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Abstract

In this paper, we exploit two characteristics of stereoscopic vision: the pop-out effect and the comfort zone. We
propose a visual saliency prediction model for stereoscopic images based on stereo contrast and stereo focus
models. The stereo contrast model measures stereo saliency based on the color/depth contrast and the pop-out
effect. The stereo focus model describes the degree of focus based on monocular focus and the comfort zone.
After obtaining the values of the stereo contrast and stereo focus models in parallel, an enhancement based on
clustering is performed on both values. We then apply a multi-scale fusion to form the respective maps of the
two models. Last, we use a Bayesian integration scheme to integrate the two maps (the stereo contrast and
stereo focus maps) into the stereo saliency map. Experimental results on two eye-tracking databases show
that our proposed method outperforms the state-of-the-art saliency models.
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1 Introduction
Visual attention is a very important research topic in
computer vision, as it is widely used in the field for
many tasks, such as object detection [1] and video/image
retrieval [2, 3]. Computational models of visual atten-
tion, which simulate the attention mechanism of
humans, have been built by researchers in many fields,
such as visual neuroscience, computer vision, and multi-
media processing [4]. Visual attention enables the dis-
covery of an object or region that efficiently represents a
scene and, thus, harnesses complex vision problems,
such as scene understanding.
The models of visual attention are usually divided into

two categories: bottom-up and top-down [5]. The
bottom-up model is a rapid data-driven task-
independent process and is usually feed-forward. A
prototypical example of a bottom-up model is the act of
looking at a scene which has only one horizontal bar
among several vertical bars, in which attention is imme-
diately drawn to the horizontal bar [6]. Top-down model
considers high-level cognitive features to quantify the
visual saliency, such as human faces [7] and prior

knowledge about the target [8]. Of these top-down
features, prior knowledge about the target is difficult to
model. Recently, a number of saliency models have in-
corporated both top-down and bottom-up feature detec-
tion in an effort to improve prediction accuracy [9]. Wei
et al. [10] turned to background priors to guide the gen-
eric object level saliency detection. Goferman et al. [11]
and Judd et al. [7] integrate high-level information, mak-
ing their methods potentially suitable for specific tasks.
These models are mainly designed for 2D images.

With the rapid development of 3D technology, many
devices for stereoscopic capture have appeared. For
example, the Panasonic 3D camera captures the stereo-
scopic images and video for 3D movies. The Kinect-1
device by Microsoft for the XBox captures both the
color map and the depth map at the same time, which
can generate the stereoscopic images (the depth map of
the Kinect-1 may have holes that need to be smoothed
[12], which may cause noise). These devices make up a
number of applications for 3D images or videos, such as
3D rendering [13], 3D visual quality assessment [14],
and 3D video detection [15]. These 3D applications in-
crease the need for saliency modeling for 3D visual
content.

* Correspondence: anping@t.shu.edu.cn
1The School of Communication and Information Engineering, Shanghai
University, Shanghai, China
Full list of author information is available at the end of the article

EURASIP Journal on Image
and Video Processing

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Cheng et al. EURASIP Journal on Image and Video Processing  (2017) 2017:61 
DOI 10.1186/s13640-017-0210-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0210-5&domain=pdf
mailto:anping@t.shu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Stereo saliency models can be classified into two cat-
egories according to the way they use the depth factor:
stereo-vision models and depth-saliency models.
Stereo-vision models take into account the mecha-

nisms of stereoscopic perception in the human visual
system (HVS). This type of model considers the charac-
teristics of depth factors and color information. Bruce
and Tsotsos extended the 2D model, which uses a visual
pyramid processing architecture [16], by adding neur-
onal units to model the stereo vision; however, they did
not propose a computational model in that study. Based
on our knowledge, designing the stereo-vision model is
very difficult and we only find two models in [17], be-
cause the mechanisms of stereo vision still pose several
research challenges, such as how to build then apply the
model for the stereoscopic vision mechanism.
Depth-saliency models take depth saliency as a feature

of saliency measurement, and methods of formulating
and using depth saliency fall into two further categor-
ies. One category relies on a depth-saliency map (DSM)
[17, 18]. The depth saliency is extracted from the depth
map or disparity map (usually based on depth contrast
or the depth pop-out effect) to create an additional
depth-saliency map. The final result combines the 2D
saliency maps (from 2D saliency models usually using
color contrast, intensity, or image texture) and the
depth-saliency maps (DSM). The other category builds
the model directly. In other words, it builds the stereo-
scopic visual saliency prediction model by taking the
mechanisms of stereoscopic perception in the HVS into
account. It designs the model by fusing the depth and
2D features into the saliency measurement, based on
the mechanisms of the HVS [19].
Kim et al. [15] designed a stereoscopic visual atten-

tion algorithm for 3D video based on multiple percep-
tual stimuli, which assumes that pixels closer to
observers and at the front of the screen are more sali-
ent. Niu et al. [20] explored stereo saliency by analyzing
the characteristics of stereo vision and proposed a
depth saliency model for a depth map that would
expand the 2D saliency model for stereo saliency
analysis. However, the proposed model does not fully
explore the relationship between the depth model and
the 2D saliency model. Fan et al. [19] proposed a stereo
saliency model based on region-level depth, color, and
spatial information. Wang et al. [17] proposed a
computational model that takes the depth factors as an
additional visual dimension and provides a public data-
base with a ground truth of eye-tracking data. Fang
et al. [21] proposed a visual attention model for stereo-
scopic images based on the contrast between low-level
features. However, they did not consider the character-
istics of human stereo vision, such as the pop-out effect
or 3D fatigue.

According to the above analysis, the key issue for a 3D
visual saliency prediction model is how to adopt the
depth factor and how to combine the depth factor with
2D information based on the mechanisms of HVS. In
our earlier work [22], a novel saliency model for stereo-
scopic images was proposed. However, this model did
not deeply exploit the HVS characteristics of the pop-
out effect and comfort zone and only treated the depth
information as a weight. In this paper, we deeply analyze
two characteristics of the stereoscopic vision: pop-out ef-
fect and comfort zone. Based on these characteristics,
we design two stereo-vision models for visual saliency
prediction: one based on stereo contrast and the other
based on stereo focus. We enhance these two models by
clustering and then integrate them into the final stereo-
scopic saliency map.
The main contributions of this paper are as follows:

1. We propose a stereo contrast model for detecting
stereo saliency. This model detects saliency based
on color and depth contrast and the pop-out effect.

2. We propose a stereo focus model for detecting
stereo saliency. This model detects the degree of
focus via monocular focus and the comfort zone.

3. We propose an enhancement to increase the
performance of the stereo contrast and stereo
focus models.

The rest of the paper is organized as follows: In
Section 2, we introduce the two mechanisms of stereo
human vision for stereo saliency analysis. Section 3
proposes a new stereo visual saliency prediction method
based on the stereo contrast and stereo focus models.
Section 4 describes a quantitative comparison of the
proposed model and state-of-the-art algorithms. Section
5 provides the research outcomes and future work.

2 Methodology
When watching a stereoscopic image, people experience
different effects, such as the pop-out effect and deep-in ef-
fect [23]. When we watch a stereoscopic image/video, the
pop-out effect occurs when an object looks like it is going
to pop out of the screen and the deep-in effect occurs
when an object looks like it is behind the screen. To obtain
these two effects, we can control the parallax of objects,
such as the negative or positive parallax as shown in Fig. 1.
This finding is based on recent research on human stereo
vision [24]. These effects cause viewers to feel immersed in
the image, which is the most attractive aspect of stereo-
scopic images. Moreover, studies show that an object,
which has the pop-out effect often, catches a viewer’s at-
tention [25]. This phenomenon provides a useful depth
cue for stereo saliency analysis, since objects with a pop-
out effect are usually more salient than objects that have a
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deep-in effect. We assume that the object with the pop-out
effect tends to be more salient than the other objects. In
addition, we use color/depth contrast for the stereo sali-
ency analysis. Hence, we propose a stereo contrast model
to simulate the pop-out effect by combining the color/
depth contrast and pop-out value.
Another property of stereo vision is the viewing comfort

zone based on the binocular information. Viewers may ex-
perience fatigue when they spend a long time watching
stereoscopic images or video. The reason for this may be
accommodation-vergence conflict or too much divergence
[26, 27]. A good stereoscopic image needs to minimize 3D
viewer fatigue. This conflict increases as the perceived
depth of an object becomes further away from the screen,
as shown in Fig. 2. The zone close to the screen plane is
called the comfort zone. Photographers usually make sure
the more important objects are in the comfort zone when
they capture a stereoscopic image or video. This is another
depth cue for saliency analysis: the object in the comfort
zone tends to be more salient than other zones. Studies
show that the object near the zero disparity plane is more
salient than those which are away from the zero disparity
plane, which can be described by the linear formulation
[20]. When a person watches one salient object, this object
should be in the focus region [9]. According to the above
phenomenon, in the perspective of the comfort zone, this
object should meet two conditions: one is that it is located
in or near the comfort zone and the second is that it is in
the focus region. Therefore, we use monocular focus and
comfort zone to analyze stereo saliency. The monocular
focus assumes that the salient object is usually located in
the focus region. The comfort zone is treated as a weight
to adjust the importance of the object located in the focus
region. The proposed stereo focus model is based on the
comfort zone and monocular focus.
In order to describe the two mechanisms of the

human visual system: pop-out effect and comfort zone,
we have chosen to develop our proposed model on a
combination of the stereo contrast and stereo focus
models of the stereo-vision model. The stereo saliency

of an object can be determined by the values calculated
from the stereo contrast and stereo focus models.
However, in some cases, the values obtained by these
two models can be substantially different. For example,
if an object has negative parallax and is far from the
comfort zone, or if the object has zero parallax, the
two values are quite different. To obtain the benefits
from two models and detect the saliency for different
stereoscopic content, our stereo visual saliency predic-
tion model considers both the stereo contrast model
and the stereo focus model.

3 Proposed stereoscopic visual saliency prediction
model
The proposed stereoscopic visual saliency prediction
framework is shown in Fig. 3. To capture the structural

Fig. 1 Stereo perception based on the different parallax [24]

Fig. 2 Stereo comfort zone based on human stereo vision [20]
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information of the stereoscopic image, we first adopt a
simple linear iterative clustering (SLIC) algorithm [28] for
the segmentation. The SLIC algorithm can segment an in-
put image (left image) into multiple uniform and compact
superpixels. By controlling the number of superpixels in
the SLIC algorithm, the image is segmented into multi-
scale images. Then, we calculate the saliency values indi-
vidually by applying the stereo contrast and stereo focus
models for each superpixel based on the left image and dis-
parity map. An enhancement is based on clustering and in-
creases the performance of the two models according to
the experiments. Multi-scale fusion is then used to form
the pixel-level stereo contrast and stereo focus maps. Last,
the two maps are integrated by Bayesian integration to
form the final stereo saliency map.

3.1 Pre-processing
In this paper, we convert the stereoscopic images from
the RGB color space to the hue-saturation-value (HSV)
color space. Compared to the RGB color space, the HSV
color space is more consistent with the characteristics of
human vision attention, and using it leads to a saliency
value with higher accuracy [27].
As mentioned previously, we conduct multi-scale

visual saliency prediction. Based on the number of
superpixels, the input image (left image) is segmented
into a set of non-overlapping superpixels in the scale s
using the SLIC algorithm. s represents the scale of the
segmentation. We chose the SLIC algorithm as the seg-
mentation method because it is a fast and highly

efficient segmentation algorithm that is sensitive to the
boundary of the object [29]. Each superpixel t is
described by the mean color feature {H, S, V}, coordi-
nates of the superpixels {x, y}, and the mean disparity
value d, xt = {H, S, V, x, y, d}t. The entire image can be
represented as X = [x1, x2,…, xN]s.

3.2 Stereo contrast model
We propose the stereo contrast model based on the color/
depth contrast and the pop-out effect to calculate the sali-
ency value (using a disparity map to analyze the pop-out
effect). According to the human vision system, human at-
tention is sensitive to a contrast region that includes color
contrast and depth contrast [25]. The colors of the salient
region are distinctive and contrast with the other regions.
The depth discontinuity region may attract the viewer’s
attention when view positions or angles are changed.
Therefore, the distinctive region may attract the
viewer’s attention to color/depth information. Accord-
ing to [30, 31], humans pay more attention to those
image regions that contrast strongly with their
surroundings. Based on our observation, the distance
between neighboring regions and the area of the region
plays an important role in human visual attention. To
simulate the above mechanism, we define the contrast
value to measure the contrast of stereoscopic information.
Let DC(i, j) be the Euclidean distance between the

vectorized superpixels i and j in HSV color space and
DD(i, j) be the Euclidean distance between superpixels i
and j in disparity. DC and DD are normalized to the
range [0, 1]. We define the contrast measure C(i, j)
between superpixels i and j as:

C i; jð Þ ¼ 1−að Þ � DC i; jð Þ þ a� DD i; jð Þ ð1Þ

where a is a control weight to balance the color and dis-
parity contrast. Although several approaches [17, 18, 32]
combining depth-saliency maps with 2D visual features
have been proposed, any specific and standardized ap-
proaches still lack the combination of saliency maps
from depth with 2D visual features. The work in [17, 18]
treats depth with the same importance as color. The
work in [32] uses the adaptive weight for color and
depth. In our experiments, we adopt a straightforward
approach to merge color and depth contrast, treating
depth contrast with the same importance as color con-
trast. We set a = 0.5 empirically.
Let L(i, j) be the Euclidean distance between the

position of superpixels i and j normalized to the range
[0, 1]. According to the analysis above, we define the ste-
reo contrast measure S(i, j) between a pair of superpixels
i and j based on color, disparity, and spatial information:

Fig. 3 The framework of the proposed stereo saliency model
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S i; jð Þ ¼ C i; jð Þ
1þ c� L i; jð Þ

� �
� ωj ð2Þ

where ωj is the number of pixels in superpixel j and c is
a control value for spatial information (c = 3 in our im-
plementation). As mentioned above, the saliency of a
superpixel z can be defined by its stereo contrast
measure as:

SCR zð Þ ¼
X
i≠z;i∈R

S z; ið Þ ð3Þ

where R is the search range and SCR(z) is the saliency
value of superpixel z in the search range. Figure 4 shows
the global and local search range. Then, we compute the
global and local saliency maps.
When we compute the stereo contrast saliency value

of the current superpixel, we do not compute all super-
pixels in the search range. We only choose the K most
similar superpixels in the search range and use them to
compute the stereo contrast saliency of the current
superpixel. This is based on the experiments and [22], as
using the k most similar superpixels to compute the ste-
reo contrast can prevent the stereo contrast saliency
value of an abnormal superpixel becoming too great.
Therefore, in practice, to measure a superpixel’s stereo
contrast, we simply consider the K most similar super-
pixels. If the most similar superpixels are extremely dif-
ferent from the current superpixel, clearly all image
superpixels are extremely different from it. In other
words, to measure a superpixel’s stereo contrast, there is
no need to incorporate its stereo contrast value in all
other superpixels in the search range. We simply con-
sider K as the most similar superpixels. If most of the
similar superpixels are extremely different from the
current superpixel, clearly all image superpixels are ex-
tremely different from it. Therefore, we search for the K
most similar superpixels k = {1, 2, ..., K}, kєR, where R is
the search range. The local search is related to the
search range R. (In practice, all distance is normalized to
[0, 1] and we set R = 0.3 empirically.) Based on the
observations of the experiments, we set K as 15 empiric-
ally. The local-global stereo contrast saliency of super-
pixel z is expressed as:

SC 0 zð Þ ¼
XK

k¼1;k∈R

S z; kð Þ ð4Þ

According to the pop-out effect in Section 2, a region
that has the pop-out effect may attract people’s atten-
tion. Therefore, a pop-out effect describes the import-
ance of the superpixel in stereoscopic saliency analysis.
We treat the pop-out effect as a weight to enhance the
stereo contrast saliency. Based on the work in [20] and
our experiments, the superpixel of the pop-out effect
can be represented by an exponential function of the
disparity. We use d to represent the disparity, and dz is
the mean disparity for superpixel z which is normalized
to [−1, +1]. Let o be the pop-out value for superpixel z.
If dz. < 0, it means that the superpixel has a pop-out ef-
fect. The saliency of this superpixel should increase, and
if dz. > 0, it means the superpixel has a deep-in effect
and saliency should decrease. The pop-out value can be
expressed as follows:

oz ¼ 2−dz ð5Þ
We use the local-global stereo contrast and the pop-

out value to simulate the pop-out effect. Figure 5 is an
example of a stereo contrast map. The stereo contrast
SC(z) relies on the color/depth contrast, distance con-
trast, superpixel area, and pop-out value, which can be
expressed as follows:

SC zð Þ ¼ SC 0 zð Þ � oz ð6Þ

3.3 Stereo focus model
We propose a stereo focus model based on monocular
focus and the comfort zone. According to the comfort
zone as mentioned in Section 2, human visual attention
can take the initiative to focus on the salient region by
using monocular focus. Monocular focus can be de-
tected by the focal blur [33], and we add the comfort
zone to improve its accuracy.
For monocular focus, sharp edges of an object may be

spatially blurred when projected on the image plane. The
degree of the blur model [9] can measure the focus/de-
focus for the edges of the image by computing the
differential-of-Gaussian (DOG) operation in a different

Fig. 4 a–c Global and local search range
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scale for the edge pixels. The monocular focus of the edge
pixel p is F2D(p). This value is sensitive to the edge pixels
and is easy to implement. However, it is a 2D focus meas-
ure and is only useful for the edge pixels of the image. For
stereoscopic analysis, we expand this model to measure
the edge of the stereoscopic focus by combining the mon-
ocular focus and the comfort zone. Then, we expand the
stereoscopic focus model from edge to region.
According to our experiments, we use a comfort value to

measure the comfort zone. The comfort value is a weight
to indicate the object’s importance by measuring the com-
fort zone. When multiple objects have zero or small dispar-
ity in the stereoscopic images and are located in the
comfort zone, our observation is that their comfort values
are similar. When they are far away from the zero disparity
plane, their comfort values decrease sharply. Based on this
observation, the comfort value complies with a Gaussian
distribution. v(p) denotes the comfort value of pixel p. This
can be expressed as:

v pð Þ ¼
exp

d2
p

−2σ2
1

0
@

1
A dp≥0

α� exp
d2
p

−2σ21

0
@

1
Aþ 1−αð Þ dp < 0

8>>>>>><
>>>>>>:

ð7Þ

where dp represents the disparity of pixel p. σ1 is the
range of positive and negative disparity. α controls the
weight of negative disparity. For negative disparity, we
cannot directly follow the comfort zone model [20] to
design our comfort value. The reason for this is that
there is a conflict between the pop-out effect and com-
fort zone. If we directly use the comfort zone model [20]
to measure saliency, in some cases, stereo contrast
model and stereo focus model may give quite different
results for an object with negative disparity, which will
reduce the performance our proposed model. For

example, if the pixel has a large negative disparity and is
far from the comfort value, its pop-out value becomes
big, and its comfort value is small. After the fusion of
two models, the results may be not reliable. To reduce
the errors caused by such conflicts, we increase the im-
portance of the negative disparity in the comfort zone by
using α to balance the comfort value of the negative dis-
parity. There are two benefits in this modification.
Firstly, this modification increases the importance of the
pop-out effect for the object with the negative disparity.
Secondly, it still keeps a high importance for the object
in the comfort zone in stereoscopic saliency analysis.
According to our experiments, our modification for the
comfort zone works in most cases and improves the
performance of the proposed model.
We set the comfort value as a weight, because the

comfort value describes the importance of the stereo
saliency analysis. We define the stereo focus value of the
edge pixels p by combining the monocular focus value
F2D with the comfort value. This is expressed as:

F3D pð Þ ¼ F2D pð Þ � v pð Þ ð8Þ

It would be ideal to analyze the saliency for each
object as a whole. However, it is difficult to segment an
object accurately. Therefore, we compute the stereo sali-
ency at the superpixel level instead. For each stereo
focus value of the edge pixels, we filter it by using a
Gaussian kernel of σ, equal to 1° of visual angle. This
processing can effectively reduce noise, such as an iso-
lated point. The stereo focus value of superpixel t relies
on the stereo focus degree of all its pixels. Further, our
observation is that a region with a sharper boundary
usually stands out as being more salient. We set the
boundary sharpness as a weight value, which can be rep-
resented by the stereo focus value of the boundary
pixels. The stereo focus value SF(t) of superpixel t is
formulated as:

Fig. 5 An example of stereo contrast map
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SF tð Þ ¼ 1
m

X
p∈Bt

F3D pð Þ � 1
n

X
q∈t

F3D qð Þ ð9Þ

Bt represents all the edge pixels in superpixel t, m is
the number of edge pixels, and n is the number of all
the pixels in superpixel t. The first term on the right-
hand side of Eq. 9 is the average value of the stereo
focus value for all the edge pixels. The second term is
the average value of the stereo focus value for all the
pixels in superpixel t. The stereo focus model is com-
bined with the monocular focus and the comfort value.
Figure 6 shows the example of the stereo focus map.

3.4 Enhancement
The stereo contrast model and stereo focus model are
superpixel level. To make the salient region more distinct-
ive and separated easily, we propose an enhancement
based on clustering for the two models. In practice, we
use the k-means algorithm to cluster N superpixels to K
clusters via the value of superpixel t. For simplicity, we
use SV to represent SC and SF (SV = SC = SF). To enlarge
the difference between neighboring clusters, each value of
superpixel t belonging to cluster k (k = 1, 2, 3, …, K) is
modified by considering its own value and the other
superpixels in cluster k:

Sm tð Þ ¼ δ
XNc

i¼1;ki≠t

rtkiSVki þ 1−δð ÞSVt ð10Þ

where {k1, k2, …, kNc} denotes the Nc superpixels in clus-
ter k and t is one superpixel in cluster k. δ is the weight
parameter. Sm(t) is the value of superpixel t belonging
to cluster k. rtki is a weight value that relies on the value
of superpixels t and ki. The first term on the right-hand
side of the equation is the weighted average of all the
superpixels without superpixel t in cluster k, and the
other is the weighted value of superpixel t. The weighted
value is more sensitive to the spatial information of
superpixel pairs:

rtki ¼
exp SD ki;tð Þ

−σ22PNc
i¼1;ki≠t exp

SD ki;tð Þ
−σ22

ð11Þ

SD(ki, t) is the spatial distance between the superpixels
ki and t. σ2 is a weight to control the range of the spatial
information. After re-calculating the value of each super-
pixel, the values of the important superpixels in cluster k
are enhanced. Figure 7 gives an example in which two
maps computed by the stereo contrast and stereo focus
models are processed by the enhancement.
Since the content of each superpixel may have more than

one object or texture, a single scale segmentation scheme
is not suitable for objects of different sizes. We conduct
multi-scale segmentation based on controlling the number
of superpixels in the SLIC algorithm. At each superpixel
scale size layer, both the stereo contrast and stereo focus
models are individually applied to calculate their respective
saliency values. A multi-scale pixel-level fusion is intro-
duced to fuse the results for each model. Through this
fusion, the saliency value for each pixel is calculated based
on multi-scale saliency and its texture information.
To deal with the values in the different scales, we adopt

the method to fuse the multi-scale layered value [34]. This
method considers the multi-scale value and its textural in-
formation, which uses the textural feature of the pixel and
its corresponding superpixel as the weight value to average
the multi-scale value. For each pixel, the saliency value re-
lies on the saliency value of each scale and its correspond-
ing weight. The weight considers the textural information
that relies on the difference between the current pixel value
and superpixel value.

3.5 Bayesian integration scheme
At this stage, two saliency maps have been built based on
the stereo contrast and stereo focus models. The next step
is to integrate them; however, as has been discussed [35],
good individual saliency maps may become worse maps
when they are combined by using weights. Therefore, we
adopt a Bayesian model to integrate the two saliency maps
[36]. For the Bayesian model, each pixel’s saliency can be
estimated by the posterior probability. The Bayesian inte-
gration approach is suitable for dealing with two saliency

Fig. 6 The example of the stereo focus map
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maps. When we compute one saliency map, it treats the
other saliency map as the prior while the current saliency
map computes the likelihood. The specific steps are as fol-
lows: when we compute the saliency map S2′ based on the
Bayesian formula, using one saliency map S1 computes the
prior probability and using the other saliency S2 computes
the likelihood. After this, we use the saliency maps in the
formula in the opposite way. In other words, S2 then com-
putes the prior and S1 computes the likelihood. In this
way, the saliency map S1′ is computed. Finally, S1′ and S2′
are combined to obtain the final saliency map. Using this
approach, it is possible to avoid reintroducing the noise in
different saliency features, thereby obtaining a more accur-
ate posterior probability. This model is very robust with re-
gard to various types of images. After Bayesian integration,
we use center bias to conduct post-processing to obtain
the final stereo saliency map, because many datasets place
the salient object or region in the center of the image [37].
Figure 7d is an example of the saliency map after Bayesian
integration and center bias.
The complete visual saliency prediction algorithm can

be summarized as:

4 Results and discussion

In this section, we evaluate the performance of our
proposed model on two eye-tracking datasets [17, 18].

One supplies high-quality stereoscopic images and the
other supplies low-quality stereoscopic images gener-
ated by Kinect-1. First, we present the quantitative
metrics of evaluation for the proposed method in
Section 4.1. To demonstrate the effect of the different
component combinations of our algorithm, a perform-
ance comparison is given in Section 4.2. Last, we give
a performance evaluation by comparing the proposed
methods to state-of-the-art methods in Section 4.3.

4.1 Experimental setup
Our stereo saliency framework is based on the super-
pixel. In the experiment, we set the segmentation scale
of superpixels in the SLIC algorithm. The number of
superpixels was set as {600, 800, 1000, 1200}. The SLIC
algorithm automatically adjusts the shape of each
superpixel based on the segmentation scale and texture
information of the image, which is sensitive to the bound-
ary of the object. In stereo contrast, all distance is normal-
ized to [0, 1] and we set R = 0.3 empirically. The main
parameters of our proposed method are the number of
clusters K and δ in Eq. (10). In the experiment, we varied K
(K = 6, 8, 10, 12) and δ (δ = 0.4, 0.5, 0.6, 0.7), and observed
that the saliency results were insensitive to both parame-
ters. We set the number of clusters K = 10 and δ = 0.5. The
parameters of σ1 and σ2 are given in Eqs. (7 and 11), we dif-
fered these values to [0.01, 3] and observed the saliency re-
sults. Then, we set σ21 ¼ 0:8 and σ22 ¼ 0:6. In Eq. (7), α is
set to α = 0.5, which is the same as in [22].
We used one of the databases from [17]. This data-

base is consistent with the characteristics of the HVS
and includes 18 high-quality stereoscopic images of
various types (e.g., indoor scenes, outdoor scenes, and
scenes containing various numbers of objects). Some
images in the database were collected from the
Middlebury 2005/2006 dataset [38], which has high-

Fig. 7 An example of the proposed visual saliency prediction. a The original left image and depth map. b The maps computed by the stereo
contrast and stereo focus models. c The maps after clustering. d Final saliency map and ground truth
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accuracy depth maps, while others were produced
from videos recorded using a Panasonic AG-3DA1 3D
camera, which supplies high-quality left/right images.
To avoid 3D fatigue resulting from conflict in the
depth field (for example, one object is seen by the left
eye but missed by the right eye), the degree of
vergence in human vision was considered within the
stereoscopic 3D viewing environment in this eye-
tracking experiment. The disparity of the stereoscopic
images used is within the comfortable viewing zone.
The conflict in different depth fields will not be
detected by observers during the eye-tracking experi-
ments. The gaze points are recorded by the eye-tracker
and processed by a Gaussian kernel to generate the
fixation density maps, which are used as the ground-
truth maps.
The other eye-tracking database was published in [18].

This database supplies low-quality stereoscopic images
compared with [17] and has 600 stereoscopic images
that include outdoor and indoor scenes. These stereo-
scopic images generated by Kinect-1 are diverse in terms
of the number and size of objects and the degree of
interaction or activity depicted. The stereoscopic images
only have a resolution of 640 × 480 and may have some
noise because the depth map by the Kinect-1 has some
holes and needs to be smoothed. The stereoscopic image
pair is produced by pre-processing, calibration, and
post-processing. The eye-tracking data are captured in
both 2D and 3D free-viewing experiments by the eye-
tracker from 80 participants (ranging in age from 20 to
33 years old). Human fixation maps are constructed
from the fixations of viewers to globally represent the
spatial distribution of human fixations. Then, a Gaussian
kernel is used to obtain the continuous fixation density
maps as the ground-truth maps. This dataset supplies
2D and 3D fixation maps. To facilitate a comparison, we
used 3D fixation maps as the stereoscopic 3D ground-
truth maps.
To quantitatively evaluate the performance of the pro-

posed model, we applied similar quantitative measuring
methods to [17]. The performance of the proposed
model was measured by comparing the saliency map
with the ground-truth map supplied by the database. Be-
cause there are two images (left and right) for any
stereoscopic image pair, we used the saliency map of the
left image for comparison [17]. The area under the re-
ceiver operating characteristics curve (AUC) and the
correlation coefficient (CC) were used to evaluate the
quantitative performance of the proposed stereo visual
saliency prediction model. Of these measures, the AUC
is the area under the receiver operating characteristics
(ROC) curve [39]. Using this score, human fixations
were considered to be the positive set, and some points
from the image were sampled to form the negative set.

The saliency map S was then treated as a binary classi-
fier to separate the positive samples from the negatives.
By thresholding over the saliency map and plotting the
true positive rate versus the false positive rate, an ROC
curve was generated for each image. Then, the ROC
curves were averaged over all images and the area
underneath the final ROC curve was calculated as the
AUC [40]. Perfect prediction corresponds to a score of 1
while a score of 0.5 indicates a level of chance. To com-
pute the AUC, each eye fixation density map and sali-
ency map were normalized to [0, 1]. In practice, we set
different thresholds from [0.01, 1]. The LCC measures
the strength of a linear relationship between the pre-
dicted saliency map and the ground-truth saliency map.
When CC is close to + 1/− 1, there is almost a perfectly
linear relationship between the two variables.

4.2 Performance comparison with different combinations
of components
Four main components were compared: stereo contrast,
stereo focus, and enhancement and integration via the
Bayesian scheme. The performance of different combi-
nations of components is shown in Tables 1 and 2. SCM
is the saliency map based on stereo contrast followed by
multi-scale fusion. SFM is the saliency map based on
stereo focus followed by multi-scale fusion. SCE is the
saliency map based on stereo contrast followed by en-
hancement. SCE is the saliency map based on stereo
contrast, followed by enhancement. OurWE is the pro-
posed stereo saliency map without enhancement. Our
model is the proposed stereo saliency map.
Table 1 indicates that SFM performs better than SCM

on the database in [17] in AUC and CC. Table 2 shows
that SFM performs better than SCM on the database in
[18] with AUC and CC. The two models performed dif-
ferently on each database, so using either one to form
the saliency map would not result in good performance.
Tables 1 and 2 show that the enhancement slightly im-
proves the performance of the two models with AUC
and CC. However, if we remove the enhancement from
our proposed model, the performance of our model will
be affected. In order to verify the improvement of the

Table 1 Comparison between different component orders in
the database in [17]

Different combinations AUC(→1) CC(→1)

SCM 0.588 0.198

SFM 0.648 0.257

SCE 0.598 0.213

SFE 0.65 0.258

OurWE 0.864 0.557

Our model 0.881 0.656
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enhancement, we conduct a significance test for our
model and OurWe. For the dataset in [17], we use a
paired-samples t test to compare the average perform-
ance of our model with the average performance of the
OurWE model. For AUC, the improvement of the
enhancement is not significant (t(18) = 1.61, P(T ≤ t) =
0.126, P < 0.05). For CC, the improvement of the en-
hancement is significant (t(18) = 3.09, P(T ≤ t) = 0.0067,
P < 0.05). For the dataset in [18], we use an ANOVA to
compare the average performance of our model with the
average performance of the OurWE model. The
improvement of the enhancement is significant in
AUC (F = 14.89, P value = 0.00012, P < 0.05) and CC
(F = 114.948, P value = 1.13E−25, P < 0.05). According
to the results of the significant test, we can see there
are three positive results and one negative result. We
believe that the enhancement can increase the
performance of our proposed model slightly.
From Tables 1 and 2, we can see that the contribution

of stereo focus varies. In Table 1, stereo focus has a
more important contribution than stereo contrast be-
cause the objects of the stereoscopic image from the
database in [17] lie in different focus regions and stereo
focus works more effectively. In Table 2, we can see that
the contribution of stereo focus is less than stereo con-
trast because the content of the database in [18] is more
sensitive to color/depth contrast. Thus, to deal with
these different types of stereoscopic images, we designed
our model based on both stereo focus and stereo
contrast. Figure 8 shows examples of the proposed visual
saliency prediction. We notice that the small cap is not
detected as a salient region in the stereo focus model.
The stereo focus is related to the monocular focus and

comfort value. In this case, the zero disparity plane is at
the big cap according to our comfort value. The mon-
ocular focus model detects the big cap as the focus re-
gion and the small cap is out of the focus region.
Therefore, the salient region is the big cap region and
the small cap is not the salient region in the monocular
focus model. Even if we increase the weight of the com-
fort value (because the small cap is near the zero dispar-
ity plane and it pops out), it is not detected as the
salient region according to the proposed stereo focus
model. In stereo contrast model, the small cap is de-
tected as the salient region because of the pop-out effect.
Although the conflict between the stereo focus and ste-
reo contrast still exists, our proposed model obtains the
acceptable result that has the benefits from the stereo
focus and stereo contrast models. This case shows that
the stereo focus model may not work in the object with
the negative disparity. For improving the performance of
the proposed model, it is necessary to take the stereo
contrast model into consideration.

4.3 Comparison of our proposed method with other methods
First, we compared the proposed model with other
state-of-the-art methods [17]. We compared it with 2D
saliency methods, mixed models, and stereoscopic 3D
saliency models. The 2D saliency methods include IT
[41], AIM [42], SR [43], and GBVS [44] (denoted as 2D
model in Table 3). Mixed model means combining
these 2D models with the depth saliency models pro-
posed by [14] (denoted as 2D × depth (Chamaret)) and
[17] (which have two models denoted as 2D + depth
contrast and 2D + DSM). Model1, Model2, and Model3
were proposed by [17], which were computed by using
the depth saliency model combining three 2D saliency
models. We used a Bayesian integration [36] to process
the 2D model and depth contrast saliency. For a fair
comparison, we added center bias to process the results
of the Bayesian integration. 2D + DSM considered the
center-surrounded mechanisms. We then compared
our proposed model with the stereoscopic 3D saliency
model proposed by [45]. We should note that the stereo
model in [45] has already taken the center bias into
consideration. From Table 3, we can see that the
performance is not improved significantly using the

Table 2 Comparison between different component orders in
the database in [18]

Different combinations AUC(→1) CC(→1)

SCM 0.619 0.148

SFM 0.533 0.115

SCE 0.628 0.154

SFE 0.541 0.116

OurWE 0.849 0.37

Our model 0.861 0.419

Fig. 8 An example of the proposed visual saliency prediction
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depth information as a weighted value (2D × depth
(Chamaret)) in AUC and CC. Directly using depth in-
formation as a weighted value for stereo saliency ana-
lysis does not achieve a good result because the method
does not consider the actual characteristics of the depth
information. By contrast, the performance of the 2D +
DSM and 2D + depth contrast methods are better than
the 2D × depth (Chamaret), precisely because both con-
sider the characteristics of the depth information.
Bayesian integration and center bias increase the per-
formance compared with 2D + depth contrast methods.
The performance of our proposed framework is the
best of all the methods. Figure 9 gives the example of
the proposed visual saliency prediction.
Second, we used the published eye-tracking datasets in

[18] with 600 3D images, including outdoor and indoor
scenes, to evaluate performance. We used the 3D fix-
ation maps as the ground-truth maps. Because we could
not find the code of the DSM in [18], we could only com-
pare our results with the best methods listed in their ori-
ginal paper. The comparative model is DSM, and the 2D
saliency modes are IT [41], AIM [42], FT [46], GBVS [44],
ICL [47], LSK [48], and LRR [49]. To compare the results
of these models, we quantitatively evaluated their per-
formance on the database of the proposed method, using
AUC and CC [50]. The experimental results are shown in
Table 4. Note that the AUC and CC values of the other
existing models were taken from the original paper [18].
From this table, we see that the performance of our pro-
posed model is the best of the 15 stereo visual saliency
prediction models. Here, we notice that our proposed
model does slightly better than the GBVS × DSM. The
reason for this is that sometimes the pop-out effect and
comfort zone will fail because the salient region may be
located in the background or near the background. There-
fore, although the results of our proposed model are

Table 3 Comparison between the proposed framework with
the others. DSM represents the depth saliency map in [17]

Model AUC(→1) CC(→1)

2D model IT 0.538 0.137

AIM 0.638 0.326

SR 0.63 0.291

GBVS 0.809 0.54

2D × depth
(Chamaret)

IT × depth 0.54 0.137

AIM × depth 0.636 0.299

SR × depth 0.634 0.292

GBVS × depth 0.771 0.515

2D + depth
contrast

IT + depth contrast 0.596 0.211

AIM + depth contrast 0.644 0.343

SR + depth contrast 0.662 0.307

GBVS + depth contrast 0.799 0.53

Bayesian
integration

IT ⊕ depth contrast 0.668 0.254

AIM ⊕ depth contrast 0.713 0.336

SR ⊕ depth contrast 0.714 0.369

GBVS ⊕ depth contrast 0.787 0.511

Center bias CB(IT ⊕ depth contrast) 0.798 0.547

CB(AIM ⊕ depth contrast) 0.830 0.61

CB(SR ⊕ depth contrast) 0.844 0.629

CB(GBVS ⊕ depth contrast) 0.856 0.632

2D + DSM Model1 0.656 0.356

Model2 0.675 0.424

Model3 0.67 0.41

Stereo model [45] CB (CNSP) 0.79 0.48

CB (CNMC) 0.78 0.63

CB (GNLNS) 0.77 0.65

Our model 0.881 0.656

Fig. 9 Stereo comfort zone based on human stereo vision. DSM represents the depth saliency map in [17]
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better than the other existing models, it is not much better
than GBVS × DSM.

5 Conclusions
In this paper, we exploit two characteristics of stereo-
scopic vision and propose stereo visual saliency predic-
tion based on stereo contrast and stereo focus. Stereo
contrast is a product of color and depth contrast and the
pop-out effect describes the contrast in objects. Stereo
focus is based on the focus mechanism of human stereo
vision, which describes the region of human focus. For
each value of the two models, we individually enhanced
the important region to make it more distinctive. The
two values were individually converted into two saliency
maps using multi-scale fusion. Lastly, both saliency maps
were integrated using Bayesian integration. Experimental
results show that our proposed model can process
stereoscopic images from different stereoscopic capture
devices to achieve the best performance on two eye-
tracking databases compared to existing methods.
In the present study, even if the performance of the

proposed model is good, our model still suffers from
some limitations. The main one is that in some cases,
the pop-out effect and comfort zone may fail in stereo-
scopic saliency analysis. For example, if the salient
region is located near the background, the performance
of our model will decrease. The reason for this is that
this case is not suitable for our assumption that the
salient region should be located in the comfort zone or

have the pop-out effect. In the future, we will exploit
more mechanisms of HVS for saliency analysis. We try
to find out how to deal with the conflict between pop-
out effect and comfort zone and how to improve the
accuracy of the salient region if the pop-out effect and
comfort zone are not working very well. Additionally, we
will exploit more features (such as texture contrast,
luminance contrast, the property of divergence, and dif-
ferent monocular focus approaches) to improve our
proposed model in different color spaces.
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