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Abstract

To solve the problem of CT image degradation, a double regularization CT image blind restoration
reconstruction method was proposed. The objective function including both a clear image and point spread
function was established. To avoid the over-smoothing phenomenon and protect the detail, the objective
function includes two constraint regularization terms. They are total variation (TV) and wavelet sparsity
respectively. The objective function was solved by the alternating direction multiplier method (ADMM), and
the optimal solution was obtained. Firstly, the CT image blind restoration reconstruction was decomposed into
two sub-problems: reconstructed image estimation and point spread function estimation. Furthermore, each
sub-problem can be solved by the proximal alternating direction method of multipliers. Finally, the CT image
blind restoration reconstruction was realized. The experimental results show that the proposed algorithm takes
into account the degradation effect of projection data, and the proposed algorithm is superior to other existing
algorithms in the subjective visual effect. At the same time, in the aspect of objective evaluation, the proposed
algorithm improves the objective image quality metrics such as peak signal-to-noise ratio (PSNR), structural
similarity index metric (SSIM), and universal image quality index (UIQI).

Keywords: Blind restoration, Image reconstruction, CT image, Proximal alternating direction method
of multipliers

1 Introduction
Computer tomography (CT) is that X-ray beam is used to
scan some certain thickness parts of the body. X-ray
through the detection layer is received by the detector. CT
reflects the degree of organ and tissue absorption of X-ray.
It is conducive to find small lesions in any part of the body.
CT can greatly improve the early detection rate and patho-
logical diagnosis rate. CT detection has become one of the
most important diagnostic basis in the field of medical
image diagnosis. However, in the imaging and transmission
process, CT image will be affected by many factors, such
as electronic radiation detection effect of defocus blur,
detector number and spacing, frame geometry,

reconstruction algorithm and other factors. A point of hu-
man tissue can be mapped to many points on CT image.
In other words, each point on CT image is a mixture of
many points of human tissue. And its correspondence is
generally referred to as a point spread function, that is, the
transmission characteristics of the whole system. Image
restoration can be achieved by measuring the point spread
function of CT system to eliminate the effect of degrad-
ation [1, 2].
Medical CT image blind restoration algorithm use only

CT degradation image of the CT system to estimate the
point spread function. Then, the purpose of image restor-
ation is achieved and the measurement of the point spread
function is avoided. Jiang et al. [3] firstly proposed the con-
cept of medical CT blind restoration. They used the ex-
pectation maximization strategy to estimate point spread
function and image restoration. And, they gave the
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assumption that the degradation function of CT system
has Gaussian distribution. Multiple sets of bone interfaces
and the iterative strategy [4–6] were utilized to estimate
the point spread function. Blind equalization algorithm
was applied to the two-dimensional CT blind image restor-
ation [7–9]. Combining with the dimension reduction the-
ory and orthogonal transform, without any information of
degradation, only the features of degraded images were uti-
lized to estimate the clear image. In addition, there are spe-
cial uses of image restoration technology to eliminate
specific CT artifacts [10–13]. In general, in the process of
CT imaging, there is always the degradation. CT image
degradation or artifact was eliminated by the use of special-
ized techniques, but it is bound to increase the complexity
of the algorithm. If we can consider the influence of the
projection data degradation and overcome it, it will im-
prove the quality of the reconstructed image.
Total variational (TV) is a very important optimization

constraint in CT reconstruction and was widely studied
and applied. Candes et al. [14] proposed a compressive
sensing theory. This theory proved that sparse signals can
be accurately restored by data far less than the
sampling theorem, which greatly facilitates the research
and application of TV constraints in CT reconstruction,
especially sparse projection data CT reconstruction
[15–18]. Hu et al. [19] proposed a reconstruction
method that the pre-scan CT images or analytic recon-
struction images were used as the iterative initial condi-
tions to improve the speed of TV constraint
reconstruction. In the whole variation method, the as-
sumption that the image segmentation smoothing will
cause the small edge of the CT image and the texture
of the texture are blurred, resulting in the “smooth”
phenomenon, there is also the problem of slow recon-
struction. In order to solve the above problems, the re-
searchers also combine some sparse constraints with
the TV method, or directly use sparse constraints.
Wang et al. [20] studied a TV-based optimization
model for Micro-CT reconstruction based on an up-
sampling of the reconstruction grid with original
detector and X-ray dose. Using an extension of the gra-
dient projection method, an alternating minimization
algorithm is employed to solve the corresponding en-
ergy function. Lu-zhen et al. [21] proposed a hybrid
compression-aware reconstruction method based on the
total variation and non-aliasing contourlet transform. The
method uses non-aliasing sontourlet transform as a sparse
representation of CT image. The objection function is
solved by splitting the Bregman algorithm. In a word, it is
helpful to improve the effect of image reconstruction by
adding proper regularization term. Chen et al. [22] pro-
posed image domain artifacts used in low-dose CT image
suppression dictionary learning method. The establish-
ment of sparse representation of the discriminant

dictionary filters a part of the artifacts and noise. And
then, the general dictionary learning was used to further
reduce noise and residual artifacts.
Alternating direction multiplier method (ADMM) is a

simple and effective method for solving separable convex
programming problems, especially on solving large-scale
problems. In the ADMM algorithm, the objective function
of the original problem is divided into several sub-
problems which are easy to find local solutions, and the
global solution of the original problem is obtained. It is also
applied in the reconstruction of the compression percep-
tion. Ramani et al. [23] used the method of variable separ-
ation to separate the shift and shift invariant in the
statistical data model and established two equivalent con-
straint problems. Then, the objection function is solved by
the alternating direction multiplier methods. Sawatzky et
al. [24] established a multi-channel framework for the re-
construction of medical CT images and optimized the so-
lution by the alternating direction multiplier method.
At present, CT image reconstruction algorithm often

does not consider the influence of CT system point
spread function, but this assumption is unreasonable.
CT image is often affected by the system point spread
function in the imaging process. The point spread func-
tion results in image degradation [25]. In this paper, a
new blind reconstruction model of medical CT image is
established. Considering the influence of sampling data
by degradation factors in image reconstruction, the pro-
posed method avoids the elimination of point spread
function alone. So it is beneficial to improve the quality
of reconstructed image, reduce the complexity of the al-
gorithm, and improve the ability of real-time processing.

2 Method
2.1 Proximal alternating direction method of multipliers
for solving unconstrained optimization problems
Suppose an unconstrained optimization problem as
follows:

min
x∈ℜn

f xð Þ þ g Gxð Þ ð1Þ

where f :ℜn→ (−∞, +∞) and g :ℜm→ (−∞, +∞) are
closed convex function and G ∈ℜm × n is a transform-
ation matrix.
ADMM is an effective method to solve formula (1),

which combines the advantages of multiplier method
and alternating minimization method. This method in-
troduces dummy variables u and d. And then, an itera-
tive solution is obtained by the idea of alternating
minimization, that is,

xkþ1← arg min
x

f xð Þ þ μ

2
Gx−uk−dkk k22 ð2Þ

where μ is a constant.
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ukþ1← arg min
u

g uð Þ þ μ

2
Gxkþ1−u−dkk k22 ð3Þ

dkþ1←dk− Gxkþ1−ukþ1ð Þ ð4Þ

Formulas (2)–(4) are iterated to obtain the optimal so-
lution formula (1). The feasibility and convergence of
ADMM has been demonstrated.
To improve the application of ADMM in the image

processing problem, here considering a generic uncon-
strained optimization problem:

min
x∈ℜn

f xð Þ þ
X
i¼1

J
gi H ið Þx
� �

ð5Þ

where gi(⋅) is a closed convex function. H jð Þ∈ℜmj�n is a
random matrix, and m =m1 +m2 +⋯ +mJ. Definition G
= [H(1),H(2),⋯,H(J)]∗ ∈ℜm × n, ∗ represents a conjugate
transposition of matrix or a vector.
In image reconstruction, assume f(x) = 0, formula (2) be-

comes a quadratic optimization problem in this case. The
parameters μ in formula (2) affect the convergence speed.
In the sub-optimization problem, different weight

coefficients are used to improve the ability of the algo-
rithm, that is, the quadratic optimization problem becomes

xkþ1← arg min
x

Gx−u−dð Þ�Υ Gx−u−dð Þ ¼ arg min
x

Gx−ζð Þ�Υ Gx−ζð Þ

ð6Þ

Here, Υ ¼ diag μ1;⋯; μ1|fflfflfflfflffl{zfflfflfflfflffl}
m1 elements

;⋯; μj;⋯; μj|fflfflfflffl{zfflfflfflffl}
mj elements

;⋯; μJ ;⋯; μJ|fflfflfflfflffl{zfflfflfflfflffl}
mJ elements

0
BB@

1
CCA.

The quadratic problem can be done using the gradient
method (Gx − ζ)∗Υ(Gx − ζ) to solve, getting

xkþ1← G�ΥGð Þ−1G�Υζ ¼
X
j¼1

J
μj H jð Þ
� ��

H jð Þ
" #−1 X

j¼1

J
μj H jð Þ
� ��

ζ jð Þ

ð7Þ

where ζ jð Þ ¼ u jð Þ
k þ d jð Þ

k ; ζ jð Þ; u jð Þ
k with d jð Þ

k j ¼ 1;⋯; Jð Þ
are respectively sub-vectors of ζ, uk, and dk.
In formula (5), assume

g uð Þ ¼
X
j¼1

J
gj u jð Þ
� �

ð8Þ

where u jð Þ∈ℜmj is a sub-vector of u, u = [(u(1))∗,
⋯, (u(J))∗]∗.
Solving the iterative optimization, formula (8) is decom-

posed into J-independent sub-optimization problems.
Sub-optimization problem is solved by the proximity op-
erator. Different optimization problems require different
proximity operators. As can be seen, formula (8) is trans-
formed into J proximity operators to solve, which is

ukþ1←proxg=μ Gxkþ1−dkð Þ ð9Þ

where prox(⋅) is a proximity operator. The most fre-
quently used proximity operators include Moreau prox-
imity operator and vector soft approximation operator.
Formula (5) can be optimized by iterating formulas

(7), (9), and (4).

2.2 Double regularization CT image blind restoration
reconstruction
CT blind image restoration reconstruction model repre-
sents as follows:

Fig. 1 CT phantom image

Fig. 2 Image of projection data
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P ¼ AHpsf xþ n ð10Þ

where P represents the measured projection data of CT.
A represents the sampling matrix of the system. Hpsf

represents an unknown image degradation matrix. x
indicates that a clear image. n is the noise vector intro-
duced in the measurement.
CT image reconstruction is the process that a clear image

is reconstructed in the case of a given projection data P. In
order to ensure reconstruction quality, two or more
regularization terms were used to solve unconstrained
optimization problem. An iterative formula is utilized to
achieve the CT image reconstruction. Then, it is possible to
accurately reconstruct X from P=AHpsfx +n. In practical
applications, in order to improve the quality of reconstruc-
tion, some regularization terms are usually used in image re-
construction. In this way, an ill-posed problem is
transformed into a well-posed problem. This will guarantee
the existence, uniqueness, and stability of the solution. It is
helpful to obtain a relatively stable and meaningful solution
from the meaning of the solution. Total variation (TV)
transformation is a kind of commonly used regularization
prior model. For example, reference [15] used TV
minimization constraint for cone beam CT reconstruction.
However, for low-contrast images, the method sometimes
results in loss of information. In order to overcome this
shortcoming, a new image reconstruction method is pro-
posed in this paper. The method uses two kinds of

regularization terms: the total variation transformation and
the sparse transformation. Sparse transform has two advan-
tages. First, it is very good to maintain the edge structure.
Second, it has a protective effect on low-contrast informa-
tion. The total variation transform can effectively suppress
noise interference and strip artifacts. The model proposed in
this paper can achieve a good balance between artifact sup-
pression and detail protection. In CT image reconstruction,
the image does not necessarily satisfy the sparsity. Therefore,
the good sparse transform can ensure that the image sparse
representation has a good sparsity. In other words, when
α=Θx, the image representation α is more sparse than the
original image x. Θ represents the sparse wavelet transform.
The problem of blind restoration of double

regularization CT images under incomplete projection
data can be achieved by the following unconstrained
minimization objective function.

x̂ ¼ arg min
x

μ

2
P−AHpsf x

�� ��2
2 þ λ1 Θxk k1 þ λ2

X
i¼1

n
Dixk k2 ð11Þ

Among them, Di is used to calculate the difference be-
tween the horizontal and vertical directions of the ith pixel.
The first term in formula (11) represents the difference

between the projection of the reconstructed projection
and the measured projection, that is, the data fidelity item;
the second term is the wavelet sparse transformation con-
straint term; the third term is the total variation difference
constraint term.

Fig. 3 Comparison of reconstructed images with different reconstruction methods (SNR = 20 dB)

Fig. 4 Comparison of reconstructed images with different reconstruction methods (SNR = 40 dB)
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2.3 ADMM method for solving double regularized CT
image blind rebuild reconstruction
Reconstruction of CT image blind restoration can be di-
vided into image restoration reconstruction sub-problem
and degraded function estimation sub-problem. To solve
one of both variables, the other one can be regarded as a
constant amount.
The purpose of CT image blind reconstruction is to

solve formula (11). ADMM was used to solve the
optimization problem. Formula (11) is converted into
formula (5), as follows

g1 u 1ð Þ
� �

¼ P−u 1ð Þ�� ��2
2 ð12Þ

g2 u 2ð Þ
� �

¼ λ1 u 2ð Þ�� ��
1 ð13Þ

gj u jð Þ
� �

¼ λ2 u jð Þ�� ��
2
; Among them; j ¼ 3; 4 ð14Þ

H 1ð Þ∈ℜl�n; H 1ð Þ ¼ AHpsf ð15Þ

H 2ð Þ∈ℜd�n; H 2ð Þ ¼ Θ ð16Þ

H jð Þ∈ℜ2�n; H jð Þ ¼ Dj−2 Among them; j ¼ 3; 4 ð17Þ

Formulas (12)–(17) are taken into formula (7) and let
μ3 = μ4 = μ, then

X
j¼1

J
μj H jð Þ
� ��

H jð Þ ¼ μ1H
�
psfA

�AHpsf þ μ2Θ
�Θþ μ

X
j¼3

nþ2

D�
j−2Dj−2

¼ μ1H
�
psfA

�AHpsf þ μ2Θ
�Θþ μ Dh

� ��
Dh þ Dvð Þ�Dv

h i

¼ μ1H
�
psfA

�AHpsf þ μ2Θ
�Θþ μD�D

ð18Þ

Among them, (⋅)∗ represents a conjugate transpose

matrix. D ¼ Dh

Dv

� 	
; D1 ¼ Dh calculates the difference of

the image in the horizontal direction, and D2 =Dv-
calculates the difference in the vertical direction.

H�
psfA

�AHpsf is a diagonal matrix. αij represents any

element of the matrix. ∀αijαji ≥ 0 and x ≥ 0, so the data

P−AHpsf x
�� ��2

2 in formula (11) is a positive definite quad-
ratic function.
For ease of calculation, a periodic boundary difference

operator that can be diagonalized by Fourier transform is

Dh ¼ F�ΔhF ð19Þ
Dv ¼ F�ΔvF ð20Þ

Among them, F is a two-dimensional discrete Fourier trans-
form, F is a unitary matrix, Δh, and Δv are diagonal matrix.
Thus, formula (21) can be rewritten as

X
j¼1

4
μj H jð Þ
� ��

H jð Þ ¼ μ1FH
�
psfA

�AHpsf þ μ2Θ
�Θþ μ

X
j¼3

4
D�

j−2Dj−2

¼ μ1H
�
psfA

�AHpsf þ μ2Θ
�Θ þ μ Dh

� ��
Dh þ Dvð Þ�Dv

h i

¼ μ1H
�
psfA

�AHpsf þ μ2Θ
�Θþ μ F�ΔhFF�ΔhFþ F�ΔvFF�ΔvF


 �
¼ μ1H

�
psfA

�AHpsf þ μ2Θ
�Θþ μ F�ΔhΔhFþ F�ΔvΔvF


 �
ð21Þ

The quadratic problem in the algorithm is solved by
the gradient method

xkþ1←K μ1H
�
psfA

� u 1ð Þ
k þ d 1ð Þ

k

� �
þ μ2Θ

� u 2ð Þ
k þ d 2ð Þ

k

� �
þ μ

X
j¼3

4
D�

j−2 u jð Þ
k þ d jð Þ

k

� �" #

ð22Þ

where, K ¼ μ1H
�
psfA

�AHpsf þ μ2Θ
�Θþ μ

P
j¼3

4
D�

j−2Dj−2

� 	−1
.

For optimization problems in different forms, different

proximity operators are required. For the u 1ð Þ
kþ1 , the

essence is to solve a quadratic programming problem,
you can use the gradient method to get

u 1ð Þ
kþ1

¼ proxg1=μ1 AHpsf xkþ1−d
1ð Þ
k

� �

¼ arg min
u

1
μ1

y−uk k22 þ
1
2

u− AHpsf xkþ1−d
1ð Þ
k

� ���� ���2
2

¼ 2
2þ μ1

y þ μ1
2

AHpsf xkþ1−d
1ð Þ
k

� �0
@

1
A

ð23Þ
In order to solve ℓ1 norm, the soft threshold function

as a proximity operator is usually used, which is

Table 1 Comparison of image evaluation parameters of
different reconstruction algorithms (SNR = 20 dB)

FBP SART TV regularization The proposed method

PSNR 56.4641 56.5765 57.5832 58.1515

SSIM 0.9954 0.9961 0.9968 0.9976

UIQI 0.0172 0.0163 0.0164 0.0506

Table 2 Comparison of image evaluation parameters of
different reconstruction algorithms (SNR = 40 dB)

FBP SART TV regularization The proposed method

PSNR 58.6194 59.9776 60.0533 61.6325

SSIM 0.9982 0.9991 0.9992 0.9996

UIQI 0.0152 0.0570 0.0832 0.1565

Table 3 Comparison of image evaluation parameters of
different reconstruction algorithms (head CT)

FBP SART TV regularization The proposed method

PSNR 58.6891 58.8119 58.9634 61.8236

SSIM 0.9966 0.9967 0.9983 0.9993

UIQI 0.1830 0.1357 0.046 0.0296
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soft v; τð Þ ¼ sign vð Þ⊗max vj j−τ; 0f g ð24Þ

Among them, ⊗ represents the multiplication of the
corresponding element.

u 2ð Þ
kþ1

¼ proxg2=μ1 Θxkþ1−d
2ð Þ
k

� �

¼ arg min
u

λ1
μ2

uk k1 þ
1
2

u− Θxkþ1−d
2ð Þ
k

� ���� ���2
2

¼ soft Θxkþ1−d
2ð Þ
k ;

λ1
μ2

0
@

1
A

ð25Þ

Among them, soft(⋅) is a soft threshold function.

u jð Þ
kþ1

¼ proxgj=μ D�
j−2xkþ1−dk jð Þ

� �

¼ arg min
u

λ2
μ

uk k2 þ
1
2

u− D�
j−2xkþ1−d

jð Þ
k

� ���� ���2
2

¼ vector−soft D�
j−2xkþ1−d

jð Þ
k ;

λ2
μ

0
@

1
A j ¼ 3; 4

ð26Þ

Among them, vector ‐ soft(⋅) is vector soft threshold
function. vector−soft v; λð Þ ¼ v

vk k2 max vk k2−λ; 0
� �

.

The iterative relationship of the introduced intermedi-
ate variable d is as follows:

d 1ð Þ
kþ1 ¼ d 1ð Þ

k − RFpxkþ1−u
1ð Þ
kþ1

� �
ð27Þ

d 2ð Þ
kþ1 ¼ d 2ð Þ

k − Θxkþ1−u
2ð Þ
kþ1

� �
ð28Þ

d jð Þ
kþ1 ¼ d jð Þ

k − D�
j−2xkþ1−u

jð Þ
kþ1

� �
j ¼ 3; 4 ð29Þ

The optimal solution of formula (11) can be obtained
by iterative algorithm. In other words, we obtain an esti-
mate of the reconstructed image.
For solving the point spread function sub-problems,

we always see x as a constant to solve Hpsf. In order to
ensure the convergence, we add the total variance para-
digm of each element in Hpsf as a constraint term,

∇hpsf
�� ��

1 ¼
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2psf ;x þ h2psf ;y

q
. Among them, ∑ repre-

sents the superposition of all the elements.

Ĥpsf ¼ arg min
Hpsf

μ

2
P−AHpsf x

�� ��2
2 þ γ ∇hpsf

�� ��
1 ð30Þ

As before, the optimal solution of formula (30) can be
obtained by ADMM method too.

3 Results and discussion
3.1 Results
To verify the effectiveness of the proposed algorithm, hu-
man lung CT images were used for the first simulation ex-
periments, and phantom image is 512 × 512 pixels, as
shown in Fig. 1. In this paper, the fan beam source is

Fig. 5 Comparison of reconstructed images of local details amplification with different reconstruction methods (SNR = 20 dB)

Fig. 6 Comparison of reconstructed images of local details amplification with different reconstruction methods (SNR = 40 dB)
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simulated and the center of the image is coincident with the
center of rotation. The projection data was obtained by the
uniform sampling in the range of 0 ~ 360. Each projection
data was used by FBP, SART, TV regularization, and the al-
gorithm proposed for image reconstruction. All the recon-
struction methods are simulated at the same degradation
condition. In the experiment, the degradation process of CT
image is approximated by a Gauss point spread function,
the degraded image is generated by the Gauss filter of σ = 1,
and the Gauss white noise with the noise power of σ2

n is

superimposed. Signal-to-noise ratio (SNR) is defined as SNR

¼ 10 log10 xk k22=σ2n
� �

. The experimental analysis is carried
out respectively under the condition of SNR of 20 and
40 dB. The projection data under under different signal-to-
noise ratios 20dB and 40dB is shown in Fig. 2. The selected
sparse wavelet transform is db20 wavelet, and the decom-
position level is 2. The iterative algorithm termination con-

dition is xkþ1−xkk k22= xkþ1k k22≤2� 10−6 . The maximum
number of iteration is set to 50. On the other hand, in the
sub-problem of point spread function estimation, the algo-
rithm termination condition is ‖h(l + 1)− h(l)‖/‖h(l)‖ ≤ 10−3.
The maximum number of iteration is set to 100.

The experiments were performed in a computer Intel(R)
i7-4770 @3. 60 GHz with 16 G RAM with MATLAB 2016a
programming. The experimental parameters are as follows:
μ = 1, λ1 = 10−3μ, λ2 = 10−4μ, γ = 10−3μ. For ADMM pa-
rameters, we used heuristic rules, which lead to a good per-
formance of the algorithm. μ1 and μ2 are chosen to be
proportional to λ2specifically μ1 = 10λ2 and μ2 = 100λ2.
From the reconstruction effect pictures that can be

seen, FBP algorithm is seriously affected by the noise
with the serious artifacts and poor effect. SART algo-
rithm is better than FBP algorithm, but the artifacts are
still serious; although there is no obvious streak artifact
in TV regularization algorithm, the image is too smooth
and the detail is lost. The proposed algorithm in this
paper is the best in terms of clarity, contrast, and detail
retention. In order to see more clearly the details of the
retention effect, a part of Figs. 3 and 4 was taken to
enlarge and contrast in this paper, as shown in Figs. 5
and 6. As can be seen from the figure, the method can
effectively suppress the noise, preserve the image details,
clearly see the small blood vessels, and have good recon-
struction effect. The artifacts of FBP and SART algo-
rithm are serious, and the TV algorithm does not have
obvious artifacts, but it is too smooth and it lost too
many details.
To evaluate the restored images, three metrics, i.e.,

peak signal-to-noise ratio (PSNR), universal image qual-
ity index (UIQI) [26], and structural similarity index
metric (SSIM) [27], are employed. Among these metrics,
the ideal value of PSNR is +∞, and the ideal values of
both UIQI and SSIM are 1. These three metrics can only
be used in the simulated experiments because they
require the existence of a reference image. The above
four metrics tabulated for each experiment are the aver-
age values over 10 times repetitions. The results are
shown in Tables 1 and 2.

3.2 Discussion
The experimental results show that the structural simi-
larity of image restoration method based on double
regularization is increased, and the image quality is im-
proved. The proposed method can obtain better visual
effect and improve the PSNR. Compared with other

Fig. 7 Head CT phantom image

Fig. 8 Comparison of reconstructed images with different reconstruction methods (head CT)
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methods, the proposed algorithm has stronger ability to
recover details. It can be seen from Tables 1 and 2 that
the new algorithm improves the objective image quality
metrics such as the PSNR, structural similarity, and
UIQI value. At the same time, under different parame-
ters, the new algorithm has a better effect of restoration
and reconstruction, showing that the algorithm has
better robustness.
In the second simulation, a head CT image is chosen

to verify the algorithm performance as shown in Fig. 7.
The image size contains 512 × 512 pixels.
For comparison purposes, the projection data is

denoised by Hanning filter. In the case of limited-angle
projection, the number of projection angle was set 180.
The limited-angle projection was reconstructed by
algorithms of by FBP, SART, TV regularization, and the
proposed algorithm.
The reconstructed images are shown in Fig. 8. To

view the texture more clearly, a part of an image is
amplified, as shown in Fig. 9. From the reconstruction
figures that can be seen, the reconstructed images by
FBP and SART have some artifacts in the case of
limited-angle projection. The reconstructed image by
TV regularization algorithm does not have obvious
stripe-shape artifacts, and the images are too smooth.
The proposed algorithm has the best effects such as
sharpness, contrast, and detail preservation.
To quantitatively evaluate the effectiveness of the

proposed algorithm, the reconstructed images shown in
Fig. 8 and the ideal phantom shown in Fig. 7 are com-
pared using SSIM, PSNR, and UIQI, as shown in Table 3.
From Table 3, we can see that PSNR and UIQI are im-

proved compared with the other algorithms. SSIM of the
proposed algorithm is much close to 1. That means the
method proposed can get an image that is highly similar
to the ideal phantom image.

4 Conclusions
An algorithm for double regularization medical CT
image blind restoration reconstruction based on prox-
imal alternating direction method of multipliers is pro-
posed. The proposed method combines the total
variation and wavelet domain sparsity regularization
constraint for image restoration and reconstruction. To

solve the large-scale optimization problem in image res-
toration, an approximate alternating direction multiplier
method is used. The experimental results show that,
compared with the current image reconstruction algo-
rithm, the proposed algorithm has a better subjective
visual effect. In the aspect of objective evaluation, the al-
gorithm proposed in this paper improves the objective
image quality metrics such as the peak signal-to-noise
ratio, structural similarity index metric, and universal
image quality index. At the same time, multi-
regularization constraint reduces the sensitivity of
regularization parameter in a certain range, which is
beneficial to the maintenance of the complex edge pen-
alty terms, and preserves the image edges and details.
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