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Abstract

our proposed model has achieved promising results.

Feature fusion

Real-world image classification, which aims to determine the semantic class of un-labeled images, is a challenging
task. In this paper, we focus on two challenges of image classification and propose a method to address both of them
simultaneously. The first challenge is that representing images by heterogeneous features, such as color, shape and
texture, helps to provide better classification accuracy. The second challenge comes from dissimilarities in the visual
appearance of images from the same class (intra class variance) and similarities between images from different classes
(inter class relationship). In addition to these two challenges, we should note that the feature space of real-world
images is highly complex so they cannot be linearly classified. The kernel trick is efficacious to classify them. This
paper proposes a feature fusion based multiple kernel learning (MKL) model for image classification. By using multiple
kernels extracted from multiple features, we address the first challenge. To provide a solution for the second challenge, we
use the idea of a localized MKL by assigning separate local weights to each kernel. We employed spatial pyramid match
(SPM) representation of images and computed kernel weights based on X’kernel. Experimental results demonstrate that

Keywords: Image classification, Spatial pyramid matching, Localized multiple kernel learning, Kernel local weighting,

1 Introduction
The complex structure of human visual system and the
heavy processes performed in the brain when looking at
an image provide impressive ability to recognize real images
in a fraction of a second. Although real world image classi-
fication, which is the focus of this paper, seems to be trivial
for humans, it is a challenging task in computer vision.
In recent years, image classification has attracted a lot of
attention in computer vision due to the rapid improvement
of intelligent robots and the need for processing images.
There is a very rich literature on image classification
including methods based on bag of word [1, 2], Sparse
representation [3-7], and Deep learning [8—10]. We should
point out that nonlinear classifiers, including kernel based
ones, have gained more attention due to their high
performance compared to linear classifiers [5, 7, 9].
Classifying real world images is a challenging task. Fol-
lowing are the two challenges which this paper concentrates
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on. First, images cannot be described precisely by one single
feature; therefore, they should be represented by multiple
features such as color, shape and texture. Second, the intra
class variance (dissimilates between images in the same
class) and inter class relationship (similarities between
images from different classes) are large. The mentioned
challenges are discussed in the following sub-sections.

1.1 The effectiveness of using multiple features

Images are informative in different aspects like color, shape
and texture. Describing images with multiple features rather
than a single feature, results in a more accurate classifier. For
example, an approach is proposed in [11] which describes an
image by means of multiple bag of word features and designs
a classifier based on them. Also, some kernel based classifiers
are proposed based on multiple features [12—16].

1.2 Large intra class variance and inter class relationship
The second principal challenge in real world image
classification is the existence of large intra class variance
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and large interclass relationship between images. Even if
we use multiple features, there are images in a class
which could be considered dissimilar (large intra class
variance). Moreover, there are images from different
classes that may be classified to one class (large inter
class relationship). Fig. 1 is an illustration of the second
challenge.

In addition to the two described challenges, we should
note that feature spaces of real world images are complex,
so they cannot be linearly classified. Kernel based methods
have achieved major success in building nonlinear classi-
fiers [17]. A multiple kernel learning (MKL) framework
proposed by Lanckriet et al. is considered as one of the
most powerful classifiers [18]. To classify data, MKL
considers a linearly weighted sum of kernels instead of a
single kernel. By using MKL we can combine different
kernels. Each kernel is computed based on an individual
feature (for example, a color based kernel describes the
color information of an image). In this way, the first
challenge is addressed.

In the standard framework of MKL, as stated above,
the computed weights of kernels are the same for all
samples. This means that each kernel has a fixed share
in deciding the class of each test image. With respect to
the second challenge, a more accurate classifier will be
achieved if the share of each kernel is not similar; and
its weight is computed based on its efficiency in classifi-
cation of samples. For example, in the first row of Fig. 1,
to prevent misclassification the weight of the color based
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Fig. 1 This figure illustrates that intra class variance and inter class
relationship are large in real world image datasets. Images in each box
belong to the same class. The images on both sides of the vertical
dash line are examples of dissimilarity in images in the same class. The
horizontal red arrows connect two images which are similar but
belong to different classes. Images are taken from Caltech 101
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kernel should be reduced while the weights of other
kernels should be increased.

Gonen et al. proposed a localized multiple kernel learning
(LMKL) framework which computes non-uniform weights
for kernels based on their location in the feature space [19].
LMKL is briefly reviewed in section 2. To address both chal-
lenges mentioned in subsections 1.1 and 1.2, we propose a
feature fusion version of the original LMKL. A comparison
between a single kernel based on SVM, MKL, LMKL, and
the feature fusion based LMKL is illustrated in Fig. 2. The
block diagram of our proposed system is depicted in Fig. 3.
Our experiments on Caltech 101 and Caltech 256 achieved
promising results.

The rest of paper is organized as follows. A brief
review about LMKL is given in section 2. In section 3 the
proposed algorithm is discussed in detail. The experimental
results are given and analyzed in section 4. Finally, we
conclude the paper in section 5.

2 LMKL related work

In this section, we give a brief review about the related
work of localized multiple kernel learning (LMKL) which
is an extension of the MKL framework. The original MKL
computes fixed weight for each kernel by embedding
kernel weights in the SVM optimization problem and then
constructs a single kernel by summing up the weighted
kernels [18]. In [12], fixed weights for kernels are com-
puted by a slight modification of MKL framework. It
extracts heterogeneous features from data then a group
of kernels is assigned to each feature. By using a group
lasso regularization method, only a few kernels are selected
for each feature.

Some other works dedicate fixed weights to kernels
without using the standard MKL framework. Gu et al.
computed fixed weights for kernels by projecting them
in the maximum variance direction [20]. Wang et el.
computed optimal fixed kernel weights by finding the
best projective direction which results in maximum
separation between kernels in RKHS (Reproducing Kernel
Hilbert Space) [21].

There are some approaches which combine kernels in
a nonlinear manner while the weight of each kernel is
fixed. For example, in [22], all weighted kernel matrices
are combined by Hadamard product while the kernel
matrix and its corresponding weight are powered by an
identical number. Algorithms which combine weighted
kernels are reviewed and discussed in [23].

As discussed in section 1.2, in problems like image
classification, it is more beneficial to use variable weights
for each kernel. Some algorithms which compute variable
weights for kernels are discussed below.

Lewis et al. combined kernels in a non-stationary manner
in a framework of maximum entropy discrimination [24].
Lee et al. proposed a method to combine kernels without
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Fig. 2 This figure illustrates different approaches of using the kernel in combination with SYM. a When data samples from different classes are
not linearly separable, they are mapped from input space to higher even infinite dimension Hilbert space. In the mapped space, data samples are
linearly classified by SVM. We should note that this mapping is done implicitly by introducing kernel function. b In MKL framework, multiple
kernels are used instead of a single one. Fixed weights for kernels are computed in the training phase and the weighted sum of kernels is
computed. ¢ Local weights are computed for kernels in the training phase in LMKL framework. Despite MKL, they are not fixed. d Data samples
are represented by heterogeneous features instead of a single one in the feature fusion based LMKL. As shown in d, data samples are
represented by two features. Three kernels are computed for the feature shown in the top rectangle, and two kernels are computed for the one

learning distinct weights for kernels [25]. In this method,
the local impact of each kernel is directly considered in the
process of margin maximization. Gonen et al. designed a
nonlinear framework which computes separate kernel
weights for each data point based on nonlinear gating
functions [19]. Yang et al. defined interclass clusters of
samples and found the optimal kernel combinations for
each cluster in an image classification task [26]. In [19, 26]
the authors suggested to partition the space linearly.

Kannao et al. allowed nonlinear boundary between
clusters of the space [27]. They computed a linear kernel
weight per cluster in a pre-process step without considering
the sample labels.

Despite the functionality of computing variable weights
for kernels, few works in image classification are based on
this approach. Lu et al. proposed a Localized Multiple
Kernel Metric Learning approach to classify images taken
from varying viewpoints or under varying illuminations
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Fig. 3 Block diagram of the proposed feature fusion-based LMKL

For each individual class, a LMKL based SVM model is constructed
which will be used to dermine if a test sample belongs to that class
or not. To this end, in addition to SVM parameters, the local weights
of kernels are computed for that class.

f Test image

[28]. Fan et al. considered the relationship between global
and local structures of features [29]. They proposed an
algorithm based on multiple empirical kernel which maps
data explicitly in multiple kernel spaces.

3 Methods
In this section, at first, we explain the SPM model which

is used to represent images. Then, we introduce the
designed feature fusion-based LMKL algorithm and its
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optimization problem in detail. Finally, the optimization
strategy to solve the problem is discussed.

3.1 Image representation by SPM model

Introducing the bag of word (BoW) model to compute
image feature significantly improves the performance of
image classification systems [30]. Pyramid matching is a
BoW based model to approximate the similarity between
two images [31]. In this model, a pyramid of grids is
placed on the feature space at different resolutions. At
each resolution level, the corresponding histogram of
the image is computed. The weighted sum of histograms
is computed such that finer resolutions get higher weights.
Finally, the intersection kernel is applied on the weighted
histograms of two images to approximate their corres-
pondence. The main shortcoming of the pyramid matching
method is that it discards the spatial information of images
which plays an important role in the performance of image
classification systems. Lazebnik et al. proposed the spatial
pyramid match (SPM) approach to address the mentioned
problem [1]. By extending BoW, the SPM method divides
the original image into sub-regions in a pyramid manner
and computes histograms of features in each sub-region
separately. The final representation of the image is the
concatenation of extracted histograms.

3.2 Preliminaries and formulation of feature fusion
based LMKL

Consider the classification task as D = {(x;,7,)}~, where
N is the number of samples, x; denotes the i™ sample and
y;={£1} is the corresponding label for binary classification.
In the MKL framework, multiple kernels are combined as

follows:

K(xi, %)) = Z T Ky (%7, %7) (1)
k=1

where m is the number of kernels and 7 is the weight

of k™ kernel.
The discriminator function f(x;) for a test data x; in
the standard MKL framework is formulated as follows:

m

fl) = mwi, o))+ b (2)

k=1

where @(x;) represents the k™ mapping function, and
wrand b are SVM parameters.

The standard framework of MKL assigns fixed weights
to kernels in the entire space. As discussed in section
1.2, because of the large intraclass variance and inter
class relationship in complicated spaces, such as an image
feature space, similar weights for kernels are not suitable.
For example, in some cases the kernel based on color
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information is more informative than a texture based
kernel. Therefore, a more accurate classifier will be achieved
if variable weights are assigned to a kernel in different areas
of the space.

Gonen and Alpaydin proposed a localized MKL (LMKL)
framework in which the weights of kernels are calculated
distinctly for each training sample [19]. The localized
version of K(x;, x;) is as follows:

m

K(i,5) = > (o) e () K (i, %)) (3)
k=1

where m(x;) is the weight of k'™ kernel corresponding to x;.

In the original LMKL framework, Gonen et al. assumed
that kernels are computed based on a single feature. In
the proposed algorithm, multiple kernels are computed
based on multiple features. Using multiple features instead
of a single one results in a more accurate classifier in an
image classification task as discussed in section 1.1. The
kernel value between two images x; and «x; is computed
as follows:

m

K(xi,2) =Y (o) i () K (2 (4)
k=1

where x* is a representation of training sample x; corre-

sponding to the ™ feature.

The combined kernel of (4) changes the standard kernel
based margin maximization problem of SVM into a non-
convex optimization problem. Instead of solving this
difficult optimization problem, Gonen et al. estimated
kernel weights by using the gating function.

A gating function formulates the effectiveness of the
k™ kernel in classification of sample x;. There are several
ways to calculate the gating function. Sigmoid function
formulated in (5) is a good choice and was used by
Gonen et al. [19]:

mi(xF) = 1/(1 + exp(~(vk, %} )-vio)) (5)

where v; and vy are the parameters of the gating function.
As stated before, x* is a representation of training sample
x; corresponding to k™ feature which is in the form of a
SPM histogram. Comparing the SPM histograms by their
inner product is not accurate enough. X* kernel is a better
choice in histogram comparison. Therefore, we modified
the gating function of (5) by using the X> kernel instead of
the inner product. The X kernel based gating function is
as follows:

i (6F) = 1/ (1 + exp(-X> vk, x*) -vio)) (6)

where X? kernel is defined as:
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X2 (vk(i),x(i)) = 2w (i)x(i) /(Vk(i) + x(i)) i=1.DG
(7)

DG is the dimension of feature space.

Because of the efficiency of X* kernel in computing
the similarity of SPM histograms, we use the following
gating function as well:

TTk (xk)

:Xz(vk,xk) + Vio (8)

3.3 Optimization strategy
By plugging local kernel weights in standard MKL formu-
lation, the following optimization problem will result:

m N
LR AR AR 22 lwill +C> ¢ (9)

. = =1

subject to yi(z (xf)(wk, D (X)) + b) >1-¢;
k=1

i=1.N, &30

where C is the regularization parameter and &;s are the
slack variables.

Since standard MKL is a convex optimization problem
it can be solved by common optimization methods.
Combining nonlinear gating functions with standard
MKL problem changes the convex optimization problem
of MKL into a nonlinear and non-convex problem. This
problem can be solved using the alternate optimization
method, which is an iterative two step approach. In step
one, some parameters are assumed to be fixed and the
others are computed by solving the optimization prob-
lem. In step two, the non-fixed parameters in the first
step are considered to be fixed and the remaining pa-
rameters are calculated by solving the new optimization
problem. The optimization algorithm iterates until con-
vergence. We considered two termination criteria: the
maximum number of iterations and reaching the
changes of object function below a predefined threshold.

Step one: Learning SVM parameters.

In this step, the optimization problem should be mini-
mized with respect to wy, §; and b, while v; and vy are
fixed. In order to remove the constraints, the Lagrangian
of problem (9) is calculated and the following problem is
obtained:

L({wi}, b, {&} {Ai} {n}) = lz lwel* + Z(C—Ai-%)f

+ZA ZM(ZW ) (we, D ( )>+b>
(10)

where 1; and 7; are Lagrangian parameters.
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Calculating the derivatives of (10) with respect to {w},
b and ¢&; will result in:

§)Pi(x) =0

N
oL/owy = 0= Wk—z Ay (x

i=1

N
AL/Ob=0=)  ly,=0
i=1
0L/3;=0=>C-Ai-i7, =0
(11)

substituting (11) in (10), the dual problem of (10) is
obtained:

N
J = maxy, ZA ZZA A,y,y}an

=1 i=1 j=1

() s.4)

such that Z Aiy; =0, 0<);<C

i=1

(12)

where Ky (xf , xf ) = O (xF) Dx (x]k )

If we prove that the localized weighted sum of kernels
> Tk (xf ) ( )K k( . 1) is a positive semi definite
kernel matrix, then (12) can be solved as a standard
canonical SVM problem.

In order to prove that the localized weighted sum of
kernels is positive semi definite, we use the definition of a
quasi-conformal transformation. For a positive function
¢(x), a quasi-conformal transformation of K(x, y) is defined
as follows:

R (x.9) = c(x)c()K (x.5) (13)

The gating function in (6) and (8) used in our experi-

ments always provide positive values; therefore, 7y (xf)

Tk (xlk ) Ky (xf ,

ation of K(x,y). Positive semidefinite kernels are closed

xlk ) in (4) is a quasi-conformal transform-

under quasi-conformal transformation [32], so mx (xf)

( )Kk( x5, 1) is a positive semi-definite kernel. On
the other hand, summing up several kernels together
leads to a single kernel. Thus, kazlnk(xf)nk <x//.‘>1(k

I ]
is considered as a canonical SVM that can be solved by
common approaches.

(xk xk ) is a positive semidefinite kernel as well and (12)
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Step Two: Learning locality function parameters.

To determine the values of parameters in gating func-
tions, we use the gradient descent method such that the
derivatives of the dual problem of (12) are calculated
with respect to v, and v while {wy}, b and &; are fixed.
The step size of each iteration is determined by a line
search method. Taking derivatives of problem (12) with
respect to v, and v we obtain:

N

N m
;Z;Aﬂm}/}]{k (xf, xf) (T[kl (x{‘) Tk <ka)

=1

o /ovk = -

N =

+7Tk (xf )nk/ (xlk ))
N N m

o [ovko = - % ZZZAiA/y;y/”k (xf‘()”k (x1k>

=1 j=1 k=1

£ (ot ) (2o ()

(14)

where (%) is defined as (15) for the X> gating function
of (8),

DG

{2(x(0) (x(0) + vie(0)~x(D)vic(0))/ (x(0) + v (0)* .2, (15)
also Tri.(x) is defined as (16) for the X2 kernel based sigmoid
function of (6),

A(exp(—X2 (Vk,xk)—vko))/(l + exp((—X2(vk,xk)—vko)))2
(16)

where A is equal to (15).

The block diagram of the optimization strategy to find
the parameters of the training model is depicted in
Fig. 4.

4 Results and discussion

In this section, we conduct some experiments to study the
classification performance of the proposed method on two
widely used benchmark datasets: Caltech 101 [33] and
Caltech 256 [34]. The mentioned datasets are challenging
for image classification because of their large intra class
variance and inter class relationship. In particular, in
Caltech 256 the intra class variance is very large, making it
more challenging for image classification.

4.1 Experimental configurations

We explain the implementation details of our proposed
algorithm in this section. To describe images, at first,
the features are extracted, then the kernels are computed
based on them. We used the subset of features suggested
in [15]. The selected features for Caltech 101 include
dense SIFT (scale invariant feature transform) [30], dense
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The parameters of the gating function of m kernels
corresponding to m features are initialized to
random numbers.

. /

4 N
Feature fusion based Localized Multiple Kernel is

calculated based on the values of gating function

parameters according to 4.

G J

Gating function parameters are fixed

N
Kernel based SVM optimization problem is solved. The

gating function parameters are considered to be fixed.

SVM parameters are fixed

The parameters of gating function of m kernels
corresponding to m features are updated by solving
the optimization problem.

J

Fig. 4 Optimization strategy to find the parameters of training
model. The entire process shown in the loop is repeated until
convergence. The convergence criteria are based on the number of
iterations and changes in object function

color SIFT and SSIM (structural similarity) [35]. Dense
SIFT is calculated over regular grids of 16 x 16 image
patches with eight pixels spacing using VLFeat Lib [36].
Likewise, color-dense SIFT is calculated in three channels
of CIElab. SSIM is computed in 5 x 5 patches to obtain a
correlation map.

To represent images for classification, we considered
spatial pyramid match (SPM) histograms based on the
extracted features [1]. To this end, we trained three
separate dictionaries via k-means clustering for dense
SIFT, color dense SIFT and SSIM feature spaces. The
numbers of visual words for each individual dictionary
are 600, 600, and 300, respectively. Compared to similar
works, we used less visual words for each dictionary,

Table 1 Performance comparison of algorithms on Caltech 101
using 30 training images per class

Algorithms Accuracy in %
SVM-KNN [37] 66.20

SPM [1] 64.40

ScSPM [38] 73.20

NBNN [39] 7040

LLC [40] 7344

BT-Gist [42] 63.8
Structured LR [43] 736

Wang et al. [2] 728

Proposed method 81.92
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Fig. 5 Confusion matrix of Caltech 101 classification by the proposed algorithm

thereby avoiding large feature vectors. As a result, the
computation time is reduced. To generate the SPM rep-
resentation, each image was partitioned hierarchically
into 1x1, 2x2 and 4 x 4 blocks and the corresponding
feature vectors of each individual block was encoded
based on the learned dictionaries.

The abovementioned SPM based feature vectors were fed
to the proposed classifier. To compute the train-train and
train-test kernel matrices, we used the parameter free X>
kernel for all features. The proposed algorithm is written in
MATLAB and the source codes available in [15, 23] are
used as well.

We used two gating functions to compute the kernel
weights: X? based sigmoid and X? as formulated in (6)
and (8). We partitioned the training data to train set and
validation set by cross validation. Then, we grid searched
the space to tune the SVM regularization parameter and
the gating function simultaneously. The SVM regularization

Table 2 Performance comparison of algorithms on Caltech 256
using 30 training images per class

Algorithms Accuracy in %
SPM [1] 34.1

ScSPM [38] 34.02

NBNN [39] 370

LLC [40] 41.19

Oliveira et al. [44] 37.08

Wang et al. [2] 452

Proposed method 42.12

parameter is set to 10 and X is selected as the gating func-
tion by cross validation.

The optimization problem discussed in section 2, was
solved in two phases in an iterative manner. In the first
phase, the parameters of gating function are fixed and
the problem is solved in the same method as a standard
kernel based SVM problem. In the second phase, the
problem is solved to find the parameters of the gating
function by a gradient descent approach.

In addition, we followed the One vs. All strategy in the
training phase where we trained one classifier for each
individual class. We should note that, generally compared
to the One vs. One method, the One vs. All method
suffers from high data imbalance between one class and
the remaining classes. However, because of the high
intraclass variance in real world image classification,
the One vs. One method suffers from the same high data
imbalance problem. The data imbalances both inside each
class and between classes are addressed by dedicating vari-
able weights to kernels as discussed in section 1.2.

4.2 Evaluations on Caltech 101

Caltech 101 contains a total of 9144 images in 101 object
classes and an extra BACKGROUND class [33]. Each class
has 31 to 800 images. The size of most images is medium,
about 300 x 300. Caltech 101 is a challenging dataset
because of the large number of classes, intra class vari-
ance, and interclass relationship. For fair comparison with
other works, we followed the experimental setup sug-
gested in [1] and randomly selected 30 images per class
for training, leaving the rest for testing.
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Fig. 6 Confusion matrix of Caltech 256 classification by the proposed algorithm
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Table 1 reports the mean classification accuracy over 102
classes in Caltech 101. It shows the reported performance
of the related algorithms and ours. According to this table,
our algorithm outperforms all of the baseline algorithms
including nearest neighbor-based SVM [37], SPM [1],
ScSPM [38], nearest neighbor [39], and LLC [40].

In addition, we note that as reported in [15], which
has the same experimental setup as ours, the classifica-
tion accuracy using single kernel based SVM is around

73, 62.5, and 62% for dense SIFT, color dense SIFT, and
SSIM features, respectively. The confusion matrix of the
classification is depicted in Fig. 5.

4.3 Evaluations on Caltech 256

Caltech 256 contains 30,607 images in 256 classes and a
BACKGROUND class [34]. Each class contains at least
80 images. Compared to Caltech 101, Caltech 256 is more

Butterfly

Cannon

Lamp

Fig. 7 A few instance images from some difficult classes from Caltech 101. This figure illustrates large intra class variance in each class
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challenging because the objects are not centered in the
images and the intra class variance is much higher.

As a common experimental setup for this dataset, we
chose 30 images per class for training and used the rest for
testing. We measured the performance of our proposed
algorithm by calculating the mean classification accuracy
over 257 classes. Table 2 shows the comparison results of
our algorithm with the related ones. Fig. 6 illustrates the
classification confusion matrix.

As seen in Table 2, the classification accuracy of [2] is
3.08% better than ours. The reason for this better perform-
ance is that, in comparison to SPM (the feature extraction
used in our algorithm), the method in [2] not only con-
siders the spatial information of images, but also the shape
information. To this end, they integrate the salient region
and the spatial geometry structure. This combination
makes the visual words more discriminative. In addition,
this integration makes the extracted feature vectors more
resistant to both the complexity of background and loca-
tion variations of images in each category. This approach
indirectly gives more weight to shape descriptor parameters
which could be the cause of better performance of this
method on large datasets.

5 Performance on difficult classes

There are some classes in Caltech 101 in which images
are very difficult to be classified because of the high
intra class variance. In [41] the average classification
accuracy for nine difficult classes including butterfly,
crab, cannon, crayfish, beaver, crocodile, cougar body,
chair and lamp, is reported as 24%, while our proposed
method has an average accuracy of 52.38% for the same
classes. Fig. 7, shows samples from four of these difficult
classes.

In addition, [1] has tested their method on four difficult
classes which are cougar body, beaver, crocodile and ant
from Caltech 101 and reported the classification accuracy
for each individual class. We compared the performance
of our method with [1] on the same classes. The results
are as shown in Table 3.

We should note that in our proposed method, the
improvement of classification accuracy on difficult classes
is the result of calculating the local weights for kernels
which could address the problem of high intra class
variance.

Table 3 Comparison of the proposed method with [1] on
individual difficult classes on Caltech 101

Classification accuracy in % for difficult classes

Cougar body Beaver Crocodile Ant
SPM [1] 276 27.5 250 250
Proposed method ~ 47.06 18.75 50.0 250
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6 Conclusions

Image classification, which is the task of determining the
semantic class of un-labeled test samples, is a challenging
task especially for real world images. Two issues challenge
the classification accuracy in image classification. First,
images are better described by several types of features;
thus, the designed system should be able to merge hetero-
gonous features. The second challenge comes from the
large intraclass variance and interclass relationship in real
world image databases.

In this study, we designed a feature fusion-based localized
multiple kernel learning algorithm using the SPM feature
to overcome the mentioned difficulties. Our results demon-
strate that the proposed approach performs well in image
classification problems. The higher performance of our
method partially depends on computing weights of kernels
locally. In the future, we will directly compute kernel
weights in the kernel space.

Acknowledgements
Not applicable.

Availability of data and materials
Not applicable.

Authors’ contributions
Both authors designed the proposed algorithm together. FZ implemented it
with MATLAB. Both authors read and approved the final manuscript.

Funding
We would like to thank Iran Telecommunication Research Centre for their
support of this research.

Authors’ information
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 19 March 2017 Accepted: 6 November 2017
Published online: 29 November 2017

References

1. S Lazebnik, C Schmid, J Ponce, Beyond BAGs of Features Spatial Pyramid
Matching for Recognizing Natural Scene Categories. Paper Presented at the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, New York, NY, USA, 17-22 June 2006

2. RWang, K Ding, J Yang, A novel method for image classification based on
bag of visual words. J. Vis. Commun. Image Represent. 40, 24-33 (2016)

3. P Zheng et al, Image set classification based on cooperative sparse
representation. Pattern Recogn. 63, 206-217 (2017)

4. MYang, H Chang, W Luo, Discriminative analysis-synthesis dictionary
learning for image classification. Neurocomputing 219, 404-411 (2017)

5.V Abrol, P Sharma, A Sao, Greedy dictionary learning for kernel sparse
representation based classifier. Pattern Recogn. Lett. 78, 64-69 (2016)

6. XYuan, X Liu, S Yan, Visual classification with multitask joint sparse
representation. IEEE Trans. Image Process. 21, 4349-4360 (2012)

7. AShrivastava, V Patel, R Chellappa, Multiple kemnel learning for sparse
representation-based classification. IEEE Trans. Image Process. 23, 3013-3024 (2014)

8. S Zhang et al, Constructing deep sparse coding network for image
classification. Pattern Recogn. 64, 130-140 (2017)



Zamani and Jamzad EURASIP Journal on Image and Video Processing (2017) 2017:78

20.

21.

22.

23.

24

25.

26.

27.

28.

29.
30.

31

32.

33.

S Ding, L Guo, Y Hou, Extreme learning machine with kernel model based
on deep learning. Neural Comput. & Applic. 28, 1975-1984 (2016).

M Uzair, F Shafait, B Ghanem, A Mian, Representation learning with deep
extreme learning machines for efficient image set classification. Neural
Comput. & Applic. 1-13 (2015).

L Xie et al, Incorporating visual adjectives for image classification.
Neurocomputing 182, 48-55 (2016)

Y Yeh et al, A novel multiple kernel learning framework for heterogeneous
feature fusion and variable selection. IEEE Trans Multimedia 14, 563-574 (2012)
H Wang, G Fu, Y Cai, S Wang, Multiple Feature Fusion Based Image
Classification Using a Non-biased Multi-Scale Kernel Machine. Paper
Presented at the 12th International Conference on Fuzzy Systems and
Knowledge Discovery, Zhangjiajie, China,15-17 August 2015

B Fernando, E Fromont, D Muselet, M Sebban, Discriminative Feature Fusion for
Image Classification. Paper Presented at the 12th IEEE Conference on Computer
Vision and Pattern Recognition, Providence, Rhode Island, 16-21 June 2012

A Vedaldi, M Varma, V Gulshan, A Zisserman, VGG - Multiple Kernels for
Image Classification. http://www.robots.ox.ac.uk/~vgg/software/MKL.
Accessed 21 Mar 2017.

S Shafiee, F Kamangar, V Athitsos, J Huang, L Ghandehari, Multimodal
Sparse Representation Classification with Fisher Discriminative Sample
Reduction. Paper Presented at IEEE International Conference on Image
Processing, Paris, France, 27-30 October 2014

J Shawe-Taylor, N Cristianini, Kernel Methods for Pattern Analysis.
(Cambridge, Cambridg University Press, 2004).

G Lanckriet, N Cristianini, P Bartlett, L El Ghaoui, Ml Jordan, Learning the kernel
matrix with semidefinite programming. J Mach Learn Res 5, 27-72 (2004)

M Gonen, E Alpaydin, Localized Multiple Kernel Learning. Paper Presented
in Proceedings of the 25th International ACM Conference on Machine
Learning, New York, NY, USA, 05- 09 July, 2008

Y Gu, Q Wang, X Jia, JA Benediktsson, A novel MKL model of integrating
LiDAR data and MSI for urban area classification. IEEE Trans. Geosci. Remote
Sens. 10, 5312-5326 (2015)

Q Wang, Y Gu, D Tuia, Discriminative multiple kernel learning for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 54,
3912-3927 (2016)

Y Member, T Liu, X Jia, JA Benediktsson, J Chanussot, Nonlinear multiple
kernel learning with multiple-structure-element extended morphological
profiles for hyperspectral image classification. IEEE Trans. Geosci. Remote
Sens. 54, 3235-3247 (2016)

M Gonen, E Alpaydn, Multiple kernel learning algorithms. The. J. Mach.
Learn. Res. 12, 2211-2268 (2011)

D Lewis, T Jebara, W Noble, Nonstationary Kernel Combination. Paper
presented at the 23rd international conference on Machine learning,
Pittsburgh, Pennsylvania, USA, 25-29 June 2006

W Lee, S Verzakov, R Duin, Kernel Combination Versus Classifier
Combination. Multiple Classifier Systems, Paper Presented at the 7th
International Workshop on Multi Classifier Systems, Prague, Czech Republic,
Springer, 23-25 May 2007

JYang, Y Li, Y Tian, L Duan, W Gao, Group-Sensitive Multiple Kernel
Learning for Object Categorization. Paper Presented at the IEEE
International Conference on Computer Vision, Kyoto, Japan, 29 September -
2 October 2009

R Kannao, P Guha, Success based locally weighted multiple kernel
combination. Pattern Recogn. 68, 38-51 (2017)

J Lu, G Wang, P Moulin, Image Set Classification Using Holistic Multiple
Order Statistics Features and Localized Multikernel Metric Learning. Paper
Presented at the IEEE International Conference on Computer Vision, Sydney,
NSW, Australia, 1-8 December 2013

Q Fan, D Gao, Z Wang, Multiple empirical kernel learning with locality
preserving constraint. Knowl.-Based Syst. 105, 107-118 (2016)

D Lowe, Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vis. 60, 91-110 (2004)

K Grauman, T Darrell, The Pyramid Match Kernel: Discriminative Classification
with Sets of Image Features. Paper presented at the IEEE International
Conference on Computer Vision, Beijing, China, 15-21 october 2005

S Amari, S Wu, Improving support vector machine classifiers by modifying
kernel functions. Neural Netw. 12, 783-789 (1999)

L Fei-Fei, R Fergus, P Perona, Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object
categories. Comput. Vis. Image Underst. 106, 59-70 (2007)

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 11 of 11

G Griffin, A Holub, P Perona, Caltech-256 Object Category Dataset. http://
resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001. Accessed 21 Mar 2017.
E Shechtman, M Irani, Matching Local Self-Similarities across Images and
Videos. Paper Presented at the IEEE International on Computer Vision and
Pattern Recognition, Minneapolis, MN, USA ,17-22 June 2007

A Vedaldi, B Fulkerson, VLFeat: An Open and Portable Library of Computer
Vision Algorithms. Paper Presented at the 18th ACM International
Conference on Multimedia, Firenze, Italy, 25-29 October 2010

H Zhang, SYM-KNN: Discriminative Nearest Neighbor Classification for Visual
Category Recognition. Paper Presented at the IEEE International Conference
on Computer Vision and Pattern Recognition, New York, NY, USA, 17-22
June 2006

JYang, K'Yu, Y Gong, T Huang, Linear Spatial Pyramid Matching Using
Sparse Coding for Image Classification. Paper Presented at the IEEE
Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20-25 June 2009

O Boiman, E Shechtman, M Irani. In Defense of Nearest-Neighbor Based
Image Classification. Paper Presented at the IEEE International Conference
on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 24-26
June 2008

JWang, J Yang, K Yu, F Lv, T Huang, Y Gong, Locality-Constrained Linear
Coding for Image Classification. Paper Presented at the IEEE Interbational
Conference on Computer Vision and Pattern Recognition, San Francisco,
USA,13-18 June 2010

K Hotta, Object Categorization Based on Kernel Principal Component
Analysis of Visual Words. Paper Presented at the IEEE Workshop on
Applications of Computer Vision, Copper Mountain, Colorado, 7-9 Jan 2008
Y Han, G Liu, Biologically inspired task oriented gist model for scene
classification. Comput. Vis. Image Underst. 117, 76-95 (2013)

Y Zhang, Z Jiang, L Davis, Learning Structured LowRank Representations for
Image Classification, Paper Presented at the IEEE Interbational Conference on
Computer Vision and Pattern Recognition, Portlan, Oregon, 25-27 June 2013
GL Oliveira, ER Nascimento, AW Vieira, Sparse spatial coding: A novel approach
for efficient and accurate object recognition. International Conference on
Robotics and Automation, St. Paul, MN, USA, 14-18 May 2012

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.robots.ox.ac.uk/~vgg/software/MKL
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001

	Abstract
	Introduction
	The effectiveness of using multiple features
	Large intra class variance and inter class relationship

	LMKL related work
	Methods
	Image representation by SPM model
	Preliminaries and formulation of feature fusion based LMKL
	Optimization strategy

	Results and discussion
	Experimental configurations
	Evaluations on Caltech 101
	Evaluations on Caltech 256

	Performance on difficult classes
	Conclusions
	Availability of data and materials
	Funding
	Authors’ information
	Competing interests
	Publisher’s Note
	References

