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Abstract

In the field of medicine, with the introduction of computer systems that can collect and analyze massive amounts of
data, many non-invasive diagnostic methods are being developed for a variety of conditions. In this study, our aim is to
develop a non-invasive method of classifying respiratory sounds that are recorded by an electronic stethoscope and
the audio recording software that uses various machine learning algorithms.
In order to store respiratory sounds on a computer, we developed a cost-effective and easy-to-use electronic
stethoscope that can be used with any device. Using this device, we recorded 17,930 lung sounds from 1630 subjects.
We employed two types of machine learning algorithms; mel frequency cepstral coefficient (MFCC) features in a
support vector machine (SVM) and spectrogram images in the convolutional neural network (CNN). Since using MFCC
features with a SVM algorithm is a generally accepted classification method for audio, we utilized its results to
benchmark the CNN algorithm. We prepared four data sets for each CNN and SVM algorithm to classify respiratory
audio: (1) healthy versus pathological classification; (2) rale, rhonchus, and normal sound classification; (3) singular
respiratory sound type classification; and (4) audio type classification with all sound types. Accuracy results of the
experiments were; (1) CNN 86%, SVM 86%, (2) CNN 76%, SVM 75%, (3) CNN 80%, SVM 80%, and (4) CNN 62%,
SVM 62%, respectively.
As a result, we found out that spectrogram image classification with CNN algorithm works as well as the SVM
algorithm, and given the large amount of data, CNN and SVM machine learning algorithms can accurately classify and
pre-diagnose respiratory audio.
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1 Introduction
Diagnosis or classification requires recognizing patterns.
But most of the time, it is very hard to spot these
patterns, especially if the data is very large. Data col-
lected from the environment is usually non-linear, so we
cannot use traditional methods to find patterns or create
mathematical models. In the past decade, various
technologies, such as expert systems, have been used to
attempt to solve this problem. However, for critical sys-
tems, the error rate for the decision was too high [1].
The latest technology that is attempting to solve this

problem is machine learning. Over the years, various
successful algorithms were developed and now with the
deep learning algorithms, error rate became close to

negligible. Especially in computer vision and speech
recognition, machine learning is reaching human levels
of detection.
Research in this area attempts to make better repre-

sentations and create models to learn these representa-
tions from large-scale unlabeled data [2]. Some of the
representations are inspired by advances in neuroscience
and are loosely based on interpretation of information
processing and communication patterns in a nervous
system, such as neural coding which attempts to define
a relationship between the stimulus and the neuronal
responses and the relationship among the electrical
activities of the neurons in the brain [3, 4].
Deep learning is a branch of machine learning based

on a set of algorithms that attempt to model high-level
abstractions in data by using model architectures, with
complex structures, composed of multiple non-linear
transformations [3, 5]. An observation (e.g., an image)
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can be represented in many ways including a vector of
intensity values per pixel, or in a more abstract way
as a set of edges, regions of a particular shape, and
various other features. Some representations make it
easier to learn tasks (e.g., face recognition or facial
expression recognition) from examples [6–8]. One of
the promises of deep learning is replacing handcrafted
features with efficient algorithms for unsupervised or
semi-supervised feature learning and hierarchical fea-
ture extraction [9].
Various deep learning architectures such as deep

neural networks, convolutional deep neural networks,
deep belief networks, and recurrent neural networks
have been applied to fields like computer vision, auto-
matic speech recognition, natural language processing,
audio recognition, and bioinformatics where they have
been shown to produce state-of-the-art results on
various tasks [5, 10].
The convolutional network architecture is a remarkably

versatile yet conceptually simple paradigm that can be ap-
plied to a wide spectrum of perceptual tasks. Convolu-
tional networks are trainable, multistage architectures.
The input and output of each stage are sets of arrays
called feature maps [11]. Convolutional neural networks
(CNNs) are designed to process data that come in the
form of multiple arrays. There are four key ideas behind
CNN that take advantage of the properties of natural sig-
nals: local connections, shared weights, pooling, and the
use of many layers. The architecture of a typical CNN is
structured as a series of stages. The first few stages are
composed of two types of layers: convolutional layers and
pooling layers. Units in a convolutional layer are organized
in feature maps, within which each unit is connected to
local patches in the feature maps of the previous layer
through a set of weights called a filter bank. Although the
role of the convolutional layer is to detect local conjunc-
tions of features from the previous layer, the role of the
pooling layer is to merge semantically similar features into
one [12]. The CNN has been found highly effective and
has been commonly used in computer vision and image
recognition. More recently, with appropriate changes from
designing CNN for image analysis to taking into account
speech-specific properties, the CNN is also found effective
for speech recognition [13].
Auscultation, which is the processes of listening to the

internal sounds in the human body through a stetho-
scope, has been an effective tool for the diagnosis of lung
disorders and abnormalities. This process mainly relies on
the physician. Using a stethoscope, the physicians may
hear normal breathing sounds, decreased or absent breath
sounds, and abnormal breath sounds (e.g., rale, rhonchus,
squawk, stridor, wheeze, rub) [14, 15]. Auscultation is a
simple, patient-friendly and non-invasive method which is
widely used but is of low diagnostic value due to the

inherent subjectivity in the evaluation of respiratory
sounds and to the difficulty involved in relating qualitative
assessments to other people [16].
Murphy et al. built a system for automatically providing

an accurate diagnosis based upon an analysis of recorded
lung sounds. The sound input comes from a number of
microphones that are placed around a patient’s chest. The
system also has a signal processing circuit to convert data
from analog to digital. This data is then recorded,
organized, and displayed on a computer monitor using an
application program. From each microphone, sound data
was gathered both in inspiration and in expiration,
combined and separately, so that abnormal sounds could
be determined easily. The collected data is then manually
analyzed, and a diagnosis is reached [17]. This invention
proves that respiratory audio data can be collected from
patients in a non-invasive way. However, this invention
does not use an automated analysis technique to analyze
the data.
In this study, we aim to improve on this invention

by analyzing audio data with machine learning
algorithms and by classifying respiratory sounds. Our
data consists of audio recordings of lung sounds that
were recorded by chest physicians. We believe, using
machine learning, audio data can be analyzed for pat-
terns that will lead to the detection of various patho-
logical lung sounds and help in the diagnosis of
respiratory conditions.

2 Materials and methods
2.1 Building the electronic stethoscope
First of all, since we needed a device to record respiratory
audio, we started by researching all commercially
available electronic stethoscopes. Two models are cur-
rently used in medicine: the Littman 2100 electronic
stethoscope [18] and the Thinklabs One electronic
stethoscope [19]. These devices simply receive audio
signals from the head of the stethoscope by a micro-
phone and a series of electronic circuits and transmit
this digital signal into the computer by the 3.5-mm
microphone jack commonly found on computers and
mobile devices. However, the key difference was
Littman 2100 electronic stethoscope required proprietary
software, so it was constrained to certain platforms. On
the other hand, Thinklabs One electronic stethoscope
transmits the audio signal to any device using any
software [20]. After analyzing the capabilities of these
devices, we decided to build our own custom elec-
tronic stethoscope which has a directional micro-
phone strapped inside the head of a stethoscope with
a 3.5-mm microphone jack.
Since we do not have a signal enhancing hardware, we

needed a good, small and directional microphone to
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obtain the perfect signal. However, the audio was still
noisy because of several reasons:

� Hospital environments are naturally very noisy:
people talking, phones, noisy devices, ambulance,
police sirens, etc.

� There is a scratching noise when the diaphragm of
the stethoscope comes in contact with dry skin and
body hair.

The first problem is difficult to solve because it is
impossible to sound proof the rooms where patients are.
But the second problem can be solved simply by
lubricating the area of contact. We also discovered that
this method increases the reception of low-frequency
audio by the microphone.

2.2 Software for data acquisition
We needed an application to record audio and save
patient data. To this end, we developed a .NET applica-
tion that creates patient records and uses open source
audio library “NAudio” to record, play, and modify
audio. It has two main sections:

� Patient information: first name, last name
� Audio recording: audio recordings from 11 areas of

the patient’s chest (Fig. 1).

The application and the hardware are tested together
by recording respiratory audio and showing the results
to the chest physicians.

2.3 Data acquisition
After receiving positive feedback from all the chest
physicians, we decided to move to data acquisition. In
the end, three hospitals agreed to participate in our
research in their respiratory diseases department:
Ankara University, Yıldırım Beyazıt University, and
Yıldırım Beyazıt Education and Research Hospital.

Fig. 1 Audio recorder interface

Fig. 2 Example of respiratory sound spectrogram
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To start the data acquisition, we needed a laptop with
a good audio card. Lenovo ThinkPad E550 Laptop
offered the best audio card for our purposes. So we pur-
chased the computer. We also purchased two Seagate
Expansion 1 TB external hard drives for backup storage.
Once we were set with the equipment, we started the
data acquisition. We recorded respiratory audio from
1630 subjects and 11 positions from each patient, totaling
to 17,930 audio clips, each 10-s long.

2.4 Experiments
In this study, we used two feature extraction methods:
mel frequency cepstral coefficient (MFCC) feature
extraction and spectrogram generation using short-time
Fourier transform (STFT).
In sound processing, the mel frequency cepstrum

(MFC) is a representation of the short-term power
spectrum of a sound, based on a linear cosine transform
of a log power spectrum on a non-linear mel scale of
frequency. MFCCs are coefficients that collectively make
up an MFC. They are derived from a type of cepstral
representation of the audio clip [17].

A spectrogram is a visual representation of the
spectrum of frequencies in a sound or other signal as
they vary with time or some other variable. They are
used extensively in the fields of music, sonar, radar, and
speech processing and seismology [21].
Since MFCC features are widely used in audio detec-

tion systems, the experiments we ran using the MFCC
features enabled us to find a base value for accuracy,
precision, recall, sensitivity, and specificity. Spectrogram
images are also used in audio detection. However, they
were never tested in respiratory audio with CNNs. We
wanted to see if we can match or exceed the audio
detection accuracies with MFCC features.
MFCC datasets were built using SciPy library. We

used support vector machines to process these datasets.
The spectrogram dataset was built using a combination
of open source graph generation library Pylab and vari-
ous open source image processing libraries. The original
spectrograms generated were 800 × 600 RGBA, and they
were too large for our computer’s memory. We changed
the algorithm to generate them 28 × 28 grayscale to fit
them into the memory for CNN to process (Fig. 2).

Fig. 3 CNN structure for classifying pathologic and normal sound types

Fig. 4 CNN structure for classifying all singular sound types
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We built eight datasets, four for support vector
machines (SVMs) and four for convolutional neural
networks (CNNs):

� Two datasets to predict whether respiratory sounds
were normal or pathological (17,930 audio clips,
two classes)

� Two datasets to classify respiratory sounds into:
normal, rhonchus, squeak, stridor, wheeze, rales,
bronchovesicular, friction rub, bronchial, absent,
decreased, aggravation, or long expirium duration
(LED) (14,453 audio clips, 13 classes)

� Two datasets for classification of respiratory sounds
labeled with rale, rhonchus, or normal (15,328 audio
clips, 3 classes)

� Two datasets for classification of respiratory sounds
with all labels including ones with multiple labels
(17,930 audio clips, 78 classes)

The CNN structures that we used in our experiments
are shown below in Figs. 3, 4, 5, and 6.

3 Results and discussion
Our results are in Table 1.
A number of investigations demonstrating the

usefulness of computerized lung sound analysis have
been reported [22–24]. However, there is a small
number of studies available on the clinical utility of
auscultation and computerized lung sound analysis
for the classification of abnormal lung sounds
(Table 2).
As shown in Table 2, the studies in the literature have

very limited datasets with a maximum of 2127 audio
samples from 34 subjects [25]. Therefore, their accuracy
results were either very high when there was a very dis-
tinct set of audio data or very low when the audio data
was similar [16, 25–37]. This is a major problem as these
systems deal with a critical decision in patient’s diagno-
sis. In our study, we collected 11 audio recordings from
each of the 1630 healthy and sick subjects totaling to
17,930 audio clips. Because of the larger size of our
dataset, we managed to get consistent results in all our
experiments.

Fig. 5 CNN structure for classifying rale, rhonchus, and normal sounds

Fig. 6 CNN structure for classifying all lung sounds
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In the literature, the audio clip size varies between 8 and
16 s. Similarly, we recorded all our audio clips in 10 s, as
suggested by the chest physicians whom we worked with.
In other studies, while commercially available devices and
software packages were used, we developed our own hard-
ware and software using open source libraries. Previous
studies did not mention the audio format used. This can
be an issue as some audio formats sacrifice quality for disk
space. We used lossless WAV format as we did not want
to lose any data.
Rietveld et al. [38] selected clean audio samples, and

Baydar et al. [28] recorded their audio clips in a quiet
room. However, if one tries to build a system that is
trained from these clean data, it would not work in a
real environment such as a hospital. Even the quietest
hospital rooms have noise that would impact the record-
ing. That is why we developed our electronic stethoscope
with as much sound isolation as possible and selected our
recording device carefully. In the end, the data we col-
lected had very little external noise but it was collected
from a real environment.
In the literature, lung sound classification was made

for a maximum of six classes. Kandaswamy et al. [28]
implemented a system to classify the lung sounds to one
of the six categories: normal, wheeze, crackle, squawk,
stridor, or rhonchus. Forkheim et al. [39], investigated to
detect only wheezes in isolated lung sound segments.
Bahoura et al. [27], Riella et al. [40], and Hashemi et al.
[41] classified sounds as whether containing wheezes or
normal respiratory sounds. Lu et al. [42] classified fine
crackles and coarse crackles. Kahya et al. [15, 30],

Flietstra et al. [24], and Serbes et al. [35] classified the
presence or absence of a crackle. These studies are
very narrow in scope, as they have limited number of
classes. Their results are focused on only a few sound
types. In our study, we performed 8 different experi-
ments with 2, 3, 13, and 78 classes, diversifying our
results greatly.
Previous studies so far used CNNs for classification. In

our study, we aimed to use this new classification
algorithm on audio and observed that it performs very
well and produces consistent results.
Lu et al. [42] acquired their test data set from RALE

and ASTRA databases. Riella et al. [40] used lung
sounds that were available electronically from different
online repositories. The problem with this approach is
that the recording hardware and software can be differ-
ent for each audio clip. This would cause problems in
classification because the audio quality is not consistent
in all training and test samples. In our study, we used a
single recording device and the same recording software
on the same device while recording the audio.
While several previous studies [16, 30, 39, 43]

compared several algorithms, they did not use a widely
accepted audio classification method for benchmarking
their neural networks. In our study, we used the classifi-
cation results of SVMs that use the MFCC features to
benchmark our CNN algorithm.
In some studies in the literature in Table 2, the number

of audio data or subjects were not mentioned; therefore, it
is impossible to compare the results of these studies with
our own [39, 40, 42, 44–46].

Table 1 Experiment results

Training
accuracy

Test
accuracy

Training
precision

Test
precision

Training
recall

Test
recall

Training
sensitivity

Test
sensitivity

Training
specificity

Test
specificity

Classification of healthy versus pathological respiratory sounds

CNN
(spectrogram)

87% 86% 90% 86% 89% 86% 89% 86% 95% 86%

SVM (MFCC) 91% 86% 94% 89% 87% 87% 87% 87% 87% 82%

Classification of respiratory sounds labeled with a singular type

CNN
(spectrogram)

90% 76% 94% 79% 86% 74% 86% 74% NA NA

SVM (MFCC) 99% 75% 99% 75% 99% 99% 99% 99% NA NA

Classification of respiratory sounds labeled with only as type rale, rhonchus, and normal

CNN
(spectrogram)

87% 80% 88% 79% 85% 79% 85% 79% NA NA

SVM (MFCC) 89% 80% 89% 80% 89% 89% 89% 89% NA NA

Classification of respiratory sounds with all labels

CNN
(spectrogram)

74% 62% 80% 73% 66% 56% 66% 56% NA NA

SVM (MFCC) 78% 62% 78% 62% 78% 78% 78% 78% NA NA

NA not applicable
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Previous studies’ results were not geared toward a prac-
tical system. In our study, we developed our device and
software to fit into a hospital environment workflow. We
are also planning to fit this workflow into a telemedicine
system we are developing that allows physicians to remotely
listen to and share patient audio data for consultation.
While our results seem numerically lower than the

state-of-the-art results, our data set (17,930 audio clips)
is the biggest data set when compared with that of the
studies done on this field and the audio clips in the data
set are not amplified, modified, cleaned, or pre-recorded
by a third party which is the case with many of the
studies we looked at. We tested our algorithms on eight
datasets and obtained consistent results across the
board; this was not done in any of the state-of-the-art
study so far.

4 Conclusions
The goal of this project was to design and construct
an electronic stethoscope with an associated software
system that can transfer respiratory sounds to a PC
for recording and subsequent computer-aided analysis
and diagnosis. The hardware-software system was
used to collect a dataset of respiratory sounds to train
SVM and CNN machine learning algorithms for the
automated analysis and diagnosis. The complete sys-
tem can also be used for all types of body sounds
(e.g., lung, heart, intestines) and is expected to be in
widespread clinical use.
In this study, we experimented using CNN algorithms

in audio classification. Since MFCC features combined
with SVM is a generally accepted practice for audio
classification, we used it as a benchmark for our CNN
algorithm. We found out that spectrogram image classi-
fication with CNN algorithm works as well as the SVM
system.
CNN and SVM algorithms were run comparatively to

classify respiratory audio: (1) healthy versus pathological
classification, (2) rale, rhonchus, and normal sound
classification, (3) singular respiratory sound type classifi-
cation, and (4) audio type classification with all sound
types. Accuracy results of the experiments were found as
(1) CNN 86%, SVM 86%, (2) CNN 76%, SVM 75%, (3)
CNN 80%, SVM 80%, and (4) CNN 62%, SVM 62%,
respectively.
As a result, we found out that spectrogram image

classification with CNN algorithm works as well as the
SVM algorithm, and given the large amount of data,
CNN and SVM machine learning algorithms can accur-
ately classify and pre-diagnose respiratory audio. This
system can be combined with a telemedicine system to
store and share information among physicians. We be-
lieve our method can improve the results of previous
studies and help in medical research.
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