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Abstract

Human activity recognition requires both visual and temporal cues, making it challenging to integrate these
important modalities. The usual schemes for integration are averaging and fixing the weights of both features for all
samples. However, how much weight is needed for each sample and modality, is still an open question. A mixture of
experts via a gating Convolutional Neural Network (CNN) is one promising architecture for adaptively weighting every
sample within a dataset. In this paper, rather than just averaging or using fixed weights, we investigate how a natural
associative cortex such as a network integrates expert networks to form a gating CNN scheme. Starting from Red
Green Blue color model (RGB) values and optical flows, we show that with proper treatment, the gating CNN scheme
works well, indicating future approaches to information integration in future activity recognition.
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1 Introduction
The video classification task has become an interesting
topic in computer vision and pattern recognition because
of its dynamic scenes and objects, which vary either spa-
tially or temporally, making it challenging to design suit-
able and robust handcrafted features. The evolution of
convolutional neural networks (CNNs) has led to signif-
icant changes in the way features are being learned. For
instance, convolutional filters process pixels considering
many aspects such as neighboring pixels and the shapes
they form. Therefore, deep CNNs produce many param-
eters, which is advantageous for the classification task,
especially for the classification of video. However, a CNN
still needs gating to determine which modality should
have more weight than the others. For instance, the gating
network should be able to a spatial stream’s output more
heavily than a temporal one if spatial cues are more salient
than motion cues, and vice versa.
Video classification using CNN has achieved significant

improvement since the use of a collection of still images
and ImageNet weights to be fine tuned on two stream
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network. In this paper, we implemented the two-stream
CNN proposed by Simonyan [11] for human action recog-
nition, which uses spatial and motion streams using the
Chainer framework [13]. Space andmotion basically com-
plement each other in nature to characterize activity in
videos. There is evidence that integrating RGB channels
and optical flow as a representation of space and motion
respectively overcomes severe overfitting while increas-
ing testing accuracy [11, 18, 22]. However, how to weight
each spatial and motion feature remains an open ques-
tion. A feature weighting mechanism is required to find
the optimal solution given a set of solutions. Using a gating
scheme enables a network to be better trained to under-
stand under what conditions the weights of the RGB part
should be increased and under what conditions the optical
flow should be weighted more heavily. Despite its advan-
tages, there is one drawback of running gating scheme; it
requires a large amount of CPU/GPUmemory because of,
in the case of bimodalities, a large architecture of three
networks (two expert networks and one gating network).
In this research, each expert network is trained indepen-
dently and the gating network is then trained to weight
each modality before integration.
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The gating network scheme is primarily the same as
the mixture expert scheme. It is basically inspired by the
associative cortex of the brain, which can handle infor-
mation integration from many sources. Based on [14],
it is evident that the presence of the associative cortex
is needed to improve the perception of the environment
by the brain. This conclusion is drawn from a study of
cats with a deactivated corticocollicular system, where it
was found that the ability to integrate target neurons in
the superior colliculus is disrupted. Correspondingly, our
gating CNN scheme follows the natural corticocolliculus
to improve perceptions. Therefore, the main contribu-
tion of the gating CNN scheme is to select local patterns
that best describes a decision. Because of the high num-
ber of degrees of freedom of scenes inside videos, spatial
information alone is not enough to describe the target
classification, which is sometimes disrupted from one
scene to another. Information from one source might be
not enough for a CNN to classify the video, regardless of
millions of parameters, which tend to lead to overfitting.
There are three possibilities to overcoming this prob-
lem: adding a larger variety of inputs, increasing training
data, or gaining help from another source. When multi-
source information is considered as input, normalization
is required to make their spaces comparable. For instance,
if all frames from one modality are at fixed scales, another
source such as motion must be at a fixed scale of the same
size to enable the network to perform better with respect
to perception. Whenever the output of softmax cross-
entropy is retained from each expert stream, the gating
network’s output weights both experts’ output (the output
dimensions of the gating network are two when only two
expert networks are used).
The success of CNNs has led to a new trend in activ-

ity recognition research. Video activity recognition is
basically formed by a set of images for which CNNs
have demonstrated superior classification. Recently, large
image datasets such as ImageNet have been used to enrich
the network with the aim of improving the accuracy of
image-based classification tasks. However, the incorpora-
tion of other sources of information is needed to further
improve perceptual accuracy. Simonyan et al. [11] pro-
posed a two-stream CNN that use spatial and temporal
cues and performs simple fusion by averaging and using
a support vector machine (SVM). Moreover, Wang et al.
[12] improved the method of training the two streams by
segmental sampling and used predefined fixed weights for
the final feature fusion. Many fusion methods have been
proposed, for instance, late fusion using a loss function
[22] or feature amplification-multiplication [18]. How-
ever, we assume that independent streams and loss are
more natural because each stream has more freedom to
learn depending on its specific task. This motivates us to
propose an independent gating CNN architecture.

To summarize, the main contributions of this work are
as follows:

1) We propose a framework for a gating scheme that is
more accurate than if we use only one expert
network or merely predefine fixed weights for many
expert network outputs.

2. We propose our method using two deep models:
expert and gating networks with independent loss
functions and adaptively weighted outputs of every
sample.

2 Related work
Previous studies based on still images have significantly
contributed to human activity recognition, such as the
two-stream CNN approach used by Simonyan et al. [11],
who proposed a very deep network for image recognition
[10]. Their proposed method was extended to a temporal
segment network [12], which segments the whole video
sequence and trains each segment based on its respec-
tive network, achieving higher accuracy. However, how
to fuse or integrate all streams is still an open question.
Before deeply learned features became popular, there were
many research approaches to video classification using
various methods, especially handcrafted methods such
as spatiotemporal features [1], dense trajectories [9], and
local autocorrelation [19]. Three-dimensional (3D) CNN
was the first attempt to train spatiotemporal features for
video classification using deep CNNs. However, it had an
overfitting problem due to the lack of available training
videos [8]. Later, a YouTube video dataset was provided
and late fusion and early fusion for 3D CNN were intro-
duced. Slow features can be learned using deep learning,
which is advantageous for action recognition [2]; however,
the effectiveness of deep learning over handcrafted sys-
tems is still not evident. A breakthrough was proposed
with a two-stream network that uses spatial and motion
streams and fuses them by simple averaging and SVM
fusion. Furthermore, it gains complementary information,
which in turn improves accuracy. This approach adopts
transfer learning from the large-scale ImageNet dataset
and inherits the characteristics of image classification for
video action recognition. Time series information was
considered by [4, 7] in a long short-termmemory network,
which is basically a gated version of a recurrent neural
network .
A multiplicative gating scheme has been introduced by

previous researchers for object detection, language mod-
eling, people re-identification [3], or video classification.
Gated object detection was introduced by Xingyu at al.
[16] to make use of visual cues of different scales and
resolutions. A gated CNN for language modeling was pre-
sented by Yann et al. [17], who proposed a gating mech-
anism that outperforms long short-term memory-based
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gating. There is onemultiplicative gating scheme for video
classification [18]. It introduces feature amplification to
perform soft gating on intermediate feature maps, which
is a different approach to our work, which uses an addi-
tional gating network instead. Recently, weighted image
segmentation for scene geometry and semantics has been
an issue in deep learning applications [15]. If we consider
adding one gating network for weighting, it is necessary to
calibrate measurements because the gating network itself
is for predicting uncertainties. We consider how to man-
ually define learning rate parameters to stabilize expert
networks. How to provide an adaptive learning rate such
as ESGD [17] remains an open issue. A natural gating net-
work is able to learn non-linearities such as natural trans-
formations [5] for weighting the expert streams. Hadsell
et al. [22] proposed a fusion scheme for both RGB and
optic flow streams in various layer position and trained it
as a model using one loss function. Our approach is dif-
ferent from this in that we use a separate loss for the RGB,
flow, and gating streams, which are independently trained
in a sequential way. The gating output is trained to weigh
both the last layer of the RGB and flow before fusion and
classification.

3 Methods
A very deep gating network is introduced to handle the
noise and occlusion in a scene for activity recognition.

The proposed gating architecture can be adapted to dif-
ferent contexts depending on the purpose, i.e., a gat-
ing network for integrating the audio, text, images, and
objects of various spatial resolutions, or actions with var-
ious temporal segments. This enables the lower layers
of the network to learn parameters with discriminative
power. Furthermore, to the best of our knowledge, despite
its simplicity, the proposed approach is the first natu-
ral gating CNN to be introduced in video classification.
We use a gating network that is similar to or shallower
than the expert networks. For example, if the gating net-
work is VGG-16, it means that both expert networks
are also VGG-16, ResNet-50, or a simple classifier for
simplicity.
The use of deep neural networks does not necessarily

mean that a specific model or size of CNN must be used;
however, VGG-16 and Residual Net (ResNet) [6] have
become popular and achieved state-of-the-art results on
image classification [10, 24]. Thus, in addition to VGG-16,
we use another popular network called ResNet-50.
Figure 1 summarizes the models, which consist of fusion
by averaging, fusion by SVM, and a gating network. The
reason for using various models is to compare possible
fusion schemes, including our gating CNN. Even though
the gating network model is similar to that of the experts,
it is different in terms of output dimensions. The dimen-
sionality of the gating output is two, one for weighting

Fig. 1 Various models of the gating scheme. a Fusion by averaging. b Fusion by concatenation and SVM. c Gated network, similar to an expert
network



Yudistira and Kurita EURASIP Journal on Image and Video Processing  (2017) 2017:85 Page 4 of 12

the spatial expert and the other for weighting the motion
expert.
In VGG-16, while making the network deeper, the con-

volution filter size is smaller, which allows coarse to fine
image patterns to be captured. For every output layer, the
non-linear activation function of a rectified linear unit
is used because it has shown better convergence proper-
ties and performance gains with little risk of overfitting.
Other network models such as ResNet or Inception could
be chosen and possibly achieve higher accuracy while sav-
ing memory. However, for the training gating scheme,
VGG-16 and resNet-50 are suitable as a starting point.

4 Gated bi-modal CNN design
We briefly introduce the gated CNN in Section 4.1,
describing the pipeline of a gated bi-model CNN.
Section 4.2 presents the general framework of the gated
CNN, and Section 4.3 explains the training and test-
ing scheme. Section 4.4 considers various combination of
gating architecture.

4.1 Expert–gating pipeline
A training gating network can be implemented in two
ways, by training in parallel both the experts and gating
networks or sequential learning by training the experts
first and then training the gating network. To train the
gating network and expert networks at the same time,
careful initial parameter setting is required. For example,
we must ensure that during training, the spatial expert
network and motion expert network do not exceed each
other in terms of accuracy so that the gating network can
learn from the true prediction data sufficiently. Specifi-
cally, we use a learning rate of 0.000001 for the spatial
stream because it tends to converge significantly faster
than the motion stream. This is due to the higher number
of matches between RGB frames with the pre-trained data
(ImageNet). For the motion stream, we use a learning rate
of 0.0001 because this combination of parameters is suffi-
cient to stabilize the procedure so that the gating stream
is able to train enough data. However, to tune this type of
learning for both the expert and gating streams is trivial,
and the result is somewhat suboptimal. For instance, if the
spatial expert network achieves a 10% increase in accu-
racy compared with that of the motion expert network,
it means the learning rate of the spatial stream must be
slowed to balance the gating scheme. Rather than perform
this type of learning, we consider splitting the data to train
expert network first followed by gating network and con-
tinue learning after gating is trained. This process can be
summarized by the following pipeline:

1 Random video frames are selected; thus, every
iteration is given a different input frame. RGB frames
are inputted into the spatial network while flows are

inputted into the temporal network. The gating
stream is inputted with a concatenation of RGB and
flows for the sake of competitiveness between both
modalities.

2 Given input modalities, each expert is trained
independently until it converges.

3 The gating network is trained until the loss is
stagnant.

4 On testing, the gating output weights each expert’s
output and fused both weighted outputs. Then,
classification is performed by selecting the maximum
value within a dimension as the predicted label.

4.2 Framework overview
The input of the gating network is concatenation of the
spatial and motion information. Each stream has its own
loss function that is updated independently, as shown in
Fig. 2. The gating mechanisms such as the input gates and
output gates follow this equation:

yfinal = x1y1 + x2y2 (1)

where:

y1 + y2 = 1 (2)

where x1, x2, y = (y1, y2), and yfinal are the outputs of
the RGB stream, optical flow stream, gating stream, and
final prediction, respectively. This fusion scheme is pre-
sented in Fig. 1 as model C and in Fig. 2 in detail. The
output gate is an additional fully connected layer with
101 inputs and two output dimensions. This structure
is considered because, in nature, VGG output is 101-
dimensional for UCf-101 and 51 for the HMDB-51 dataset
(trained on ImageNet with 1000 classes). The final fusion
of the output of the expert streams is then normalized
using a softmax cross entropy function. Furthermore, for
the output of the gating stream, a softmax function is
used to transform every feature vector’s element as a float
between 0 to 1 while the sum of a y1 and y2 is 1.

4.3 Input, training-testing scheme, and loss function
Learning consists of two parts: expert learning and gat-
ing learning. To train the gating network, experts must
be trained and produce feature vectors so that the gating
CNN can estimate the proportion of each network relative
to the other.

4.3.1 Dataset
We split the training dataset into half: the first half is for
training the expert networks and the other half is for train-
ing the gating network. However, the whole dataset is used
to train the expert network once the gating networks have
been trained.
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Fig. 2 Expert–gating training framework [25, 26]

4.3.2 Input and data augmentation
The frame selection for each iteration is randomized.
Hence, for every iteration, the method selects a different
frame for the same video, thus training on all the frames
as it iterates. Three networks are used for this gating CNN
scheme; hence, there are three inputs: RGB for the spatial
expert network, optical flow for the motion expert net-
work, and a concatenation of RGB and optical flow for
the gating network. In this case, RGB contains three chan-
nels and the optical flow contains three consecutive flow
fields over time with two flow field differences. Therefore,
for the gating network input, there are six channels for
the first layer of convolution. The optical flow representa-
tion is basically transformed into a gray-scale image; thus,
three consecutive flows give the same amount of input as
the RGB. To overcome overfitting, various pre-processing
schemes such as cropping and flipping were performed.
We used four-corner cropping and center cropping along
with flipping. All the inputs were resized to a resolu-
tion of 250 × 250 with an arbitrary cropping of size 224
× 224 along with a horizontal flip. A mean image size of
250 × 250 was computed for the training set and used to
subtract all the images.

4.3.3 Training the expert CNNs
For the spatial stream, pre-trained ImageNet was used
to reduce overfitting. This kind of transfer learning has
improved accuracy by a large margin. For the motion

stream, network was trained from scratch because optical
flow features are clear enough to define action, in contrast
to spatial scene information. Whether the pre-trained
ImageNet model or an untrained model is used initially,
the effect on test accuracy and overfitting is still the same
for the motion stream. For VGG-16 and ResNet-50, we
used a learning rate of 0.001 for the spatial streams. It
decreases to 9/10 of its value every 5000 iterations with
a momentum of 0.9. The maximum number of iteration
was set as 20,000. For the temporal streams, we set a
smaller initial learning rate (0.0001) in our experiments.
It decreases to 9/10 of its value for every 20,000 itera-
tions and uses momentum of 0.9. The maximum number
of iterations was set as 100,000. We also consider trans-
ferring the weight of trained expert streams for VGG-16
using the good practice approach from [23] and used [12]
for the temporal segment network to be gated with our
trained VGG-16 gating network. Note that our trained
VGG-16 uses the Caffe framework.

4.3.4 Training the gating CNN
For the gating network, we initialized network weights
with pre-trained models from ImageNet. Next, we trained
using a learning rate of 0.001, which decreases to 1/10 of
its value every 20,000 iterations. Based on experience, if
we set the learning rate to a large value (e.g., 0.1), the net-
work tended to choose one of the expert streams, which
is not desirable. Training a very deep network such as
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VGG-16 is computationally heavy and it takes a long time
to converge. Training a simple classifier uses a learning
rate of 0.001, reducing by 10% every 5000 iterations. The
maximum number of iterations was set as 100,000.

4.3.5 Testing the gating CNN
For given video sequence, we sampled 25 frames equally
spaced and fed every frame to its respective stream (three-
channel RGB to the spatial stream and three consecutive
flow fields to the motion stream) and paired RGB and
optical flow into the gating stream. Each of 25 softmax
output pairs were then weighted and averaged to predict
class.

4.3.6 Testing the two good-practice streams
For a given video sequence, we sampled 25 equally spaced
frames and fed every frame to its respective stream and
paired RGB and optical flow into the gating stream. The
gating output weighted all 750 softmax cross entropy out-
puts and then averaged to predict the classes. For every
frame in the spatial sequence, there were five crops (four
corners and one center) with horizontal flips; thus, 10
images were generated for every frame and 25 × 10 =
250 were generated for every sequence. Optical flow only
formed the center of 10 stacks of three consecutive flow
fields for 25 images in a sequence multiplied by two, thus
generating 50 × 10 = 500 images in total.

4.3.7 Testing the temporal segment network
For given sequence of video, we sampled 25 equally spaced
frames and fed every frame to its respective stream and
paired RGB and optical flow into the gating stream. All
25 softmax outputs were then averaged to predict class.
For every frame, for the spatial sequence, there were five
crops (four corners and one center) with flipping; thus, the
number of images for every frame was 10. Optical flow
only formed the center of 10 stacks for 25 sequences, thus
their total was 25 × 10 = 250.

4.3.8 Loss function
We used a separate loss function for the expert and gat-
ing networks. However, both have basically the same loss
function, which minimizes the error of the predefined
labels. For the gating network, backpropagation tried to
minimize the loss of the gated feature vector using the
following loss function:

E = −
∑

i
ti log oi (3)

where o is the softmax cross entropy of output network v:

o = softmax(v) (4)

The gradients with respect to the feature vectors at
the last layer were computed from the contrastive loss
function and backpropagated to the lower layers of the
network. Once all the gradients were computed at all
layers, we used minibatch stochastic gradient descent to
update the parameters of the network.

4.4 Various expert-gating CNN combinations
The base of the expert network can be either two streams
of VGG-16 or two streams of ResNet-50 with its gating.
A gating CNN also has many possibilities; however, to
keep pace with the expert networks, the gating stream
should have the same capability as the expert stream. The
architecture of the gating itself is still an open question;
however, a combination of deep and shallow networks (a
simple classifier) can reveal its drawbacks and strengths.
Therefore, we prepared several scenarios for expert-gating
combinations. VGG-16 has 16 layers while ResNet-50 has
50 layers. We assume that deeper network will increase
the number of degrees of freedom, which distracts the net-
work from reaching the optimum solution. As shown in
Fig. 3a, VGG-16 streams can be attached using a ResNet-
50 or VGG-16. Figure 3b shows that ResNet-50 streams
are gated with ResNet-50 or VGG-16. Figure 3c shows that
ResNet-50 streams are weighted by a simple classifier with

a b c
Fig. 3 Various combinations of expert-gating CNNs. a VGG-16s as the experts & VGG-16/ResNet-50 as the gating. b ResNet-50s as the experts &
VGG-16/ResNet-50 as the gating. c ResNet-50s as the experts & a simple classifier as the gating
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an input size of 4096 (the concatenation output of ResNet-
50’s last layer without the fully connected layer from both
experts). The simple classifier consists of two layers with
4096 inputs and 1000 outputs followed by a layer of 1000
inputs and two outputs.

5 Results and discussion
5.1 Datasets and experiment details
Two challenging datasets were used in the evalua-
tion setup: UCF-101 (Fig. 4) and HMDB-51. These are

challenging datasets because they are small in size for
deep learning. UCF-101 consists of 13K videos with 180
frames per video on average and 101 classes. HMDB-51
consists of 6.8K videos and 51 classes. For training the gat-
ing network, we used UCF-101 dataset split 1 and use that
trained model for the entire experiment, which suitably
increased accuracy for all cases. The training and test-
ing split scheme is based on the THUMOS13 challenge
[21]. For the entire experiment, we only used split 1 for
the analysis of our gating network. We used stochastic

Fig. 4 UCF 101 dataset containing 101 action classes with 9537 training videos and 3783 testing videos [27]
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gradient descent as an optimizer for both the experts and
gating networks. Due to the limited memory resources of
our system, we used minibatch sizes of 12 with a momen-
tum of 0.9. The learning rates were set to 0.0001 and 0.001
for the RGB and flow networks, respectively. To extract
the optical flow, we chose the TVL1 optical flow algo-
rithm implemented in OpenCV with CUDA. The whole
training time on UCF101 was around 2 h for the spatial
network, 18 h for the temporal network, and 6 h for the
gating network with a TITAN GPU.
During the training of the VGG-16 experts, after 40

epochs, training was stopped and the gating CNN was
trained using the other half of the training dataset and
evaluation. After that, training was continued until 80
epochs and an evaluation was run. Next, both experts
were trained using the entire training dataset until conver-
gence. We also used an initial parameter copied from the
two streams trained using the good practice proposed by
[23] (called VGG-16 good practice) and the temporal seg-
ment network of [12] for gating with previously trained
gating.

5.2 Results
Our gating experiment clearly outperforms the fixed
weight scheme. Table 1 shows test accuracy after 40-epoch
training. The gating VGG-16 and gating classifier give the
best accuracy along with gating classifier in this state at
71.8%. Gating ResNet-50 does not result in the best solu-
tion even when the loss starts to converge. The gating
network is only trained on this epoch when expert net-
works training is resumed. Table 2 shows that the gating
classifier still outperforms the fixed weights method even
after training for 80 epochs. However, in Table 3, after

Table 1 VGG-16, 40 epochs, on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 46.34%

0.0 1.0 66.80%

0.9 0.1 53.27%

0.8 0.2 58.72%

0.7 0.3 63.60%

0.6 0.4 67.54%

0.5 0.5 70.05%

0.4 0.6 71.48%

0.3 0.7 70.69%

0.2 0.8 69.18%

0.1 0.9 69.18%

Gating VGG-16 71.82%

Gating ResNet-50 67.54%

Gating classifier 71.82%

Table 2 VGG-16, 80 epochs, on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 65.47%

0.0 1.0 69.66%

0.9 0.1 71.21%

0.8 0.2 72.04%

0.7 0.3 73.55%

0.6 0.4 74.23%

0.5 0.5 76.34%

0.4 0.6 77.01%

0.3 0.7 76.22%

0.2 0.8 73.45%

0.1 0.9 72.32%

Gating VGG-16 75.5%

Gating ResNet-50 74%

Gating classifier 76%

the expert networks converge, only the gating VGG-16
performs better than the fixed weights, while the sim-
ple classifier overfits. Meanwhile, ResNet-50 has a high
number of degrees of freedom, which stops the gating net-
work from approaching the optimum solution. After the
expert networks converge, training achieves an accuracy
of nearly 90% for both the spatial and temporal networks
while testing yields 72 and 76%, which indicates over-
fitting. In this situation, the gating network cannot be
trained because the training dataset has already become
nearly saturated, yielding a large margin between the
training and testing accuracy.

Table 3 VGG-16, 300 epochs, (already overfit) on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 72.45%

0.0 1.0 76.33%

0.9 0.1 79.21%

0.8 0.2 80.23%

0.7 0.3 81.54%

0.6 0.4 82.77%

0.5 0.5 82.81%

0.4 0.6 83.5%

0.3 0.7 82.74%

0.2 0.8 81.22%

0.1 0.9 79.61%

Gating VGG-16 83.5%

Gating ResNet-50 81.24%

Gating classifier 82.10%
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Table 4 shows the result obtained by ResNet-50 expert
networks with a VGG-16 gating network. The gating clas-
sifier also outperforms the fixed weights at 40 epochs.
With 80-epoch training, as shown in Table 5, gating the
VGG-16 also gives best results for weighting. The gat-
ing classifier obtains 77.80% which also exceeds the fixed
weights performance. However, after the training is fin-
ished and the difference between training and testing
accuracy margin becomes greater than 99 to 78.08% for
the spatial stream and 90 to 74.89% for the motion stream,
a shallower network (the classifier network) overfits the
testing data, as shown in Table 6.
We also evaluated gating using a two-stream CNN with

its weight transferred from the good practice of [23].
Our gating VGG-16 shows the best accuracy while also
approaching the optimum solution if compared with all
defined fixed weights on UCF-101 (split 1), as shown in
Table 7. For the fixed-weight case, combined weights of
0.4 and 0.6 for the spatial and temporal streams respec-
tively gives the best accuracy. However, the gating CNN
still performs better than those with the pre-defined fixed
weights.
When weighting the temporal segment network using

our trained gating CNN, it obtains the best results and
approaches the optimum result when compared with the
results of fixed weights, as shown in Table 8 for UCF-101
split 1. The fixed weight of the temporal segment network
tends to choose the weight combination of 0.5 and 0.5 for
the spatial and temporal streams (average) because it gives
the most accurate result. However, our gating network
still outperforms the fixed weight method by a margin
of 0.24%, confirming the validity of our approach, which
weights each sample rather than using fixed weights for

Table 4 ResNet-50, 40 epochs, on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 69.83%

0.0 1.0 63.84%

0.9 0.1 71.60%

0.8 0.2 72.98%

0.7 0.3 74.36%

0.6 0.4 75.76%

0.5 0.5 76.39%

0.4 0.6 76.39%

0.3 0.7 74.94%

0.2 0.8 72.24%

0.1 0.9 69.49%

Gating VGG-16 77.21%

Gating ResNet-50 74.36%

Gating classifier 77.21%

Table 5 ResNet-50, 80 epochs, on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 70.47%

0.0 1.0 64.82%

0.9 0.1 72.21%

0.8 0.2 74.06%

0.7 0.3 75.49%

0.6 0.4 76.78%

0.5 0.5 77.50%

0.4 0.6 77.11%

0.3 0.7 76.15%

0.2 0.8 73.40%

0.1 0.9 70.55%

Gating VGG-16 78.11%

Gating ResNet-50 75.50%

Gating classifier 77.80%

all samples. We believe that this margin can be better
improved with a better gating CNN training protocol in
future work. Table 9 shows the result for HMDB-51 on
split 1, which shows an improvement compared with the
best results of the fixed weight method (0.5 and 0.5 for the
spatial and temporal streams, respectively) with a margin
of 0.07%. HMDB-51 has fewer training data than those of
UCF-101, which is a challenge for training the gating net-
work. As a result, we observe minor improvements in the
HMDB-51 results. There is room for improvement using
multitask learning.
The results for the UCF-101 and HMDB-51 datasets

are given in Tables 10 and 11, respectively. For the expert

Table 6 ResNet-50, 300 epochs, on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 78.08%

0.0 1.0 74.89%

0.9 0.1 80.10%

0.8 0.2 82.08%

0.7 0.3 83.64%

0.6 0.4 84.72%

0.5 0.5 86.22%

0.4 0.6 86.25%

0.3 0.7 85.30%

0.2 0.8 82.97%

0.1 0.9 79.61%

Gating VGG-16 86.25%

Gating ResNet-50 83.64%

Gating classifier 85.30%
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Table 7 Gated good practice for two streams trained by [12] on
UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 79.34%

0.0 1.0 83.60%

0.9 0.1 82.10%

0.8 0.2 84.35%

0.7 0.3 86.47%

0.6 0.4 88.16%

0.5 0.5 89.32%

0.4 0.6 90.02%

0.3 0.7 89.67%

0.2 0.8 88.65%

0.1 0.9 86.73%

Gating 91%

networks that we trained using the Chainer framework
[13], the proposed baseline gating scheme outperforms
all other models. Note that in this test, we used center
cropping to augment the data for both the spatial and
temporal streams in this experiment to save computation
time. Comparing our proposed models, which are shown
in Fig. 1 (model A, model B, and model C), we find that
the gated CNN obtains an improvement of 0.3% over aver-
aging fusion (model B) and 1.5% compared with SVM
fusion (model C). It also improves both the results for
RGB and optical flow alone by 10.2 and 6.5%, respectively.
The ResNet-50 expert network (ResNet-50 for the expert
network and VGG-16 for the gating network) gives bet-
ter results in our experiment compared with the VGG-16
expert network with a large margin of 6.1%. These results
confirm the value of the mutual information provided by
the spatial andmotionmodalities. It also demonstrates the

Table 8 Gated temporal segment network on UCF-101 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 85.87%

0.0 1.0 87.89%

0.9 0.1 89.63%

0.8 0.2 91.63%

0.7 0.3 92.98%

0.6 0.4 93.62%

0.5 0.5 93.86%

0.4 0.6 93.66%

0.3 0.7 93.14%

0.2 0.8 91.8%

0.1 0.9 89.98%

Gating 94.10%

Table 9 Gated temporal segment network on HMDB-51 (split 1)

RGB weight Flow weight Test accuracy

1.0 0.0 54.31%

0.0 1.0 62.35%

0.9 0.1 59.15%

0.8 0.2 63.46%

0.7 0.3 66.73%

0.6 0.4 68.95%

0.5 0.5 69.93%

0.4 0.6 69.93%

0.3 0.7 68.63%

0.2 0.8 67.45%

0.1 0.9 65.36%

Gating 70%

integration capability of the gating CNN. For HMDB-51, it
is found that that the gated CNN is 0.5% better than aver-
aging fusion. It also improves RGB or optical flow results
alone by 5 and 12%, respectively. Note that for the tempo-
ral stream, we used three consecutive stacked flow fields
with two displacements from one flow field to the next.
Table 12 compares our results with those of other fusion

methods. Feichtenhofer’s fusion method uses late fusion
with VGGM2048 and VGG-16 with one loss function.
With the same VGG-16, RGB itself achieves 82.61% and
flow achieves 86.25%, while their fusion achieves 90.62%.
Our experiment on the same two streams achieves 91%
with RGB results of 79.34% and flow results of 83.60%,
which means that, while the two expert networks are
actually weaker, our gating network achieves comparable
performance. Another fusion method is feature amplifi-
cation with multiplication. Even without any information
about the RGB and flow alone, it achieves 89.1%; our result
is slightly better, with a margin of 1.9%.
A comparison with state-of-the-art methods show that

gating CNN improves all the expert types, either two-
stream VGG-16 or temporal segment networks, as shown
in Table 13 for UCF-101 and HMDB-51. We use the
weight of trained networks for two-stream networks [23],

Table 10 UCF-101 (split 1)

Methods Accuracy

Spatial streams (three-channel RGB) 72.7%

Motion streams (three flow fields) 76.5%

SVM Fusion (model B) 81.5%

Averaging (model A) 82.7%

Gating network (model C) VGG-16 83%

Gating network (model C) ResNet-50 88.5%
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Table 11 HMDB-51 (split 1)

Methods Accuracy

Spatial streams (three-channel RGB) 36%

Motion streams (three flow fields) 43%

Averaging (model A) 47.5%

Gating network (model C) 48%

Temporal segment network (averaging) [23] 69.93%

Our gating network (model C) + expert
network of temporal segment network [23]

70%

which gives the highest accuracy according to their exper-
iments. The main concern is the comparison with aver-
aging fusion alone and SVM fusion, where the gated two
streams achieved better accuracy with a difference of 4.8
and 0.54% for the averaging and SVM fusion, respec-
tively, on UCF-101. When compared with two-stream
good practice, as shown in Table 7, the proposed method
has better accuracy with a margin of 0.8%.

5.3 Discussion
We have evaluated several gating schemes that basically
use deep CNN for weighting. These experiments show
that VGG-16 gives the closest-to-optimum solution com-
pared with the deeper network of ResNet-50 and shal-
lower networks. In the middle of training, the simple
classifier (two layers with 4096 inputs and 1000 outputs)
is robust for approaching the optimum solution; how-
ever, as the training converges, there is a shift of variance
between the training and testing that the simple classifier
does not handle. A deeper network tends to have a high
number of degrees of freedom because the number of lay-
ers is high. As in ResNet-50, even though the number of
parameters is less than those of VGG-16, with deeper lay-
ers (50), it fails to approach the optimum solution. Even
though residual learning using ResNet-50 tends to bene-
fit from lower number of parameters, they are found to
be benefiial for classification instead of for gating. Further
work is needed to investigate the ideal model for optimally
weighting expert networks.

Table 12 Comparison with another fusion method

Methods RGB Flow Fusion

Feichtenhofer of late fusion -
VGG-M-2048 [22]

74.22% 82.34% 85.94

Feichtenhofer of late fusion -
VGG-16 [22]

82.61% 86.25% 90.62

Feature amplification +
multiplicative [18]

– % – % 89.1%

Our gating VGG-16 +
expert streams of [12]

79.34% 83.60% 91%

Table 13 Comparison with state-of-the-art methods (split 1)

Methods UCF-101 HMDB-51

Slow fusion spatiotemporal [8] 36% 36%

Improved dense trajectories (IDT) [20] 85.9% 57.2%

Two stream (averaging fusion) [10] 86.2% –

Two stream (SVM fusion) [10] 87.0% –

Two stream of good practice [12] 90.2% –

Our gating stream + good practice of [12]
(VGG-16 gating)

91% –

Temporal segment network [23] 93.86% 69.93%

Our gating stream + temporal segment
network of [23] (VGG-16 gating)

94.1% 70%

6 Conclusions
We proposed a baseline gating scheme that is able to
weight expert streams for video activity recognition. In
this research, a gating CNN was trained to adaptively
determine which network stream is more salient com-
pared with the other. To this end, an independent loss
function and backpropagation were applied for each
expert and gating stream, The outputs from the expert
streams are then weighted adaptively by the gating CNN
for each sample.
We conducted experiments on the UCF-101 and

HMDB-51 datasets using VGG-16 and ResNet-50 to eval-
uate the ability of deep networks to select the expert for
each sample rather than using fixed weights. The results
show that state-of-the-art performance is achieved when
compared with other fusion methods. However, the gat-
ing CNN is burdened by its high number of parameters
and degrees of freedom while a simple classifier tends to
overfit using the training data. Therefore, further investi-
gation is required to find the ideal structure for the gating
CNN and a possible regularization method for overcom-
ing these problems. The gating CNN is potentially use-
ful for the integration of various expert networks such
as multimodal, multiresolution, source, or multisegment
networks along spatiotemporal space. Thus, rather than
dealing with two modalities, an even greater challenge
is to determine whether the gating CNN can optimally
weight multiple modalities while considering the diversity
of the sources.
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