]. a Video 6. b Video 16. c Video 21. Images from upper, left to right are original
images, ground truth, and depth maps of the proposed method
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regression, it is still hard to segment an object from the
background well.
From the depth map in Figs. 13 to 15, we provide

the quantitative evaluation result. The performance of
the generated stereoscopic video was evaluated sub-
jectively by comparing a ground truth of a video se-
quence. It was performed by 14 individuals with
visual and stereo acuity. The participants watched the
stereoscopic videos in random order and were asked
to rate each video with depth quality. The overall
depth quality was assessed using a five-segment scale,
as shown in Fig. 16.

7 Conclusions
This paper has proposed a 2D-to-3D conversion
algorithm. First, we separate the foreground and back-
ground. Second, we use the superpixel edge algorithm to
get boundary information and gather the pixels with the
same depth value. Through a six gradient hypothesis on
the depth map, the initial depth value is assigned. Since
the boundary information is needed for refinement, we
perform Sobel edge detection with two different thresh-
olds to get two kinds of results. We then apply a thin-
ning algorithm to obtain the result with only one pixel
on edge. Compared with the two-threshold decision, we
are able to add foreground information to unify the final
depth information. Four scanning paths are used to re-
fine the depth values. Finally, depth image-based render-
ing is employed to synthesize a virtual image. In the
future work, we will utilize more information such as
visual saliency or use blur information to determine the
initial depth map to deal with depth map in complex
scenes more precisely.
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