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Abstract

Human action recognition is an increasingly matured field of study in the recent years, owing to its widespread use in
various applications. A number of related research problems, such as feature representations, human pose and body
parts detection, and scene/object context, are being actively studied. However, the general problem of video
quality—a realistic issue in the face of low-cost surveillance infrastructure and mobile devices, has not been
systematically investigated from various aspects. In this paper, we address the problem of action recognition in
low-quality videos from a myriad of perspectives: spatial and temporal downsampling, video compression, and the
presence of motion blurring and compression artifacts. To increase the resilience of feature representation in these
type of videos, we propose to use textural features to complement classical shape and motion features. Extensive
results were carried out on low-quality versions of three publicly available datasets: KTH, UCF-YouTube, HMDB.
Experimental results and analysis suggest that leveraging textural features can significantly improve action
recognition performance under low video quality conditions.
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1 Introduction

Human action recognition is one of the most important
research areas in computer vision due to its useful-
ness in real-world applications such as video surveil-
lance, human computer interaction, and video archival
systems. However, action recognition still remains a dif-
ficult problem when dealing with unconstrained videos
such as web videos, movie and TV shows, and surveillance
videos. There are a wide range of issues, ranging from
object-based variations, such as appearance, view pose
and occlusions, to more complicated scene-related varia-
tions such as illumination changes, shadows, and camera
motions [1].

While there is significant amount of progress in solv-
ing these problems, the issue of video quality [1, 2] has
received much less research attention. The recognition
of human actions from low-quality video is highly chal-
lenging as valuable visual information is compromised by
various internal and external factors such as low reso-
lution, sampling rate, compression artifacts and motion
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blur, camera jitter, and shake. Figure 1 shows a few sam-
ple frames from videos that have been severely compro-
mised in the aspect of quality. Many surveillance systems
require further video analysis to be performed on com-
pactly stored video data [3] while mobile devices strive to
incorporate high-level semantics into real-time streaming
[4]. Therefore, for reasons such as these, action recogni-
tion in low-quality videos should be further investigated
as it offers new insights and challenges to the research
community.

Shape and motion features have recently become pop-
ular for their great success in action recognition [5-8].
Existing methods that utilize these features mainly con-
sists of two main steps: feature detection and feature
description. In feature detection, important salient points
are detected from a video and then a visual pattern sur-
rounding the detected point (often called a “patch”) is then
described in the feature description phase. The quality of
detected interest points is highly dependent on the qual-
ity of the video as important points may be missed in
cases where video quality is poor. Also, shape and motion
descriptors such as HOG [9], HOF [5, 6], and MBH (7, 8]
becomes less discriminative when the quality of video
deteriorates; noisy image pixels can cause gradient and
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videos would be much more challenging

Fig. 1 Sample videos from low-quality subsets of the KTH, UCF-YouTube, and HMDB datasets. The top row are samples from KTH, the middle row
are samples from UCF-YouTube, and the bottom row are samples from HMDB. We can observe that the videos are severely compromised by many
quality-related factors such as low resolution, lossy compression, and camera motion blurring. As such, the characterization of actions from these

orientation information to be less consistent across action
samples of the similar class. Spatio-temporal dynamic tex-
tures particularly local binary patterns extended to three
orthogonal planes (LBP-TOP) [10] have also been pro-
posed for action recognition [11-13] but they are not as
popular or as widely used as shape and motion features.
These methods find statistical regularities to describe
visual patterns that lie within video frames. Some eval-
uations [14] observed that textural features, on its own,
do not perform consistent enough in videos with complex
scenes. This is an expected outcome since the statisti-
cal aggregation of patterns is devoid of any spatial or
temporal localization. Very few works in literature have
particularly address the issue of recognizing actions in
low-quality videos; some in the form experimental exten-
sions [15], or to tackle a specific problem such as frame
rate reduction [16]. Nevertheless, this is a testament of a
potential interest in this issue, but there is presently no
systematic investigation into various video-quality-related
issues.

In this paper, we attempt to investigate the problem
of recognizing human actions from low-quality videos
and to uncover how textural features can be used along-
side classical shape and motion features to improve the
recognition performance under these circumstances. We

propose a joint feature utilization framework where local
shape-motion descriptors obtained from contemporary
feature detectors were supplemented by spatio-temporal
extensions of global texture descriptors. To facilitate the
nature of our work, we perform an extensive evalua-
tion on various low-quality versions or quality-oriented
subsets of benchmark action recognition datasets: KTH,
UCEF-YouTube, and HMDB.

The rest of the paper is organized as follows. In
Section 2, we delve into some related works in litera-
ture while Section 3 introduces our proposed framework
and provides a description of the methods employed in
our work. We then report and analyze the experimental
results in Section 4. Finally, Section 5 concludes the paper
and provides future directions.

2 Related works

Vision-based action recognition is a well-studied problem,
and many methods [1, 5-8, 17-19] have been proposed in
recent years. There are a number of recent survey papers
that offer a good overview of related works from the
broad, generic scope [20-22] and selected perspectives
[23, 24]. Here, we concisely describe related methods from
the aspect of their feature selection and representation
methods.
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2.1 Shape and motion features

Local shape and motion are the most popular features
[2, 5-8] for action recognition. A variety of methods that
extract shape and motion features have been proposed
in literature [5-8, 17, 18]. Inspired by the capability of
space-time interest points (STIPs) [25] at capturing local
variations, Schiildt et al. [26] use them to extract spatio-
temporal local features from action videos. They calculate
a multi-scale derivative at center of every local inter-
est point to encode motion information. Their method
demonstrated that local motion features are compara-
tively better than global features. Laptev et al. [27] further
improved it by introducing two essential types of local
features: shape, in the form of histogram of oriented gra-
dients (HOG), and motion, in the form of histogram of
optical flow (HOF). Klaser et al. [28] extended the HOG
shape descriptor to three dimensions, i.e., histogram of
3D gradient orientations (HOG3D) [28], which quantizes
3D gradient orientations on regular polyhedrons. How-
ever, detection of interest points in [25] solely depends
on the spatial quality and temporal fidelity of the video,
thus this may be affected if the video quality deterio-
rates. Also, these mere spatio-temporal extensions do not
consider temporal relationship between interest points
of subsequent frames. Dollar et al. [17] directly con-
sidered the temporal domain in the selection process
by proposing a Cuboid detector which selects features
surrounding spatio-temporal interest points detected by
temporal Gabor filters. The detected cuboids in the
video volume are then described by a Cuboid descrip-
tor. Willems et al. [18] use spatio-temporal Hessian
Matrix to detect interest points and the extended SURF
(ESURF) descriptor for describing features around the
detected points. Generally, these methods appear to
work well with videos captured in a relatively con-
trolled environment [6] such as KTH [26] action
videos.

For videos captured in a relatively complex environ-
ment such as the HMDB [29] dataset, interest point
based methods such as STIP [25] may sometimes fail to
detect important points due to motion clutter from back-
ground scenes. To overcome this problem, Wang et al.
[6] proposed dense sampling of spatio-temporal video
blocks at regular scales and positions and represent them
using popular features such as HOG, HOF, and HOG3D.
However, the dense sampling strategy is computationally
expensive and has a large memory footprint. The authors
later proposed Dense Trajectories [7] where densely sam-
pled points are tracked based on the optical flow field.
However, feature tracking from dense optical flow fields
inadvertently includes camera motion, which may yield
less discriminative feature sets. The authors improved
their trajectories by performing irrelevant background
motion removal using warped flow [8]. Features are
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then constructed from the trajectories using HOG, HOF,
and a robust descriptor called motion boundary histo-
gram (MBH).

2.2 Textural features

The use of textural features is less common in action
recognition; a number of notable works are worth men-
tioning [11-13, 19, 30] but their reported performances
were. Kellokumpu et al. [11] first proposed the use of local
spatio-temporal texture features for action recognition.
They use local binary pattern hon three orthogonal planes
(LBP-TOP) [10] to represent an action video in the form
of dynamic textures. Their proposed method is capable
of capturing the statistical distribution of local neighbor-
hood variations but the holistic nature of extracting these
features mean that they may easily be affected by unnec-
essary background variations and occlusions. Mattivi and
Shao [12] proposed to use part-based representations
such as interest points to overcome background- and
occlusion-related problems. They employed Dollar’s fea-
ture detector [17] to extract cuboids from video and sub-
sequently, each cuboid is described by extended LBP-TOP
(an extension of LBP-TOP to nine slices, three for each
plane) descriptor. They also demonstrated that using LBP
on gradient images can obtain better performance than
using LBP on raw image values, but at the expense of more
computations.

Besides directly applying LBP on image frames, there
were alternative strategies in literature that used it to
extract textures from other forms of images. Kellokumpu
et al. [19] used local binary patterns (LBP) to describe
motion history and motion energy images which encodes
shape and motion information respectively. Ahsan et al.
[13] use LBP features to describe mixed block-based direc-
tional MHI (DMHI) templates [31].

LBP-based methods are sensitive to noise and illu-
mination changes and they also lack explicit motion
encoding. Addressing these issues, Yeffet and Wolf pro-
posed local trinary patterns (LTP) [32] which combined
local binary patterns with appearance and adaptability
invariance of patch similarity matching approaches. Their
method encodes local motion information by taking into
account the self-similarity in three neighborhood cir-
cles at a particular spatial position. The LTP produces a
notably large feature vector, which depends on the num-
ber of grid blocks and time slices chosen for a video.
More recently, Kataoka et al. [14] investigated thoroughly
into the performance of various features of different types
(motion, texture, etc.) including texture-based features
such as LBP and LTP, on a dense trajectory framework. In
their evaluation, they observed that textural features alone
do not perform as well as shape or motion features. How-
ever, it remains inconclusive as to whether they are more
useful under low-quality conditions.
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In another new work, Baumann et al. [30] proposed
motion binary pattern (MBP) which encodes motion by
calculating pixel variations in three consecutive image
frames. In order to capture slow and fast motion, they use
different time step sizes. Inspired by volume local binary
pattern (VLBP) [10] and optical flow, their method pro-
duces a very lengthy feature vector and relies heavily on
several free parameters that are crucial to its success. So
far, they have tested only on the KTH, Weizmann, and
IXMAS datasets, which are all relatively smaller than the
contemporary datasets used today.

2.3 Action recognition in low-quality videos

There are only a few works in literature that specifi-
cally address the impact of low-video quality on action
recognition performance; all are limited to only certain
factors influencing video quality or done rather ad hocly
[15, 16, 33-35].

Chen and Aggarwal [33] proposed to use supervised
PCA projected time series of histogram of oriented gra-
dients (HOG) and histogram of oriented optical flow
(HOOF) descriptor, to encode pose and motion infor-
mation of action videos from a far distance. Their work
focused on recognizing human actions from a far field
of view where the size of humans is typically not more
than 40 pixels. A trained classifier is applied to localize
action in each image frame, and the features are then com-
puted from these localized coordinates. However, their
work only considers the problem of spatial resolution, but
did not address other related issues such as camera motion
and video compression. The authors also experimented
with downsampled frames (with persons as small as 15-
pixel tall) and found that the performance deteriorates
greatly.

In another work, Reddy et al. [15] conducted a few
sensitivity tests involving varying frame rate, resolution
(scale), and translation, to test their effect on action recog-
nition performance. Due to the tedious nature of such
experimentation, the authors only conducted these tests
on the small UT-Tower dataset [33] and not other larger
databases. Moreover, the test cases to study scale changes
were designed in a rather ad hoc manner. More recently,
Harjanto et al. [16] investigated the effects of different
frame rates with four popular action recognition methods.
A key frame selector was used to select important frames
in video. Their evaluation suggests that by selecting a sig-
nificant amount of important frames, it is still possible
to obtain a decent level of recognition accuracy. How-
ever, the proposed key-frame selection strategy is solely
based on interest points and may not work well if video
spatial resolution becomes poor. On the other hand, the
work by Ahad et al. [36] focuses solely on the problem
of low resolution in activity recognition, but not on low
frame rate.
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Aside from feature design, a few works [1, 2, 35] focus
primarily on the formation of feasible frameworks. They
leverage on existing features while crafting the recogni-
tion pipeline in an effective way that enhances its per-
formance under low-quality conditions. Our preliminary
efforts [1, 2] at exploring the problem of recognizing
actions in low-quality video resulted in the establish-
ment of a spatial and temporal downsampling proto-
col, which provides a systematic procedure for inves-
tigating the robustness of methods against decreasing
resolution and frame rate. Inspired by the recent
breakthrough in deep learning, a recent work [35] incor-
porated frame-level object features from an ImageNet-
trained deep convolutional neural network (CNN) as
part of the recognition pipeline, achieving promising
results.

Another work by Gao et al. [34] followed the low-
resolution downsampling protocol mooted in [2] but
using Dempster-Shafer’s theory (DS theory) to model
activities. Using the KTH and Weizmann datasets, they
showed that using DS theory to combine estimated basic
belief assignments at each frame can help achieve bet-
ter performance than popular encoding techniques such
as bag-of-visual-words (BoVW) and key-pose modeling.
However, they stop short at examining the impact of
decreasing video frame rate; their scheme may general-
ize poorly in such cases since it models the consecutive
changes in video.

3 Methods

In this section, at first, we introduce our proposed action
framework. Then, we discuss the different components
involved such as feature detectors and descriptors.

3.1 Proposed action recognition framework

We propose an action recognition framework based on
the shape, motion, and texture features, as illustrated
in Fig. 2. The main idea revolves around the utiliza-
tion of textural information with conventional shape
and motion features to improve the recognition of
human actions in low-quality videos. In this framework,
every input video goes through two distinct extraction
steps. In the first step, space-time shape/motion fea-
tures (derived from interest points or dense trajectories)
are extracted by their respective descriptors (i.e., HOG,
HOF, MBH). The shape and motion features are then
encoded by bag-of-visual-words (BOVW) method [37]
to obtain the local features. In the second extraction
step, spatio-temporal textural features (based on BSIF,
LBP, LPQ) are obtained by means of the three orthog-
onal planes (TOP) extension, forming the global fea-
tures. Finally, both feature vectors are concatenated and
a support vector machine (SVM) classifier is used for
classification.
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Fig. 2 Proposed joint feature utilization framework for human action recognition

3.2 Shape and motion features

Shape and motion are an expressive abstraction of visual
patterns, in space and time respectively. They are critical
cues for action recognition, as they are sufficiently invari-
ant to represent commonalities of different instances of a
particular action type, while preserving sufficient details
in order to differentiate them from different types. To
provide a comprehensive coverage of state-of-the-art fea-
ture detectors, we employ two different methods that
have been widely used in literature: space-time interest
point (STIP) [5] and space-time trajectories, in the form
of improved dense trajectories (iDT) [8]. For description,
we used the HOG and HOF descriptors in concert [6]
for the STIP, and the motion boundary histogram (MBH)
for the iDT. These are the most effective descriptors for
each detector, as reported in their original works. A brief
description of these detectors and descriptors is given as
follows:

Space-time interest point: Given an action video, local
space-time interest points (STIP) are detected around the
location of large variations of image values, which cor-
responds to motions. Interest points are detected using
the Harris3D detector proposed in [5], which is an exten-
sion of the popular Harris detector used in image domain
[38]. It can detect a decent amount of corner points in
space-time domain and is perhaps one of most widely
used feature detector for action recognition.

To characterize the shape and motion information accu-
mulated in space-time neighborhoods of the detected
STIPs, we applied Histogram of Gradient (HOG) and
Histogram of Optical Flow (HOF) feature descriptors as
proposed in [26]. The combination of HOG/HOF descrip-
tors produces descriptors of size Ay(0) = Ay(o0) =

180, A¢(r) = 8t (0 and t are the spatial and tempo-
ral scales). Each volume is subdivided into n, x n, x n;
grid of cells; for each cell, 4-bin histograms of gradient
orientations (HOG) and 5-bin histograms of optical flow
(HOF) are computed. We use the original implementa-
tion from [5] and standard parameter settings from [6],
ie, k = 0.0005, 02 = {4,8,16,32,64,128}, 72 = (2,4},
{nx, ny} = 3 and n; = 2.

Space-time trajectories: Motion information of a video
is captured in a dense manner by sampling interest
points at an uniform interval and tracking them over a
fixed number of frames. To detect space-time trajecto-
ries, we used improved dense trajectories (iDT) [8], an
extension of the original dense trajectories [7]. A set of
points are densely sampled on a grid on eight different
spatial scales with a step size of 5 pixels. Points from
homogeneous areas are removed by thresholding small
eigenvalues of their respective auto-correlation matrices.
Tracking of these sampled points are then performed by
applying median filtering to the dense optical flow field
computed from Firneback’s algorithm [39]. Also, static
trajectories with lack of motion and trajectories with large
displacements due to incorrect optical flow estimation are
removed.

In contrast to dense trajectories, iDT is capable of
boosting recognition performance by considering cam-
era motions in action videos. It characterizes background
motions between two consecutive frames by a homogra-
phy matrix, which can be calculated by finding similarities
between two consecutive frames using SURF [40] and
optical flow-based feature matching. After finding fea-
ture similarities, RANSAC [41] algorithm is applied to
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calculate the homography matrix. Based on that, cam-
era motion is removed from video frames before re-
computing optical flow. This method known as warped
flow, results in better descriptor formation with motion
estimation that is free from camera motions.

For computational tractability, we use iDT on a sin-
gle scale in our experiments. We observed that tracking
points on multiple spatial scales is computationally very
expensive. So, we only track points at the original spatial
scale and extract features around its trajectories. Despite
that, using a single scale still offers a decent recognition
rate (reportedly 2—-3% less than multi-scale in [42]). In
brief, given an action video V, we obtain N number of
trajectories:

TWV)={T1,T5,T3,..., Tn} (1)

and, Ty, is the n-th trajectory at original spatial scale,

Tu={(x1.01.81), (3,95, 85) (5,95, 85) ..., (e oL 2]}
(2)

where there are L number of points (x, y, £) on the trajec-
tory.

In our work, we only consider the motion boundary
histogram (MBH) to describe features from the detected
trajectories. Unlike the HOF descriptor, MBH uses opti-
cal flow information 1,, = (I, I) but computes the spatial
derivatives separately for its horizontal (MBHXx) and ver-
tical (MBHy) components. These are then used to obtain
8-bin histograms for each component. MBH is also robust
to camera and background motions and has reported
superior results compared to the HOG and HOF [8]. In
detail, the combination of MBHx/MBHy descriptors pro-
duces descriptors of size N x N x L (N is the size of
space-time volume in pixels and L is the length of of tra-
jectories). Each volume is subdivided into #, x #, x n; grid
of cells; for each cell, 8-bin motion boundary histograms
in each direction are then computed. We use the original
implementation from [8] and follow standard parameter
settings, i.e, L =15, W =5, N = 32, {ny, ny} = 2, ny = 3.

3.3 Textural features

We evaluate three types of textural features in our exper-
iments: local binary pattern (LBP), local phase quantiza-
tion (LPQ), and binarized statistical image features (BSIF).
We briefly describe these techniques, followed by how
they can be extended for the spatio-temporal case by three
orthogonal planes (TOP).

LBP features: Local binary pattern (LBP) [43] uses
binary patterns calculated over a region to describe tex-
tural properties of an image. The LBP operator describes
each image pixel based on the relative gray levels of its
neighborhood pixels. If the gray level of the neighboring
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pixel is higher or equal, the value is set to one, otherwise to
zero. The binary pattern is described by considering these
binary numbers over the neighborhood as:

N-1

LBPpR(%,9) = ) s(ni — n)2', sy = {
i=0

1x<0
0 otherwise

(3)

where n. corresponds to the gray level of the center
pixel of a local neighborhood, and #;, the gray levels
of N equally spaced pixels on a circle of radius R. The
LBPp  operator produces 2° possible output values, cor-
responding to the possible number of binary patterns that
can be formed by the P neighborhood pixels. The fea-
ture histogram is produced by considering the frequency
distribution of the LBP values.

LPQ features: Local phase quantization (LPQ) [44]
operator uses local phase information to produce blur-
invariant image features extracted by computing the
short-term Fourier transform (STFT) in rectangular
neighborhoods Nj:

Fux) =Y flx—ye 7 = wWlf, (4)
YEN,

where W, is the basis vector of the discrete Fourier trans-
form (DFT) at the frequency u and f; is a vector that
contains all image samples from N,. Four complex coef-
ficients corresponding to 2D frequencies are considered
for forming LPQ features: u; =[a,0]7, uy =[0,a]”, uz =
[a,a]T, and uy =[a, —a]T, where a is a scalar. To express
the phase information, a binary coefficient b is formed
from the sign of imaginary and real part of these Fourier
coefficients. An image is then produced by representing
eight binary values (obtained from binary coefficients) as
the integer value between 0 to 255. Finally, the LPQ feature
histogram is constructed from these output values.

BSIF features: Binarized statistical image features (BSIF)
[45] is a more contemporary rmethod that efficiently
encodes texture information, in a similar vein to the afore-
mentioned methods that produce binary codes. Given an
image X of size p x p, BSIF applies a linear filter F; that
is learnt from natural images by independent component
analysis (ICA) [46], on the pixel values of X, obtaining the
filter response,

ri= Y Fiw,v)X(uv) =f]x (5)

u,v
where f and x are the vectorized form of F; and X, respec-
tively. The binarized feature b; is then obtained by thresh-
olding r; at the level zero, i.e., b; = 1ifr; > 0and b; = 0
otherwise. The decomposition of the filter mask F; allows
the independent components or basis vectors to be learnt
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by ICA. Succinctly, we can learn n number of [ x [ linear
filters W;, stacked into a matrix W such that all responses
can be efficiently computed by s = Wx; where, s is a vec-
tor contains 7; responses. Thus, an #-bit binary code is
produced for each pixel; all of which builds the feature
histogram for the image.

Spatio-temporal extension of textural features: Moti-
vated by the success of recent works related to the recogni-
tion of dynamic sequences [10, 12], we consider the three
orthogonal planes (TOP) approach to extend the 2D tex-
tural operators to cater for videos. Given a video (XYT),
the TOP approach extracts the texture descriptors along
the XY, XT, and YT orthogonal planes where, the XY
plane encodes structural information while XT and YT
planes encode space-time transitional information. The
histograms of all three planes are concatenated to form
the final feature histogram. Generally speaking, the textu-
ral histogram given a volumetric space of X x Y x T can
be defined as:

H = 3" T{b(p) = j) (©6)

peP

where, j € {1,...,2"}, p is a pixel at location (x,y,t) at a
particular plane, b is the binarized code, and Z{.} a func-
tion indicating 1 if true and 0 otherwise. The histogram
bins of each plane are then normalized to get a coher-

L. ~plane ~ ~ .
ent description, W = hﬁalﬂne, e hgi“ne}. Finally, we

concatenate the histograms of all three planes,

(7)

In this work, we have set the neighborhood and
radius parameters for non-uniform pattern LBP-TOP as
{Pxy, Pxr,Pyr} = 8 and {Rx, Ry, R} = 2, respectively,
following the specifications in [12]. Meanwhile, neighbor-
hood parameters for LPQ-TOP are set to {W,, W), W;}
= 5, as specified in [47]. For BSIF-TOP, the filter size
I = 9 and representative bit size n = 12 were empirically
determined and applied to all three planes.

H= {ilXY, I;XT’ilYT}

4 Experimental setup

In this section, we discuss the datasets used and their
respective evaluation protocols, as well as details on the
implemented experimental pipeline.

4.1 Datasets and their evaluation protocols
In order to exhibit the potency of our proposed methods,
we conduct a series of extensive experiments on low qual-
ity versions or subsets of three popular benchmark action
recognition datasets: the KTH [26], the UCF Youtube [48],
and the HMDB [29].

The KTH action dataset [26] is one of the most widely
used datasets for action recognition. It consists of videos
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captured from a rather controlled environment, contain-
ing 6 action classes performed by 25 actors in 4 different
scenarios. There are 599 video samples in total (one sub-
ject has one less clip), and each clip is sampled at 25 fps
at a frame resolution of 160 x 120 pixels. We follow the
original experimental setup specified in [26], reporting the
average accuracy over all classes. Similar to the protocol
established in our previous work [1, 2], six downsampled
versions of the KTH were created—three for spatial down-
sampling (SDy), and three for temporal downsampling
(TDg). We limit our experiments to downsampling fac-
tors, o, 8 = {2,3,4}, which denotes spatial or temporal
downsampled versions of a half, a third, and a fourth of
the original resolution or frame rate.

These videos that undergo spatial downsampling lose
many important spatial details which may fail interest
point detectors. To cope with this issue, we increase the
sensitivity of the change of gradients to detect a decent
amount of interest points from each videos. Specifically,
we use various k parameters for different downsampled
modes, i.e., k = 0.0001,0.000075, and 0.00005 for SD,,
SDs, and SD, respectively. Since there is no change in
frame resolution for the case of temporal downsampling
so, we keep the value of k parameter unchanged. Also
for estimation of feature trajectories, we also use differ-
ent values for neighborhood size N and trajectory length
L, ie., weuse N = 11, 8, and 4 for SD,, SD3, and SD,
videos respectively and L = 15, 8, and 5 for TD,, TDs,
and TD, videos, respectively. We empirically determine
the suitability of these values by prior experiments.

The UCF-YouTube [48], also known ‘UCF-11’ is another
popular dataset for action recognition, consisting of
videos captured from uncontrolled and complex environ-
ments. It contains 11 action classes, and every class has
25 groups with more than 4 action clips in each group.
The video clips that belong to the same group share
some common features, such as the same actor, similar
background, and similar viewpoint. The videos are com-
promised with various problems such as camera motion,
background clutter, viewpoint, and scale variations. There
are 1600 video samples in total and each clip is sampled
at ~ 30 fps with a frame resolution of 320 x 240 pix-
els. We follow the leave-one-group-out-cross-validation
(LOGOCV) scheme specified in [48], reporting the aver-
age accuracy over all groups. Since we are interested in
evaluating low-quality videos, we apply lossy compression
on each video sample. Specifically, we re-encode all video
samples by using x264 video encoder [49] by randomly
assigning constant rate factors (crf) that are uniformly dis-
tributed across all samples. We used crf values between
23 to 50 where higher values indicate greater compres-
sion (and smaller file sizes) and vice versa. For clarity, we
call this newly version, YouTube-LQ, with videos now of
low quality due to the effects of lossy compression. Some
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sample videos created with different crf values are shown
in Fig. 3. As we can see from the figure, videos that has a
higher crf values have poor structural information.

The HMDB [29] is one of the largest human action
recognition dataset that is increasingly popular in recent
years. It has a total of 6766 videos of 51 action classes
collected from movies and YouTube videos. HMDB is
a considerably challenging dataset with videos acquired
from uncontrolled environments with large viewpoint,
scale, background, and illumination variations. Videos in
HMDB are annotated with a rich set of meta-labels includ-
ing quality information: three quality labels were used,
i.e,, “good,” “medium,” and “bad” Three training-testing
splits were defined for the purpose of evaluations, and
performance is to be reported by the average accuracy
over all three splits. In our experiments, we use the same
specified splits for training, while testing was done using
only videos with “bad” and “medium” labels; for clarity,
these two sets will hereafter be denoted as HMDB-BQ and
HMDB-MQ, respectively. In the medium quality videos,
only large body parts are identifiable, while they are totally
unidentifiable in the bad quality videos due to the pres-
ence of motion blur and compression artifacts. Bad and
medium videos comprise of 20.8 and 62.1% of the total
number of videos in the entire original database respec-
tively.

Figure 1 shows some sample frames of various
actions from the downsampled KTH dataset, compressed
YouTube dataset and “poor” quality subset of the HMDB
subset.

4.2 Evaluation framework setup
Our evaluation framework generally comprises of two
main steps: feature representation and classification.

For feature representation, spatio-temporal features are
first extracted from each action video before encoding
into a “histogram of visual words” using visual code-
words generated by classic bag-of-visual-words (BoVW)
method. In all our experiments, we perform histogram-
level concatenation of two types of features: encoded
HOG and HOF descriptors for interest point method
(denoted by “STIP”) and encoded MBHx and MBHy
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descriptors for the trajectory-based method (denoted by
iDT’). Histogram-level concatenation is known to be
more effective than descriptor-level concatenation [1, 2].
Feature histograms from various dynamic textural fea-
tures, such as LBP-TOP, LPQ-TOP, and BSIF-TOP, are also
extracted from the videos, and then concatenated with
their associated encoded features. In our experiments, we
set the codebook size to 4000 which has been empiri-
cally shown to be effective in obtaining good results across
numerous datasets [6]. To decrease the computational
overhead during codebook generation, we used a subset
of 100,000 features randomly selected from all training
samples.

To perform a classification, we use a multi-class non-
linear support vector machine (SVM) with x2-kernel
defined as:

K(H;, Hj) = exp(—yD(H;, H;)) 8)

where H; = {hj,...,hiy} and H; = {hj1, ..., h,} denote
histograms of visual words. D is the x? distance function
defined as:

\%4
D(H, H) =)

i=1

(hin - hjn)z

9
hin + h]’n ©)

where V is the size of codebook and y is the mean of
distances between all training samples. We use a compu-
tationally efficient approximation of the non-linear ker-
nel by Veldadi and Zisserman [50] which allows features
to undergo a non-linear kernel map expansion before
SVM classification. It provides us the flexibility of decid-
ing which features are to be “kernelized” We fixed the
value of regularization parameter ¢ to 10 and adopted
a ome-versus-rest strategy for multi-class classification,
where classes with the highest score are considered as the
predicted class.

For benchmarking, we regard “STIP” and “iDT” fea-
tures as our baseline methods and also made comparisons
against other competing methods from literature.

when video is compressed

Fig. 3 Sample video frame with different constant rate factors (crf). Left: crf 29, center: crf 38, right: crf 50. Note the adverse deterioration in quality
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5 Results and analysis

In this section, we present the results of a comprehensive
set of experiments conducted on the three datasets, fol-
lowed by an in-depth analysis into the results and various
influencing factors.

5.1 Experiments on downsampled KTH videos

In this section, we present our experimental results on six
downsampled versions of the KTH dataset. We choose the
KTH dataset to perform this extensive range of experi-
ments as it is lightweight and also a widely used bench-
mark in this domain area. From the results reported in
Table 1 (STIP-based methods) and Table 2 (iDT-based
methods), methods that exploit additional textural fea-
tures clearly demonstrate significant improvement, as
compared to their respective baseline methods. This is
notably consistent across all six downsampled videos of
KTH dataset. Also, methods that used iDT as the base
feature outperform their STIP-based counterparts across
all downsampled versions. Among the textural features
employed, BSIF-TOP appears to be the most promising
choice, clearly outperforming the other textural features.
More important, it must be pointed out that the contribu-
tion of textural features becomes more significant as video
quality deteriorates (particularly for cases SD4 and TDy).
This exemplifies the robustness of textural features against
video quality.

Analysis on experiments: From the results of both STIP
and iDT features, it is observed that the decrease in
performance is most obvious with respect to spatial reso-
lution. Feature detection in image frames is based on the
variation of intensities in local image structures. Hence,
the drop in spatial resolution may cause failure in detect-
ing essential image structures. Compared to STIP, the
performance of iDT features dropped tremendously, espe-
cially for SD3 and SDy videos. Figure 4 gives a closer look
on the detected features when videos are downsampled
spatially and temporally. While the number of detected
iDT features appear to be more than STIP features, they

Table 1 Recognition accuracy (%) of various STIP-based approaches
in comparison with other approaches on downsampled versions
of the KTH dataset

Method SD, SDs  SDs 1D, TDs TD4
STIP (baseline) 8685 8037 7556 8824 8231 7898
STIP+LBP-TOP 8519 8204 7759 8843 8241 81.20
STIP+LPQ-TOP 8741 8019 7630 8741 8185 7981
STIP+BSIF-TOP 8880 8528 8167 8870 8611 8454
STIP+Deep object [35] 8241 8241 8148 8241 8056 8009
LTTS+DS model [34] 8222 8378 8000 - - -

Page 9 of 18

Table 2 Recognition accuracy (%) of various iDT based approaches
in comparison with other approaches on downsampled versions
of the KTH dataset

Method SDy SDs SDg4 D, D3 TD4
iDT (Baseline) 9259 7880 6185 9519 9157 8954
iDT+LBP-TOP 9296 8194 7361 9509 9213 8954
iDT+LPQ-TOP 9296 7861 7991 9509 9167 88.89
iDT+BSIF-TOP 9389 8833 8241 9509 9222 90.00
iDT+Deep object [35] 8657 8426 8241 8704 8519 8426
LTTS+DS model [34] 8222 8378 8000 - - -

are obviously less salient (Fig. 4 shows a lot of trajectories
that were sampled from the background regions).

Spatio-temporal textures circumvent this feature detec-
tion step by relying on statistical regularities across the
spatio-temporal cube. Regions in an image such as back-
ground areas that have less textural information will offer
little count towards the overall statistics. However, previ-
ous findings [2, 14] have observed that textural features
alone do not offer good performance though it can serve
as a strong supplement to other attention-oriented fea-
tures such as shape and motion. For instance, in case of
STIP based methods, BSIF-TOP textures help improve the
accuracy for both SD4 and TD, videos by &~ 6%; for iDT
based methods, it improves by & 21% for SD4 and ~ 0.5%
for TD,4 videos.

Among various textural features used jointly with STIP
and iDT features, BSIF-TOP appears to be the most
promising choice, as it outperforms the rest. With the
degradation of spatial resolution and temporal sampling
rate, BSIF-TOP comparatively performs better than LBP-
TOP and LPQ-TOP features. Figures 5 and 6 analyzes the
the performance improvement of BSIF-TOP features rel-
ative to that of LBP-TOP and LPQ-TOP. For instance, on
STIP features, the improvement of BSIF-TOP over LPQ-
TOP is ~5% for SD4 and ~4.8% TD, videos. On iDT
features, the improvement of BSIF-TOP over LPQ-TOP
is ~10% for SD3 and ~0.5% for TD3 videos. Overall
observation points to the fact the BSIF-TOP performs rel-
atively well as the video quality drops, an indication of its
robustness in this aspect.

Our best approach, which combines the base features
with BSIF-TOP dynamic textures, also performed better
than the recent works by Gao et al. [34] and Rahman
and See [35]. Surprisingly, the results of [34] are reported
without the “s2” videos from KTH, which are videos that
contain larger motion and scale variations. This could sug-
gest that their method could fare worser still with the
consideration of the omitted “s2” videos.

We further furnish the confusion matrices for four
approaches: STIP, STIP+BSIF-TOP, iDT, and iDT+BSIF-
TOP on the SD3 videos in Fig. 7. Due to space limitations,
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Fig. 4 Response of detectors when videos are downsampled spatially and temporally. Videos on the first row are using Harris3D detector and videos
on second row are using warped flow estimation based feature tracking. The videos in columns 1, 2, and 3 represents the baseline, half resolution of
the baseline, and one-third resolution of the baseline, respectively, while columns 4 and 5 represents one-half and one-third frame rate of baseline,

respectively
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Fig. 7 Confusion matrices of the KTH-SD5 dataset. Confusion matrices on the right side show the effects of fusing BSIF-TOP textural features with

we only report these confusion matrices for the SD3
videos as example. For both STIP and iDT features, it
is clear to see that additional usage of textural features
helps to improve the accuracy of certain action classes
such as“walking” and “jogging” by more than ~20-40%.
However, this is also at the expense of a slight drop in
accuracy for other classes such as “handclapping” and
“handwaving” We make a special note for the recognition
of “boxing” videos using feature trajectories: Its some-
what poor performance on low resolution videos is greatly
improved through the introduction of textural features, an
increase of more than 50%.

5.2 Experiments on compressed videos of YouTube
dataset (YouTube-LQ)

In this section, we repeated our experiments on on

compressed videos of YouTube dataset (YouTube-LQ) to

demonstrate the effectiveness of using textural features

with both STIP and iDT features. We observe that after

applying compression, both the STIP and iDT baseline
features struggle to maintain their original performances
(i.e., 71.94% for STIP and 81.58% for iDT). From Table 3,
it is clear that methods that use additional textural fea-
tures demonstrate significant improvement as compared
to their baselines. Again, iDT-based methods outperform
their STIP counterparts while joint usage with BSIF-TOP
once again tops the other textural features by a good mea-
sure. However, our best textural feature still falls short
compared to the use of deep object features [35], which
is arguably very robust against effects stemming from
video compression. We endeavor to investigate in future
how textural and deep object features can be synergized
together.

Analysis on experiments: After applying compression,
the performance of baseline features become lower than
that on the original videos since it critically affects the
spatial quality. With the inclusion of textural features, the
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Table 3 Recognition accuracy (%) of various approaches on the Youtube-LQ dataset

Method YouTube-LQ Method YouTube-LQ
STIP (baseline) 67.57 iDT (Baseline) 74.04
STIP+LBP-TOP 70.69 iDT+LBP-TOP 75.59
STIP+LPQ-TOP 69.13 iDT+LPQ-TOP 76.02
STIP+BSIF-TOP 76.05 iDT+BSIF-TOP 80.45
STIP+deep object [35] 85.37 iDT+deep object [35] 85.36

performance of both STIP and iDT features increased sig-
nificantly. Once again, BSIF-TOP is the most promising
choice, offering the highest performance improvement in
comparison to LBP-TOP and LPQ-TOP. Figure 8 provides
a closer look into how BSIF-TOP improves the recognition
performance at a much larger extent over other textural
features.

The confusion matrices shown in Fig. 9 offers more
insightful analysis into class-wise performances. It is clear
that for both STIP- and iDT-based methods, the addition
of textural features play an important role. Many action
classes have improved, i.e., “golf swing,” “soccer juggling,’
“swing,” “tennis swing,’” “trampoline jumping” and “vol-
leyball spiking” It is interesting to mention that the iDT
features performed slightly better on actions with complex
scenes such as “volleyball spiking” than the STIP features,

when combined with BSIF-TOP features.

5.3 Experiments on medium and bad quality subsets
from HMDB dataset (HMDB-MQ and HMDB-LQ)

In order to demonstrate the effectiveness of adding tex-
ture information to STIP- and iDT-based features for a
larger number of action classes, we also run our exper-
iments on low-quality subsets of HMDB dataset. From
Table 4, we can see a significant leap in performance
when the textural features are aggregated, particularly
BSIF-TOP. The iDT+BSIF-TOP method achieved a very
commendable result with &~ 14% improvement on the
“Bad” subset (HMDB-LQ) and ~4.5% increase on the
“Medium” subset (HMDB-MQ). The method that incor-
porates deep object features [35] remains competitive
against our proposed methods. It appears to perform
better when STIP is the choice of base feature. Never-
theless, our proposed usage of textural features, particu-
larly the BSIF-TOP, still surpasses the performance of the
method with deep object features when iDT is the base
feature.

Analysis on experiments: On both STIP and iDT base
features, the “Bad” quality videos are the most challeng-
ing, with only a recognition accuracy of just above 20%.
The use of textural features are able to help increase
their performances by a very good margin of ~11 and

~14% for STIP and iDT features, respectively. Mean-
while, for “Medium” quality videos, the improvement in
performance after supplementing with textural features is
not as marked on the iDT base features as compared to
the STIP base features. The addition of BSIF-TOP fea-
tures offers the most significant jump in performance,
almost 9% more than the next best textural feature (LPQ-
TOP). Further analysis on the performance improvement
of the BSIF-TOP over its textural counterparts is shown
in Fig. 10. As expected, the BSIF-TOP is far more supe-
rior than the LBP-TOP particularly when STIP features
are considered as the base features. These differences are
much less pronounced when combined with iDT features
instead.

Figure 11 show the confusion matrices for the
STIP, STIP+BSIF-TOP, iDT, and iDT+BSIF-TOP features
respectively, based on the first split of the HMDB dataset
(both HMDB-LQ and HMDB-MQ included). Since there
are 51 classes in total, we can only compare them visu-
ally by observing the diagonal patterns in these confusion
matrices. The more coloured the diagonals are on a blue
background, the better the performance with lesser false
positives. In total, about 15-17 action classes improved
after BSIF-TOP is used together with the base features.
Some action classes that benefit from the use of textural
information are such as “Climb,” “Sword,” “Draw sword,’
“Fencing,” and “Golf”
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Fig. 8 Percentage improvement of BSIF-TOP over LBP-TOP and
LPQ-TOP, when combined with trajectory based features on
YouTube-LQ
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5.4 Discussion

In this section, we present additional analysis as a
result of our investigation into several influencing fac-
tors in our recognition pipeline such as the compar-
ison between the textural features considered in this
work, feature sampling for codebook generation and the
choice of feature encoding method. We also offer a bal-
anced commentary on the potential use of deeply learned
features.

Analysis on textural features: To investigate the effi-
cacy of textural features alone, we remove the base shape

and motion features (STIP and iDT) for the purpose of
this analysis. Figure 12 compares the performance of the
three dynamic textural features considered in this paper:
LBP-TOP, LPQ-TOP, and BSIF-TOP. This was done for
the original and six downsampled versions of the KTH
dataset (denoted as SD,, SD3, SDy, TD,, TD3, TD,), the
original and compressed UCF-YouTube datasets, and the
three subsets of the HMDB dataset (denoted as “Bad,
“Medium,” “Good”). In all cases, the BSIF-TOP emerged
as the most robust textural feature, capable of extracting
effective global information regardless of the adversity in
video quality.

Table 4 Recognition accuracy (%) of various feature combinations on HMDB-LQ and HMDB-MQ subsets

Method HMDB-LQ HMDB-MQ Method HMDB-LQ HMDB-MQ
STIP (baseline) 21.71 23.68 iDT (Baseline) 23.88 4143
STIP+LBP-TOP 20.80 24.28 iDT+LBP-TOP 30.34 4311
STIP+LPQ-TOP 23.89 2836 iDT+LPQ-TOP 30.96 42.97
STIP+BSIF-TOP 3246 37.14 iDT+BSIF-TOP 37.80 45.96
STIP+deep object [35] 3457 4248 iDT+deep object [35] 36.51 44.80
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Analysis on feature sampling for codebook generation:
Determining the appropriate codebook size is important
to ensure that the extracted local features are encoded into
a codebook of sufficient capacity. Many authors have ana-
lyzed this issue in detail [6, 37] and have also suggested
appropriate codebook sizes based on their empirical eval-
uations over many experimental datasets. Following their
suggestions, we choose to use a codebook size of 4000 for
all our tested datasets, after verification by experiments.
However, the number of features that are sampled ran-
domly to build the codebook could potentially be vital
to the recognition performance. For consistency in our
main experiments (in Sections 5.1, 5.2, and 5.3), we had
fix the number of sampled features to 100,000 to obtain
a reasonably good level of accuracy while maintaining a
manageable computational load for codebook learning.

Fig. 11 Confusion matrices of the first split of HMDB dataset. Confusion matrices on the right side show the effects of fusing BSIF-TOP textural
features with STIP and iDT features. a STIP. b STIP+BSIF-TOP. ¢ iDT. d iDT+BSIF-TOP
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Fig. 12 Performance of various textural features on the original and low quality datasets

To see the effect of using more features for codebook
generation, we tested two of our best performing meth-
ods on all three subsets of the HMDB dataset, with a
variety of feature set size: 100, 150, 200, and 250 k. In
Fig. 13, we observe that the recognition accuracy of var-
ious HMDB videos somewhat improves when we use
more features to construct the codebook (codebook size
remains the same at 4000). Interestingly, with the STIP
as base feature (see Fig. 13a), we can achieve better accu-
racy of up to ~5%) if we use a larger sampling size. But
the scenario is the opposite for the iDT case (see Fig. 13b)
where the recognition accuracy significantly drops across
all three subsets when larger sampling sizes are used.
The iDT features are constructed by MBHx and MBHy
descriptors, which describe the “gradient” on the tempo-
ral dimension of the trajectories, along both horizontal
and vertical spatial directions. Hence, if too many features

are sampled, the intra-class variations of these trajecto-
ries may likely result in a variety of perturbations to the
descriptors, which in turn increases the ambiguity dur-
ing clustering. A possible remedy to this is to increase the
codebook size to accommodate a larger variety of trajecto-
ries, particularly for more complex scenes such as those in
HMDB. Codebooks constructed from less ambiguous fea-
tures have higher discriminative capacities that may help
to gain better recognition performance.

Analysis on shape and motion features encoding
Many feature encoding methods have been proposed
in literature, such as histogram encoding, Fisher Vector
encoding and sparse coding [37]. We choose to use his-
togram encoding, better known as bag-of-visual-words
(BoVW) since it is widely used by many recent action
recognition works [2, 6, 7]. Though some authors [1, 8]
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Fig. 13 Recognition performance of STIP+BSIF-TOP and iDT+BSIF-TOP on various subsets of the HMDB dataset. Bars of different colors denote the
varying amount of feature descriptors (100, 150, 200, 250 k) that are sampled for codebook generation. a STIP+BSIF-TOP. b iDT+BSIF-TOP
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showed that Fisher Vector (FV) encoding is superior to
BoVW encoding, but we found that this is untrue most
of the time for the evaluated low-quality videos, with
the exception of videos from HMDB. Our best meth-
ods (STIP+BSIF-TOP and iDT+BSIF-TOP) achieve better
accuracy using BoVW encoding on most counts, as can
be seen in Table 5. From this observation, we suggest that
codebooks for videos with plenty of motion and complex
background scenes may be better constructed using FV
encoding which applies soft quantization to features.

Analysis on deeply learned features: Owing to the
recent breakthrough in deep learning techniques, particu-
larly deep convolutional neural networks (CNNs), we have
made comparisons against a recent work that used object
features extracted from a pre-trained CNN model [35]. In
this work, the authors used an popular off-the-shelf CNN
model, the VGG-16 architecture [51] that was pre-trained
on ImageNet for 1000 categories. Object features from the
last few layers of the network (concatenation of fc6 and
fc7 layers) were extracted from each frame and average
pooled.

Interestingly, the widely acclaimed deeply learned fea-
tures was not entirely superior in all cases. Experimen-
tal results on the downsampled KTH datasets (Tables 1
and 2) and the HMDB low-quality subsets (Table 4)
showed that the combination of the robust BSIF-TOP
dynamic textural feature with the base features (STIP or
iDT) can surpass the recognition capability of combining
with deeply learned object features. In fact, the baseline
performance for some of the downsampled versions (par-
ticularly SD2, TD2, TD3) is also better than that com-
bined with deep object features. This can be attributed
to the pre-trained CNN model’s inability to generalize for
videos with distorted spatial information. To obtain a sin-
gle dimension, the average-pooled deep features (across

Table 5 Recognition accuracy (%) of various datasets with
STIP+BSIF-TOP and iDT+BSIF-TOP methods using bag-of-visual-words
(BoVW) and fisher vector (FV) encoding

STIP+BSIF-TOP iDT+BSIF-TOP

Datasets BoVW Fv BoVW Fv

KTH-SD, 88.80 89.26 93.89 92.87
KTH-SD3 85.28 83.15 88.33 87.78
KTH-SD4 81.67 80.19 8241 81.02
KTH-TD, 88.70 89.91 95.09 94.44
KTH-TD3 86.11 87.78 92.22 92.59
KTH-TD4 84.54 82.96 90.00 90.28
Youtube-LQ 76.05 75.04 80.45 7813
HMDB-BQ 3246 33.06 37.80 40.69
HMDB-MQ 37.14 3851 45.96 51.62
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all frames) [35] also resulted in the removal of valuable
temporal cues.

However, for the compressed YouTube-LQ dataset, the
use of deep object features performed exceedingly better
than our best approach (see Table 3). The BSIF-TOP fea-
ture dimension is also larger than that of the fc6+fc7 deep
object features (12,288 to 8192); this will cause classifier
training to take a longer time.

5.5 Computational complexity

In this section, we compare the various feature descrip-
tors (including time consumed for their feature detection)
based on their total computation speed. This compari-
son is performed using a sample “Bike riding” video taken
from the HMDB dataset, with a 240x320 frame reso-
lution and a total of 246 image frames at 30 fps. This
estimation of run-time speed was performed on an Intel
i7 3.60 GHz machine with 24 GB RAM. Table 6 shows
the computational cost of various feature descriptors
in seconds, per image frame. Among the shape-motion
descriptors, the HOG+HOF feature takes 0.047 s faster
than the MBHx+MBHy feature, which relies on feature
tracking and warped flow estimation. Among the textural
features compared, the LPQ-TOP and BSIF-TOP are the
most efficient methods (both much faster than comput-
ing shape-motion features), and yet they are also the most
promising features for recognizing actions in low-quality
video. Between the two feature detectors, extracting the
iDT (the better performing method) takes around 0.2 s
per frame on a single scale and much longer on multi-
ple scales. In future, we intend to explore the possibility
of multi-scale trajectories with the help of parallelized
frameworks [52].

6 Conclusion

In this paper, we demonstrate that dynamic textural
features can help improve the performance of action
recognition in low-quality videos by a good margin.
In comparison with current methods that mainly rely
on shape and motion features, the use of textural
features is a novel proposition that is found to be
robust against undesirable, but often, realistic video
conditions: low resolution and frame rate, lossy com-
pression, and the presence of motion blurring and
artifacts. Our extensive set of experiments marked the
BSIF-TOP as a promising candidate for textural fea-
tures to complement conventional shape and motion
features.

Table 6 Computational cost (detection+description) of various
feature descriptors

STIP - iDT LBP-TOP  LPQ-TOP  BSIF-TOP

0.041 0.051

Time per frame (insec) 0.156 0203 1.230
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Even with the advent of deep learning techniques, we
see a great value in the use of features that directly exem-
plify a particular image structure such as textures. How-
ever, features learned from deep neural networks have
also showed great potential, even more so if the network
has been carefully tuned for the target domain. Likewise,
the filters used in the BSIF approach are fundamentally
learnt through ICA in an unsupervised manner. Hence,
future directions point towards further exploration on
how richer features can be learnt from videos sampled
from a wide quality range to enable better generalization.
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