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Abstract

Background: Digital images are captured using sensors during the data acquisition phase, where they are often
contaminated by noise (an undesired random signal). Such noise can also be produced during transmission or by
poor-quality lossy image compression. Reducing the noise and enhancing the images are considered the central
process to all other digital image processing tasks. The improvement in the performance of image denoising methods
would contribute greatly on the results of other image processing techniques. Patch-based denoising methods
recently have merged as the state-of-the-art denoising approaches for various additive noise levels. In this work, the
use of the state-of-the-art patch-based denoising methods for additive noise reduction is investigated. Various types
of image datasets are addressed to conduct this study.

Methods: We first explain the type of noise in digital images and discuss various image denoising approaches, with a
focus on patch-based denoising methods. Then, we experimentally evaluate both quantitatively and qualitatively the
patch-based denoising methods. The patch-based image denoising methods are analyzed in terms of quality and
computational time.

Results: Despite the sophistication of patch-based image denoising approaches, most patch-based image denoising
methods outperform the rest. Fast patch similarity measurements produce fast patch-based image denoising
methods.

Conclusion: Patch-based image denoising approaches can effectively reduce noise and enhance images.
Patch-based image denoising approach is the state-of-the-art image denoising approach.

Keywords: Patch-based image denoising, Bilateral filter, Non-local means filtering, Probabilistic patch-based filtering,
Dictionary learning filtering, K-SVD, Gaussian patch-PCA filtering, BM3D

1 Review
1.1 Introduction
The noise level in digital images may vary from being
almost imperceptible to being very noticeable. Image
denoising techniques attempt to produce a new image that
has less noise, i.e., closer to the original noise-free image.
Image denoising techniques can be grouped into twomain
approaches: pixel-based image filtering and patch-based

*Correspondence: elsakka@csd.uwo.ca
2Department of Computer Science, Middlesex College, Western University,
1151 Richmond Street, N6A 5B7, London, Ontario, Canada
Full list of author information is available at the end of the article

image filtering. A pixel-based image filtering scheme is
mainly a proximity operation used for manipulating one
pixel at a time (pixel-wise) based on its spatial neighbor-
ing pixels located within a kernel. On the other hand, in
patch-based image filtering, the noisy image is divided
into patches, or “blocks,” which are then manipulated
separately in order to provide an estimate of the true
pixel values (patch-wise) based on similar patches located
within a search window. This approach utilizes the redun-
dancy and the similarity among the various parts of the
input image. Figure 1 shows the mechanism of the two
approaches.
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Fig. 1 Image denoising approaches: a filtering based on neighboring pixels located within a kernel in pixel-based denoising schemes and b filtering
based on patches located within a search window in patch-based denoising schemes

It is now common in image denoising field to uti-
lize patch-based models and algorithms instead of pixel-
based approaches to produce most promising estimate
of the noise-free images. However, there are both advan-
tages and disadvantages in the use of patch-based models
and algorithms. There are several advantages of patch-
based approaches. Smoothing flat regions is the most
important aspect. Redundancy between patches enable
patch-based approaches to properly smooth flat reigns. A
second advantage of using patch-based models and algo-
rithms approaches is that it can preserve fine image details
and sharp edges. However, there could be some disad-
vantages for patch-based models and algorithms. First,
although similarity between patches assists in estimating
flat regions, so is the averaging. It is, therefore, quite time-
consuming to group and compare similar patches. This
might mean that each patch has multiple estimates and
patches are overlapped. Secondly, while it may be that
patterns and textures seem clear with less noise, patch-
basedmodels and algorithms usually exploit large number
of parameters, which can be extremely difficult to adjust
properly. We believe that the advantages of patch-based
methods far outweigh their disadvantages, as modern
computers are significantly fast, and have large memory
spaces.
In this work, the patch-based image denoising schemes

are analyzed from two different aspects: (1) the perfor-
mance of patch-based denoising techniques in terms of
image denoising quality and (2) the performance of patch-
based denoising techniques in terms of computational
time, where various patch-based denoising techniques are
addressed.
A literature survey was conducted to evaluate the most

recent patch-based denoising improvements for additive

noise. Following the literature survey, there is an empirical
study, which is used to evaluate the performance of var-
ious patch-based denoising techniques in terms of their
accuracy and run times at various noise levels.

2 Patch-based image filtering
In patch-based denoising techniques, the input noisy
image is divided into patches (i.e., blocks). The blocks
are then manipulated separately in order to provide an
estimate of the true pixel values. In this section, various
patch-based image denoising algorithms are presented
and their efficiency with respect to image denoising are
studied.

2.1 Averaging patch-based: non-local means
Non-local means (NL-Means) is a patch-based filter pro-
posed by Buades et al. [6] as a modification to the pixel-
wise bilateral filter [4, 16, 38, 50, 58, 61]. Like the bilateral
filter, the NL-Means filter blurs the homogeneous areas
and preserves edges. The NL-Means filter divides the
input image into sub-images and then filters each sub-
image separately in a technique that is referred to as being
patch-wise. Each sub-image contains several patches. As
in the bilateral filter, similarity is measured based on two
measurements: (1) the Euclidean distance between the
centers of the patches and (2) the luminance distance
between the patches. In contrast to the bilateral filter,
patches are compared within a search window instead of
with the pixels of the neighbors. This is why it is called
a non-local method. Patches with similar gray levels have
larger weights when they are averaged. Figure 2a shows
the NL-Means patches and how to find the similar patches
in a raster scan in a search window. Figure 2b illustrates
the fact that patches with a similar gray level, for example,
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Fig. 2 Similarity between patches. a NL-Means patches as a raster scan in a search window. b Patch P3 is similar to P1 more than patch P2; hence, P3
will get a weight larger than P2 weight

P1 and P3, should be assigned a larger weight than that
to be assigned to P2. The edges in NL-Means filtering are
preserved regardless of their direction.
The estimated value NL-Means[v]i, for a pixel i, is com-

puted as:

NL-Means[v]i =
∑

j∈I
ω(i, j)[v]j , (1)

where [v]i and [v]j are pixel intensities at locations i and
j, respectively, and ω(i, j) is a similarity measure between
the pixels i and j. The similarity measure weight satisfies
the condition 0 ≤ ω(i, j) ≤ 1 and

∑
j ω(j, i) = 1. The

similarity weight depends on the gray level similarity and
the Euclidean distance between vectors N[v]i and N[v]j,
where N[v]k denotes a square neighborhood of fixed size
and centered at a pixel k. The weights are described as:

ω(i, j) = 1
Z(i)

e−
‖(N[v]i)−(N[v]j)‖2

h2 , (2)

where Z(i) is a normalization factor and h is a filtering
parameter set depending on the noise level.
The level of noise determines the sizes needed for the

search window and patches. For a robust comparison
between patches, the size of the patches increases when
the noise level is high. Accordingly, the value of the fil-
tering parameter h increases as the size of the patch is
increased. Meanwhile, the size of the search windowmust
be increased in order to find more similar patches.
NL-Means filter is considered the cornerstone of many

patch-based denoising methods. It can be adapted eas-
ily to many other applications, such as, multi-view image
denoising. Nevertheless, there are some disadvantages of
NL-Means filter. The filter is computationally expensive

due to the large amount of weight computations between
similar patches. Another disadvantage is that the NL-
Means filter is a spatial domain filter though convolution
can be easily implemented in the frequency domain.
NL-Means filter has toomanymodifications. Improving

the way of assigning the weights between patches would
improve the performance of the NL-Means method. Hed-
jam et al. [25] improved the process of adjusting the
weights in the NL-Means by using Markovian clustering.
Wu et al. [63] used a statistical shrinkage perspective when
assigning the weights in NL-Means via using James-Stein
[30] shrinkage estimator. Lai and Dou [35] introduced
an improved neighborhood pre-classification strategy for
optimized weight kernels of NL-Means filter. Khan and
El-Sakka [32] introduced a variant of the NL-Means
scheme by using a thresholding step to reduce the number
of similar patches before weight averaging the patches.
NL-Means is a spatial domain filter, transferring this

filter to the frequency domain would help in suppress-
ing more noisy signal. Enríquez and Ponomaryov [17]
transferred the patches of the NL-Means to the frequency
domain and used discrete cosine transform with a thresh-
old to estimate true patches. Zhong et al. [69] combined
the NL-Means with Lee filter [36] for SAR image enhanc-
ing. Chan et al. [7] incorporated a median filtering oper-
ation indirectly in the NL-Means method for denoising
low signal noise ratio (SNR) images. Maruf and El-Sakka
[43] projected NL-Means patches into a global feature
space before performing a statistical t test to reduce the
dimensionality of this feature space. They gathered simi-
lar patches globally. Irrera et al. [28] adapted NL-Means
for denoising X-ray images (XNL-Means), and then they
applied an additional multi-scale contrast enhancement in
the frequency domains.
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NL-Means filter could be adapted to improve other
image processing applications (e.g., segmentation, recog-
nition, and video denoising). Zhan et al. [66] introduced
an extension to the NL-Means method for ultrasonic
speckle reduction. They assigned the patch similar-
ity weights iteratively in a lower dimensional subspace
using principal component analysis (PCA). Xu et al.
[65] adapted the NL-Means to be use for microscopy
cell images via a frequency transform. Genin et al.
[20] adapted a modified version of the NL-Means filter
for detecting small objects by background suppression.
Background pixels are estimated by a weighted average
depending on the similarity between neighborhoods pix-
els. Kim et al. [33] adapted the NL-Means filter for noise
reduction and enhancement of extremely low-light video.
They use a motion adaptive temporal filter using gamma
correction with adaptive thresholds before the NL-Means
filter. Xu et al. [64] adapted the idea of patching from the
NL-Means for filtering polarimetric synthetic aperture
radar (POL-SAR) images; they use simultaneous sparse
coding for transferring the patches into the frequency
domain before assigning the weights.

2.2 Probabilistic patch-based filter
The probabilistic patch-based (PPB) filter, which works in
the spatial domain, was proposed by Deledalle et al. [12]
as an extension of the NL-Means filter. The PPB approach
is one of a few denoising techniques that can provide a
general denoising methodology for various noise mod-
els. Thus, it is more general than the NL-Means and can
be applied where there is additive noise or multiplicative
speckle noise. The PPB filter is a statistically based similar-
ity scheme that depends on the distribution model of the
noise. The weighted average is used for the Gaussian noise
distribution in the NL-Means, but the PPB filter applies
smoothing based on the maximum likelihood estimator
(MLE). The PPB is expressed as a weighted maximum
likelihood estimation (WMLE) problem. The weight is
derived from the data by improving the isotropy of the
filter—non-iterative probabilistic patch-based filter (Non-
iPPB)—and it can be iteratively defined based on the sim-
ilarity of the patches—iterative probabilistic patch-based
filter (It-PPB).

2.2.1 Weightedmaximum likelihood estimator
Using a weighted maximum likelihood estimation for
image denoising is not a new technique; it was first used
for image denoising by Polzehl and Spokoiny [51, 52]. PPB
redefined the weights in term of a patch-based approach.
PPB image denoising is considered to be an estimation û
of the true image u which originates from the noisy image
υ. The images are defined over a discrete regular grid �.
A pixel value is described as i, and its neighbor is j at the
location (x, y) ∈ �. The noisemodel is considered as being

defined by the parametric noise distribution “likelihood”
p(i | θ∗

i ), where θ∗
i is an unknown space-varying parame-

ter. The denoising of an image is equivalent to finding the
best estimation θ̂i for θ∗

i for all pixels. The MLE at each
location (x, y) estimates θ̂i from a set Sθ∗

i
of the distributed

random variables around it by:

θ̂i
�= argmax

θi

∑

j∈Sθ∗
i

log p
(
j | θi

)
, (3)

�= argmax
θi

∑

j
δSθ∗

i
(j) log p

(
j | θi

)
,

where δSθ∗
i
is an indicator function for Sθ∗

i
(i.e., δSθ∗

i
= 1 if

j ∈ Sθ∗
i
or 0 otherwise). The indicator function has been

derived from the data as weights ω(i, j) ≥ 0 in Polzehl
and Spokoiny [52] and Polzehl and Tabelow [51], where it
is used as weight for adaptive pixel-wise filters. However,
the indicator function in PPB is used as weight function to
form the WMLE:

θ̂i
�= argmax

θi

∑

j
ω(i, j) log p(j | θi). (4)

2.2.2 Defining the weight between patches
In Subsection 2.1, the weights in the non-local means fil-
ter are defined by comparing the similarities of the two
patches [v]i and [v]j centered around the two locations i
and j, respectively. A weighted Euclidian distance between
the two patches defines the level of similarity. The objec-
tive of the PPB filter is to generalize and extend the idea
of the Euclidean distance weight used in the non-local
means filter so that it can be adapted to non-additive
noise models. The weights used in the probabilistic patch-
based method are estimated using the probability of the
two patches in a noisy image having the same parameters.
By following the same idea as the weight in the non-local
means filter and assuming equal values for i and j in the
two statically similar patches [v]i and [v]j, PPB weights
would be defined as:

ω(i, j)(PPB) �= p
(
θ∗
[v]i = θ∗

[v]j | υ
)1/h

, (5)

where θ∗
[v]i and θ∗

[v]j are the patches extracted from the
image θ∗ and h is larger than 0 , which indicates the size
of the patch in PPB. The h acts as σ in the NL-Means
algorithm in order to control the filtering amount. The
probability of the similarity of the patches pixels is decom-
posed into a product of the probabilities of k neighbors:
∏

k p
(
θ∗
i,k = θ∗

j,k | υi,k , υj,k
)
.

2.2.3 IterativeWMLE denoising
In order to improve the performance of the PPB algo-
rithm, the probability of a similarity is estimated itera-
tively. The weight, at each iteration, is expressed as the
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product of two terms: (1) the probability of the similar-
ity between the noisy patches as described in Subsection
2.2.2 and (2) the probability of the similarity derived from
the previous iteration.
Assume that the previous estimation at t iteration is

θ̂ t−1 for θ∗. Then, the formula in Eq. 5 can be expressed as:

ω(i, j)(It−PPB) �= p
(
θ∗
[v]i = θ∗

[v]j | υ, θ̂ t−1
) 1

h . (6)

This is similar to what was achieved in Subsection 2.2.2,
where the probability of the similarity is decomposed
into a product of the probabilities of the k neighbors:
∏

k p
(
θ∗
i,k = θ∗

j,k | υi,k , υj,k , θ̂ t−1
)
.

From the Bayesian framework, the naïve Bayes model
can be fitted with the maximum likelihood concept. The
probability is estimated using the prior probability and can
be presumed to be proportional to the likelihood:

p
(
υi,k , υj,k , θ̂ t−1 | θ∗

i,k = θ∗
j,k

)
. (7)

The similarity likelihood is computed using:

p
(
θ∗
i,k = θ∗

j,k | υi,k , υj,k , θ̂ t−1
)

∝
p

(
υi,k , υj,k | θ∗

i,k = θ∗
j,k

)

︸ ︷︷ ︸
likelihood

× p
(
θ∗
i,k = θ∗

j,k | θ̂ t−1
)

︸ ︷︷ ︸
prior

. (8)

The likelihood term is to compute the degree of similar-
ity between the patches, and the prior term is to compare
the two probability distributions from the previous itera-
tion, similar to Polzehl and Spokoiny [51].
The scheme, Fig. 3, shows the procedure of iteratively

competing the weights in the PPB algorithm. The proce-
dure for defining the weights is estimated iteratively by
(1) the PPB weights estimator (PPBWE) uses the like-
lihood term and the estimated value from the previous
iteration in order to compute the prior term (Eq. 8), (2)
WMLE uses the PPBWE estimation and the noisy image
in order to estimate the new weight (Eq. 4), and (3) the

PPBWE and the WMLE steps are repeated until there is
no difference in the estimations made from the two steps.

2.2.4 Algorithm used in the case of Gaussian noise
The PPB filter can be used for filtering additive white
Gaussian noise (AWGN). By assuming the AWGNmodel,
the values of the pixels I of the patch [v]i are distributed
based on the Gaussian distribution ℵ (

u, σ 2). Here, u is
the noiseless image and σ the noise variance. The noise-
less image u can be estimated by the weighted average that
maximizes the WMLE defined in Eq. 4:

üi(WMLE) =
∑

j ω
(
i, j

)
I2j∑

j ω
(
i, j

) . (9)

In order to estimate the weighted average ω
(
i, j

)
, two

terms are considered: the likelihood and the prior terms.
The likelihood function is discretized as:

p
(
Ii,k , Ij,k | ¨ui,k = ¨uj,k

)
︸ ︷︷ ︸

likelihood

∝ exp
(

−| Ii − Ij |2
4σ 2

)
, (10)

and the prior term is discretized as:

p
( ¨ui,k = ¨uj,k | üt−1)

︸ ︷︷ ︸
prior

∝ exp
(

− 1
T

| üt−1
i,k − üt−1

j,k |2
σ 2

)
.

(11)

By combining the two terms in Eqs. 10 and 11, the
weight at any iteration is defined as:

ω(i, j)(It−PPB) =
exp

[
−∑

n

(
1
h

|Ii−Ij|2
4σ 2 + 1

T
|üt−1

i,k −üt−1
j,k |2

σ 2

)]
,

(12)

where n is number of pixels and T is a constant similar to
h in Eq. 2. When there is no iteration “posterior term = 0,”
the filter performs similar to the NL-Means filter.

Fig. 3Weights in PPB algorithm: computing iteratively the weights between two pixels s and t in the probabilistic patch-based (PPB) filter. The PPB
weights estimator (PPBWE) uses the noisy image and the estimation values from the previous iteration in order to estimate the weight



Alkinani and El-Sakka EURASIP Journal on Image and Video Processing  (2017) 2017:58 Page 6 of 27

PPB filter has several advantages and disadvantages. The
main advantage of PPB filtering is that it is a statistical-
based approach, which can be utilized for suppressing
additive Gaussian noise and/or multiplicative speckle
noise. Also, this filter can be adjusted as an iterative fil-
ter or not. Nevertheless, the main drawback of this filter
is the suppression of fine and dark details when denoising.
Another disadvantage of the filter is the high computa-
tional cost when used as an iterative filter.
A further extend patch log likelihood (EPLL) filter,

similar to probabilistic patch-based filter, was proposed
recently by Papyan and Elad [47] via considering a multi-
scale prior.

2.3 Dictionary learning
Dictionary learning (DL) is utilized as a replacement for
the use of a fixed dictionary for representing data. From
the 1970s, data can be represented by using a fixed dictio-
nary, for instance, Fourier of Boussinesq [5] and Wavelets
of Haar [23]. In 1996, Olshausen and Field [45] proposed
an approach to learn the dictionary from a data in order
to optimize the sparsity of the data. The dictionary learn-
ing or k-means singular value decomposition (K-SVD)
was first adapted to image denoising in 2006 by Aharon
et al. [1]. Dictionary learning method finds the best dic-
tionary D = (di)zi=1 of z atoms di ∈ R

n that sparses the
set Y = (

yj
)m
j=1 ∈ R

n×m of signals yj ∈ R
m. In order to

filter a noisy image, each signal yj is considered as a patch
extracted from the noisy image. The sparse code of signal
data y = yj for j = 1, . . . , n is obtained by minimizing a
constrained optimization �0:

min
‖x‖0≤k

= 1
2

∥∥y − Dx
∥∥2 , (13)

where k > 0 controls the amount of sparsity, and �0

pseudo-norm is defined by:

‖x‖o = {i : xi 
= 0} . (14)

In dictionary learning, optimization is performed on the
dictionary D and the coefficients X = (

xj
)m
j=1 ∈ R

p×m for
j = 1, . . . , n, where the set of coefficients is xj of the data
yj. The joint optimization is written as:

argmin
D∈	,X∈χk

E(X,D) = 1
2

‖Y − DX‖2 = 1
2

m∑

j=1

∥∥yj − Dxj
∥∥2 ,

(15)

where 	 is the constraint set:

	 = {
D ∈ R

n×p : ∀i ‖D., i‖ ≤ 1
}
. (16)

The sparsity constraint is set on χk , which is the unit
normalization of the dictionary columns:

χk = {
X ∈ R

p×m : ∀i ‖X., i‖0 ≤ k
}
. (17)

Peyré and Fadili [49] proposed using a block-coordinate
descent minimization approach used by Tseng [59] in
order to minimize X and D.
The dictionary learning algorithm depends mainly on

three steps: (1) patch extraction, (2) sparse coding, and
(3) patch construction. In the first step, several patches
are randomly extracted from the whole input image. In
the sparse coding step, the energies of the X and D dic-
tionaries are iteratively minimized. Patch averaging and
reconstruction occurs in the patch reconstruction step.
Each of the three steps has stages:

1. Patch extraction step:

• The mean of each patch is removed from each
pixels value.

• Patches are sorted based on their energy, those
with a high level of energy are kept by
thresholding.

• Patches are reshaped as columns in order to
form Y.

2. Sparse coding step:

• Each atom in the columns is normalized in
order to form the initial dictionary D.

• Number of the columns is reduced again, before
computing the X coefficients.

• The X dictionary is initially started with zeros.
• The coefficients of dictionary X is updated by:

X = T
(
X − γD′ ((D − X) − Y )

)
,

where T is the thresholding.
• The dictionary D is updated again by:

D = T
(
D − γ

(
(DX − X) − X′)) .

• K is the number of iterations, which is used to
minimize the X and D dictionaries by updating
them iteratively.

• Finally, the coefficients of dictionary X are
multiplied by dictionary D.

3. Patch construction step:

• The result of the multiplication is a new array,
Y1.

• The columns of Y1 are reshaped to form
patches.

• Re-inserting the averages to the patches comes
before averaging the patches to replace the noisy
patch.

The scheme in Fig. 4 shows the steps of the dictionary
learning method for denoising images.
The most important advantage of the DL method is the

sparse representation of the input data. One advantage
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Fig. 4 K-SVD filter: dictionary learning scheme of the K-SVD filter

of the DL is the low number of parameters when com-
pared to other patch-based denoising methods. However,
DL has some drawbacks. The main disadvantage of DL
is the computational burden due to several iterations for
computing the singular value decomposition. Moreover,
DL does not handle images with many flat patches very
well because the singular value decomposition is more
sensitive to textured patches.
The DL method has many modifications. Tian and

Wang [57] made DL more sparsely representative in the
case of less observation values by proposing an adap-
tive orthogonal matching pursuit to adaptively ensure the
sample size. Some of the modifications aim to adapt the
idea of denoising based on dictionary learning to other
image processing applications. Chen et al. [10] general-
ized the idea of the learning dictionary to explore identity
information in multiple frames of videos. They gener-
ated a sparse representation from multiple video frames
for face and body part recognitions. Fu et al. [19] pro-
posed an effective model based on DL for hyperspectral
image (HSI) denoising by considering sparsity across the
spatial-spectral domain, high correlation across spectra,
and non-local self-similarity over space. Kang et al. [31]
proposed a feature-based approach for assessing sim-
ilarity between images. After extracting feature points
from an image, they utilize dictionary learning. Then,
they measured the similarity between images in terms of
sparse representation. A novel self-learning based image
decomposition framework was presented by Huang et al.
[27]. Their framework performs unsupervised cluster-
ing on the observed dictionary via affinity propagation
that allows effectively to identify images components
with similar context information. The framework can

automatically determine the undesirable random noisy
components from true image components directly from a
noisy image. Dictionary learning algorithm was adapted
to filter Chinese character images by Shi et al. [54]. They
divided the image frequency to low and high frequen-
cies. While a Butterworth low-pass filter was utilized to
filter low frequency, the K-SVD dictionary learning algo-
rithm was proposed to filter high-frequency parts which
consists of structure of Chinese characters.

2.4 Patch-based PCA
Recently, over-complete dictionaries with sparse repre-
sentation techniques became very widespread in image
denoising [1, 40, 41], and they are one of the state-of-
the-art denoising algorithms. These methods use over-
complete dictionaries derived from enormous image sets
or from the noisy image itself. They outperform other
denoising techniques due to their ability to provide an
appropriate basis for separating noisy signals from the
true image signals, so they suppress more noise and
preserve edges. Despite the fact that over-complete dic-
tionaries are frequently used for image denoising, such
dictionaries are sophisticated and quite expensive in terms
of memory usage and time. However, patch-based princi-
pal component analysis (PB-PCA) of Deledalle et al. [13]
is a modification of the dictionary methods.
PB-PCA uses simple orthogonal dictionaries con-

structed by using principal component analysis. The
results of PB-PCA still do not outperform the over-
complete dictionary methods, but PB-PCA shows how
simple orthogonal dictionaries can achieve excellent
results with less sophistication. PB-PCA simply learns the
orthogonal dictionaries from the noisy image via principal
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component analysis. The next step is to threshold the
patches’ coefficients in the dictionaries. This idea is simi-
lar to the wavelet denoising methods used in [8, 9, 14], in
which they use either hard thresholding or soft threshold-
ing for zeroing the coefficients. Figure 5 shows extracting
patches used in the PB-PCA method from an image and
grouping them before computing the PCA.
For the problem of denoising an image that is inter-

rupted by AWGN, the patch model has the following
formula:

[v]i =[u]i +zi, i = 1, .., n − 1, (18)

where [u]i is the true image patch, zi is the AWGN noise,
[v]i is the noisy patch, and n is the number of patches. By
assuming [v]i , .., [v]i−1 are a group of overlapped patches
of size N × N extracted from the noisy image υ, the
covariance matrix is the sum of:

∑
= 1

n

n∑

i=1
[v]i [v]′i −ῡῡ ′, (19)

where

ῡ = 1
n

n∑

i=1
[v]i .

In PCA, the singular value decomposition (SVD) of
the covariance matrix

∑
is processed. Moreover, the

eigenvalues g1, · · · , gn−1 of the covariance matrix and the
corresponding eigenvectors G1, · · · ,Gn−1 are calculated.
Eigenvectors are called the principal components “axis” of
the processed data and are used to form an orthogonal
basis,Gi is the the ith principal axis of the data. Due to the
orthogonal basis of the principal components, an image
patch can be decomposed as [v]i = ∑n

i=1 〈[v]i | Gi〉Gi.
Figure 6b, c shows the first and last 16 principal axes of
the all patches obtained from the house image shown in
Fig. 6a.
By assuming that the true image pixels have a low-

dimensional subspace and the noise is spread in all direc-
tions, projecting the axes into the first axis would suppress
the noise in the noisy image. Projecting the axes is called

coefficient thresholding, and it is done by using an appro-
priate shrinkage function. A general formula for estimat-
ing a true image is:

ˆ[u]i = ῡ +
n∑

i=1
η (〈[v]i −ῡ | Gi〉)Gi, (20)

where η is the shrinkage function.
PB-PCA filtering method has been tested with four

shrinkage functions: (1) soft thresholding (ST); (2) hard
thresholding (HT); (3) Keep or Kill (KoK), and (4) Wiener
filter [62]. Figure 7 shows a comparison between the four
different projection methods into the basis by PCA for the
House and Cameraman images. From Fig. 7, it can be
seen that hard thresholding with a large number of axes is
the best of the four projection methods. Using a Wiener
filter as a shrinkage function for the PCA has been pro-
posed byMuresan and Parks [44, 67]. The Zhang et al. [67]
algorithm will be discussed in Subsections 2.4.1.
PB-PCA has three variants based on how each set of

patches is collected from the input noisy image before the
PCA process. In PB-PCA, the three variants for collect-
ing patches are globally, locally, or hierarchically. Figure 8
shows the best means of collecting the patch sets globally,
locally, or hierarchically. These variants are discussed in
the following subsections.

2.4.1 Patch-based global PCA
Collecting patches for a PCA can be done globally
from the entire noisy image in patch-based global
PCA (PGPCA). This approach is faster than the other
approaches, which need time to divide the image into sub-
images before computing the PCA coefficients. However,
it has less filtering quality. Collecting patches globally for
PCA filtering has been used in Bacchelli and Papi [2] and
Zhang et al. [67]. The Bacchelli and Papi algorithm uses a
linear transformation, “a wavelet transform,” before com-
puting the PCA in order to achieve better results. The
Zhang et al. algorithm collects patches globally, but it
computes the PCA in two stages.

Fig. 5 Patches of PB-PCA method: extracting patches in PB-PCA method and grouping them before PCA
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Fig. 6 The principal components “axis” of the house image: a is the input image, b is the first 16 principal axes of the all patches obtained from the
house image, and c is the last 16 principal axes of the all patches obtained from the house image [13]

The PGPCA approaches cannot compete with other
local or semi-local approaches, which consider the high
level of redundancy occurring between neighboring
patches. In the global PGPCA, one original basis for the
whole image, which impacts negatively on the denoising
process. The global PGPCA does not identify the rare
patches because they do not exert a strong influence on
the total variance. However, an allowance can be made
for these limitations by considering the local redundancy
between patches.

2.4.2 Patch-based local PCA
In the patch-based local PCA (PLPCA) approach, patches
are collected locally in order to overcome the limitations
of the global PGPCA approach. The local collection of
patches means that the patches are collected within a
small region of interest in the noisy image. A fixed search
window N × N is applied to the whole image. Since the
patches are overlapped in PLPCA, there will be multiple
estimates for a single pixel. Averaging is used to compute
a single pixel’s value.

The advantage of this approach is that the orthonor-
mal basis is adapted only to the sub-image and not to the
whole image. However, this approach has two limitations:
the overfitting and the fact that it is time-consuming.
The overfitting problem is due to the limited number
of patches on which to compute the PCA. PLPCA is
extremely time-consuming because the PCA needs to be
computed repeatedly.
Fei et al. [18] collected patches locally, but they

improved their approach by using geometric structure
clustering to guarantee that only patches with similar
properties were gathered. Pal et al. [46] considered patch
redundancy in order to improve on the global two-stage
PCA approach of Zhang et al. A sliding window that
moves with a step s = Wp−1

2 , where s is the step size
and Wp is the window’s current location was utilized as a
modification in order to reduce the time-consuming ele-
ment of the PLPCA approach. The computational time is
divided by s2 without losing the denoising quality. Zhang
et al. [68] proposed using similar patch-based local PCA

Fig. 7 Different PB-PCA projections: a comparison between PSNR of the different methods of the projections in PB-PCA for the House and
Cameraman images. The threshold ratio (λ/σ) into the bottom of x-axis controls the number of axes kept in the upper x-axis. σ is the noise variation,
and λ is chosen by cross validation [13]
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Fig. 8 Collecting a set of patches in PB-PCA filtering: a global PCA, b local PCA, and c hierarchical PCA

filter with an extended step where a Wiener filter is finally
applied.

2.4.3 Patch-based hierarchical PCA
In the patch-based hierarchical PCA (PHPCA) approach,
an algorithm builds a hierarchy cluster of the patches.
Clustering is the task of grouping a set of patches into the
same cluster, i.e., set. There are different cluster models;
each model has several clustering algorithms. The models
include connectivity models (e.g., hierarchical cluster-
ing) and centroid models (e.g., k-means). The hierarchi-
cal clustering is based on the concept of the grouping
of patches according to a maximum distance between
patches. Patches are represented as a dendogram, which is
a Greek word meaning a tree diagram that illustrates the
arrangement of the patches. In centroid models, vectors
are assigned usually to a number k of fixed clusters. For
more information about the clustering models, readers
are referred to Chapter 17 in Introduction to Information
Retrieval by Manning et al. [42].
The objective of the PHPCA approach is to offer a solu-

tion that can provide a result between the PGPCA and
PLPCA approaches, which is less time-consuming than
the local approaches and is more adapted to local sub-
images. PHPCA uses a geometric partitioning to first
divide the image into four areas, and then it estimates the

principal axis for each area. Each area has its own prin-
cipal components. This process is repeated until the end
of the tree is reached. Several dictionaries share the first
axes. Figure 8c shows how an image can be divided to
sub-images.
The most important advantage of patch-based PCA fil-

ter is its ability to produce a solution for image denoising
using a modest orthogonal dictionary with PCA of the
input data. Moreover, a patch-based PCA filter provides
various grouping stages to fit user needs—local, global,
or hierarchical. The main disadvantage of PB-PCA is its
susceptibility to overfitting due to few training patches
when performing the PCA locally. Also, PB-PCA is quite
expensive in terms of time since PCA needs to be per-
formed repeatedly.

2.5 Sparse 3D transform-domain collaborative filtering
Block matching 3D algorithm (BM3D) is the state-of-the-
art denoising technique by Dabov et al. [11]. It is based on
modified sparse representation in the frequency domain.
BM3D groups the patches into 3D data arrays instead of
into 2D arrays, then it applies a modified sparse repre-
sentation in the frequency domain. Collaborative filtering
is used to deal with the 3D arrays. BM3D’s algorithm
depends on two steps: (1) collaborative hard thresholding
and (2) the collaborative Wiener filtering. The two steps

Fig. 9 BM3D filtering: the two steps of BM3D filtering [11]
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Table 1 Parameters set for the original BM3D

Symbol Description Fast BM3D
Normal BM3D

σ ≤ 40 σ ≥ 40

Step 1 (hard) parameters T2Dhard 2D transform Bior1.5 Bior1.5 DCT

T3Dhard 3D transform Haar Haar Haar

Nhard
1 Patch size 8 8 12

Nhard
2 3D array size 16 16 16

Nhard
step1 Patch step 6 3 4

Nhard
search Window size 25 39 39

Nhard
step2 Window step 6 1 1

Nhard
Prev. Small window 3 – –

βhard Kaiser window 2.0 2.0 2.0

λ2D 2D thresholding 0 0 2.0

λ3D 3D thresholding 2.7 2.7 2.8

Thardmatch Distance 2500 2500 5000

Step 2 (Wiener) parameters T2DWiener 2D transform DCT DCT DCT

T3DWiener 3D transform Haar Haar Haar

NWiener
1 Patch size 8 8 11

NWiener
2 3D array size 16 32 32

NWiener
step1 Patch step 5 3 6

NWiener
search Window size 25 39 39

NWiener
step2 Window step 5 1 1

NWiener
Prev. Small window 2 – –

βWiener Kaiser window 2.0 2.0 2.0

TWiener
match Distance 400 400 3500

allow the BM3D to suppress more noise and to preserve
more detail. The amount of noise is suppressed in the
thresholding step, and the details are restored in the sec-
ond step. Collaborative hard thresholding has three func-
tions: (1) 3D transform, (2) shrinkage, and (3) 3D inverse
transform. The patches in the 3D arrays are overlapped,
so a weighted average is used to obtain one estimation for
each pixel. Aggregation is the averaging procedure. A sig-
nificant filter is obtained by using the BM3D algorithm.
The scheme in Fig. 9 shows the two steps of BM3D fil-
tering. Below, the two steps of the BM3D algorithm are
described. First, the collaborative hard thresholding step is
explained. Then, using the collaborative Wiener filtering
is discussed.

2.5.1 Step 1: thresholding
Grouping: Similar to the NL-Means, a search window is
used to determine the similarity between the patches. The
search window is used in order to benefit from the high
redundancy among the neighboring patches. There are
several different grouping techniques. A number of these
techniques have been discussed in this survey. Some other
useful techniques for grouping could be considered for

patch grouping, such as vector quantization [21], k-means
clustering [39], self-organizing maps [34], and others dis-
cussed in this survey [29]. However, grouping in BM3D
is based on the similarity distance between patches, the
“Euclidian distance.” The grouping stage is the first of the
two steps in which similar patches are gathered to form
3D arrays. Similarity is computed according to the dis-
tances between the patches. Patches with a distance that
is below a fixed threshold are considered to be similar
and are grouped into the 3D array. Before measuring the
distance, a coarse pre-filtering is used to linearly trans-
form the patches using a 2D linear transformation such as
multiple wavelet transforms [15, 53]. The formulation in
Eq. 21 is used to compute the similarity distance between
patches,

Dst
(
[v]i , [v]j

) =
∥∥γ 2D(

T2D
hard([v]i)

)−γ 2D(
T2D
hard([v]j)

)∥∥2
2(

Nhard
1

)2
,

(21)

where [v]i , [v]j are respectively the reference patches at i
and its neighbors at j, T2D

hard is the 2D linear transform,
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Fig. 10 The four used images in the experiment: a Barbara image 512 × 512, b House image 256 × 256, c CurvedBand image 257 × 257, and
d Chessboard image 256 × 256

γ 2D is a hard-thresholding operator equals to λ2D × σ ,
and

(
Nhard
1

)2 is the patch size N × N . σ is the estimated
noise standard deviation. γ 2D makes all coefficients with
absolute value less than the threshold (λ2D × σ) equal to
zero, and it leaves the other coefficients unchanged. After
computing the Euclidian distance, grouping the similar
patches into a 3D array is required. The formulation in
Eq. 22 is used for gathering similar patches.

3D Shardi =
{
j ∈ � : Dst

(
[v]i , [v]j

) ≤ Thard
match

}
, (22)

where 3D Shardi is the constructed 3D array contains simi-
lar patches and Thard

match is the maximum distance between
two similar patches. The maximum grouped patches size
are restricted to Nhard

2 . The next stage is to apply the col-
laborative filter by (1) performing a 2D linear transform
then a 1D linear transform, (2) shrinkage, and (3) inverting
the 1D transform and the 2D linear transform.

Collaborative filtering: Once the 3D array is built, a col-
laborative filter is used for suppressing the noise. A 3D
transform is applied to the 3D array, before the shrinkage
of the transforming coefficients. The 2D transformation
in the grouping stage is applied along both horizontal and
vertical lines for each patch, and then a third transfor-
mation is conducted along the third diminution of the
3D array for the 3D transform. The formulation of the
collaborative filter is:

3D ûShardi
= T3D−1

hard

(
γ 3D

(
T3D
hard

(
3D Shardi

)))
, (23)

where T3D
hard is the 3D linear transform of the first (hard)

step, T3D−1
hard is the inverse of 3D transformation, and γ 3D is

a hard-thresholding operator equals to λ3D×σ . γ 3D makes
all coefficients with absolute value less than the threshold
(λ3D × σ) equal to zero.
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Aggregation weights: At this stage, overlapped patches
in the 3D array

(
3D ûShardi

)
have multiple estimates for

each pixel in the reference patch at the location i. A
weighted averaging procedure is required to provide an
estimate for each pixel. Weights in BM3D are inversely
proportional to the total variance of the patches in the
3D ûShardi

array. When the total variance is high, a small
weight is assigned to the patch.
The amount of the additive noise is independent when

processing the collaborative filter in step 1 and step 2.
Thus, the total variance is not the same after applying the
collaborative filter in the first and second steps. In step 1,
the total variance is computed by σ 2 × Nhard

non−zero, where
Nhard
non−zero is the number of non-zero coefficients after the

hard thresholding. The total variance calculated in step 2
depends on the results of the Wiener filter coefficients,
the weights of step 2 will be explained on the facing page.
However, the weights for step 1 is equal to:

ωhard
i =

{ 1
σ 2×Nhard

non−zero
,

1,
if → Nhard

non−zero ≥ 1
otherwise . (24)

2.5.2 Step two:Wiener filter coefficients
Grouping: Grouping in the second step is in some ways
similar to the grouping in the first step; but here, the
power spectrums of the first step are grouped, not just the
patches from the noisy image. The same formula is used:

3D SWiener
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
j ∈ � :

∥∥∥∥ûShard[v]i
− ûShard[v]j

∥∥∥∥
2

2(
NWiener
1

)2 ≤ TWiener
match

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(25)

where ûShard[v]i
and ûShard[v]i

are the estimated sub-images from
step 1 respectively at locations i and j, respectively. At this
stage there are two groups: (1) a group of similar patches
derived from the noisy image and (2) a group of similar
patches derived from the first step.

Collaborative filtering: After grouping the patches, a
3D transform is applied to the 3D array of the grouped
patches. A Wiener shrinkage is applied to the transform
coefficients of the 3D array. The definition of the Wiener
shrinkage coefficients of the power spectrum of the first
step is shown in the equation:

3DWSWiener
i

=
∣∣TWiener

3D
(
3D SWiener

i
)∣∣2

∣∣TWiener
3D

(
3D SWiener

i
)∣∣2 + σ 2

, (26)

where TWiener
3D is the 3D linear transform and 3D SWiener

i
is the result of Eq. 25. The final stage in the collaborative

Wiener filtering of the second step is to multiply the
Wiener shrinkage coefficients element-by-element by the
3D transform coefficients of the noisy image. The inverse
of the 3D transform is applied. Multiplication and the
inverse of the 3D transform are shown in the equation:

3D ûSWiener
i

=
TWiener−1
3D

(
3DWSWiener

i
× (

TWiener
3D (3D νi)

))
,

(27)

where 3D νi is the 3D transform coefficients of the noisy
data.

Aggregation weights: Adjusting the weights in this step
is not like the first step, which depends on the number of
non-zero coefficients reached after the hard thresholding.

Table 2 The performance of the denoising algorithms with
various noise levels (σ )

Bold font indicates the best performance
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The weights, here, depend on the Wiener shrinkage coef-
ficients; the weights are assigned as:

ωWiener
i = σ−2

∥∥∥WSWiener
i

∥∥∥
−2

2
. (28)

The parameters set for the original BM3D is shown in
Table 1; the table has some non-discussed parameters:

Nhard
step1: step size for searching the patches inside the

search window
Nhard
step2: step size for moving the search window

Nhard
Prev.: small search window width for fast BM3D

βhard: the Kaiser window function one parameter for
reducing the borders effect

Haar: a Haar transform
DCT: a discrete cosine transform

Bior1.5: a biorthogonal wavelet

BM3D filter has advantages and disadvantages. The
main advantage of BM3D filtering is that it yields great
results with less loss of detail due to the smoothing
and sharping stages. The BM3D filter is a fast method
because it computes similarity between patches before
the actual filtering procedure. Despite its many advan-
tages, BM3D has several drawbacks. The performance of
BM3D decreases with a high noise level (σ > 40), and it
produces images with many artifacts. BM3D is more com-
plex and less flexible to be adapted for domain-specific
image processing applications. In addition, it is not easy to
be parallelized. In addition, it has many parameters, and
adjusting them optimally is a challenging task.
BM3D has two filtering steps and more than 20 param-

eters. Improving the way of adjusting any of the 20 param-
eters would participate on improving the output of the
BM3D method. BM3D modifications would be catego-
rized into four main categorizes: (1) modifications con-
sider improving the shrinkage function, (2) modifications
consider improving the transforms, (3) modifications con-
sider improving the image similarity measures when col-
lecting similar patches, and (4) modifications consider
improving the Wiener filtering stages. Suwabe et al. [55]
modified the way of collecting similar patches in the
BM3D from non-locally to globally. They proposed using
iterative filtering with Chebyshev polynomial approxima-
tion (CPA) in order to collect the patches from the whole
noisy image. Bashar and El-Sakka [3] replaced the fixed
hard thresholding scheme with a learning-based adaptive
hard thresholding scheme that considers the context of
corresponding blocks. Hasan and El-Sakka [24] improved
the Wiener filter of BM3D by maximizing the structural
similarity (SSIM) [60] between patches instead of using
the mean square error (MSE). Moreover, they introduced
a 3D zigzag thresholding.

3 Results and discussions
In this section, various denoising methods are compared
aiming to reduce additive white Gaussian noise (AWGN).
The objective of this section is to experimentally study the
performance of these methods, where the performance is

Table 3 Execution time in seconds shows the speed of the
denoising methods applied to the four images at various noise
levels (σ )

Bold font indicates the best performance
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Fig. 11 Denoising methods performance: the performance of the denoising methods for the four images at various noise levels (σ )
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Fig. 12 The performance charts: four charts summarize the performance of the denoising methods for the four images when the noise is low
(σ = 10)
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Fig. 13 The performance charts: four charts summarize the performance of the denoising methods for the four images when the noise is low
(σ = 20)

assessed at various noise levels. The issue of time con-
sumption is also addressed. Four images are used to run
this experiment. The images have been chosen carefully to
help in distinguishing between the methods. The first two
of the four images are natural scene images, Barbara and
House; the other two are synthetic images, CurvedBand
and Chessboard. The Chessboard image is a binary
image while the other three images are gray-scale images.
The four images are shown in Fig. 10. The fine details
in Barbara image helps in demonstrating how various
methods preserve the image clarity, whereas the sharp
edges in the House image helps in demonstrating how
various methods preserve edges. The gray gradations in
CurvedBand image provide insight into the amount of
smoothing that has been applied to images. The meth-
ods are also tested with the binary pattern repetitions
in the Chessboard image. MatLab is used for this
experiment. The computer’s processor is an Intel (R)
Core(TM) i7 CPU @ 3.40 GHz. In Subsections 3.1 and
3.2, the methods are evaluated both quantitatively and
qualitatively.

3.1 Quantitative evaluation
In order to make an objective comparison between the
results, two image similarity matrices are used: (1) the
structural similarity and (2) the peak signal-to-noise ratio
(PSNR). These quality metrics have been chosen for their
capability to assess the level of the additive Gaussian noise
degradation. The best result for SSIM is 1, while the
PSNR has good result when its value is high. Equations 29
and 30 show the formulas for these two quality metrics,
respectively:

SSIM(x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2
x + μ2

y + C1
) (

σ 2
x + σ 2

y + C2
) , (29)

where x is the true reference image, y is the noisy image,
μx and μy are the mean of the true reference image
block and the noisy image block, respectively, σx and σy
are the variance/covariance of the true reference image
block and the noisy image block, respectively, and C1
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Fig. 14 The efficiency charts: four charts show the average of the consumed time in seconds for various denoising methods excluding K-SVD

and C2 are constants used to avoid instability. The peak
signal-to-noise ratio is defined as:

PSNR = 10 log
(

(2n − 1)2

MSE

)
, (30)

where MSE is the mean squared error and n is an integer
number representing the number of bits per pixel. When
n = 8, i.e., in case of gray-scale images, the PSNR formula
is reduced to:

PSNR = 10 log
(
2552

MSE

)
. (31)

A study conducted by Hore and Ziou [26] has revealed
that SSIM is less sensitive to additive noise than PSNR.
They used F-score test to compare between SSIM and
PSNR which works for AWGN. Thus, the final conclusion
in our study is driven based on SSIM.
The experimental results of the denoising methods are

shown in Tables 2 and 3. The tables show the perfor-
mance of the patch-based denoising methods along with

the famous pixel-based denoising methods: anisotropic
diffusion (AD) by Perona and Malik [48] and the bilat-
eral filter. In both tables, the methods are sorted from the
oldest to the most recent.
The results in Table 2 are computed by measuring the

differences between the original images and the denoised
images. The default parameters shown in Table 1 were
used for the BM3D method, these values are suggested
by the authors of BM3D. The noise standard deviation of
the noisy images, which methods depends heavily on it,
is required to be adjusted accurately before the denoising
process. In case the noise estimation was not given, Ghazi
and Erdogan [22], Tai and Yang [56], and Liu et al. [37]
offer more information about noise estimation. The
highest values of SSIM and PSNR are highlighted with
a bold font. Table 3 shows the execution time of the
methods in seconds. The fastest patch-based methods are
highlighted with a bold font.
The performance of the denoising methods varies

depending on the noise level and the scene details inside
noisy images. For example, the pixel-based bilateral filter
outperforms the famous patch-based NL-Means method
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Fig. 15 Denoised Barbara images: a Original Barbara image; b AWG noise, σ = 40; c AD ; d bilateral filtering, e NL-Means filtering, f K-SVD, g BM3D,
h non-itPPB, i it-PPB, j PGPCA, k PLPCA, and l PHPCA

when denoising the Chessboard image at σ ≤ 10
because of the large number of flat regions. Using
pixel-based methods is not recommended when standard
deviation of a noisy image is above 40. Although promis-
ing results have been achieved by BM3D when denoising
flat and textures scene images at high noise levels σ > 10,
the performance of BM3D decreases when denoising
images have a lot of fine details regions at σ ≤ 10;

see the results of Barbara and House images in
Table 2.
Figure 11 shows the performance of the methods with

various levels of noise on each of the four images. The
charts show that BM3D is the best method (from SSIM
point of view) when the noise level is high. BM3D is the
best whether it is used for denoising natural scene or syn-
thetic images. PCA patch-based methods come second
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Fig. 16 Zoomed images of the denoised Barbara image shown in Fig. 15: a original Barbara’s pant; b AWG noise, σ = 40; c AD (Perona & Malik);
d bilateral filtering; e NL-Means filtering; f K-SVD; g BM3D; h Non-itPPB; i It-PPB; j PGPCA; k PLPCA; and l PHPCA

after BM3D when they are used for natural scene images.
The results of K-SVD and the iterative PPB are similar.
The two lines at the bottom of each chart presents

the performance of pixel-wise methods: anisotropic dif-
fusion and the bilateral filter. From the charts, we can
conclude that the block-wise denoising methods perform
better than the pixel-wise methods. When using σ = 10
and σ = 20, the results are similar except with the

pixel-wise methods. The performance of the methods will
be discussed in the following two paragraphs.
Bar charts are used in Fig. 12 to represent the meth-

ods performance when the noise level is low σ = 10.
The charts show that patch-based denoising methods are
similar. The pixel-wise denoising methods perform better
when denoising the synthetic images due to its flat areas
and the absent of details. In contrast, the patch-based
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Fig. 17 Zoomed images of the denoised Barbara image shown in Fig. 15: a original Barbara’s eye cover fold; b AWG noise, σ = 40; c AD (Perona &
Malik); d bilateral filtering; e NL-Means filtering; f K-SVD; g BM3D; h Non-itPPB; i It-PPB; j PGPCA; k PLPCA; and l PHPCA

denoising methods achieved better results when denois-
ing the natural scene images. When the noise level is low
σ = 10, the top two denoising methods for denoising
the natural scene images are PHPCA and BM3D, whereas
the top two denoising methods for denoising the synthetic
images are BM3D and bilateral filter. Yet, the differences
are insignificant.
The charts in Fig. 13 show the methods performance

when σ = 20. By increasing the noise level, the con-
trast between methods becomes obvious unlike when the

noise is low σ = 10. BM3D achieved better results than
other methods in all images. The patch-based denoising
methods perform better than pixel-wise methods.
Figure 14 contains charts that illustrate the average

execution time aspect for each image. The K-SVD meth-
ods are very time-consuming. They are about ten times
as expensive as any other methods. Thus, K-SVD is
excluded from the charts to make it easier to distinguish
between methods. The NL-Mean comes second after the
K-SVD. Although, the BM3D uses two stages to perform
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Fig. 18 Denoised House images: a original House image; b AWG noise, σ = 40; c AD (Perona & Malik); d bilateral filtering; e NL-Means filtering;
f K-SVD; g BM3D; h Non-itPPB; i It-PPB; j PGPCA; k PLPCA; and l PHPCA

the denoising step, it is the fastest patch-based method.
The time consumed for various values of noise is almost
the same, so the high level of noise does not greatly affect
the time consumption of the various methods.

3.2 Qualitative evaluation
The evaluation in this subsection is a subjective eval-
uation, where the quality of the denoised images is

addressed via the visual perception. Denoised images with
AWGN (σ = 40) are chosen to perform this evaluating.
Figures 15, 18, 19, and 21 show the denoised images.
The results of denoising Barbara’s image are shown

in Fig. 15. Figure 15g shows the best achieved result by
using BM3D method. While homogeneous regions are
properly smoothed in BM3D, the sharp edges are pre-
served. The K-SVD and the PCA patch-based methods
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Fig. 19 Denoised CurvedBand images: a original CurvedBand image; b AWG noise, σ = 40; c AD (Perona & Malik); d bilateral filtering; e NL-Means
filtering; f K-SVD; g BM3D; h Non-itPPB; i It-PPB; j PGPCA; k PLPCA; and l PHPCA

come after BM3D, Fig. 15f, j, k, l shows K-SVD and PCA
patch-based results. They apply a good smoothing to the
image, but some edges are destroyed. The non-local mean
method applies less smoothing; thus, the textures shown
in Fig. 15e in Barbara’s pants are preserved; a zoomed
version of Fig. 15e is shown in Fig. 16e. Figure 15h, i shows
how the PPB methods apply a good smoothing, but they
fail to preserve sharp edges and textures, i.e., Barbara’s

eye cover fold. Zoomed versions of Fig. 15h, i are shown
in Fig. 17h, i.
Figure 18 shows the results of denoising the House

image. The best results are achieved by using BM3D and
PPB methods, Fig. 18g–i shows these results. K-SVD and
PLPCA methods have disappointing results, unlike their
results when they are used for denoising Barbara image.
Figure 18f, k show K-SVD and PCA methods results.
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Fig. 20 Zoomed images of the denoised CurvedBand image shown in Fig. 19: a original CurvedBand image; b AWG noise, σ = 40 c AD (Perona &
Malik); d bilateral filtering; e NL-Means filtering; f K-SVD; g BM3D; h Non-itPPB; i It-PPB; j PGPCA; k PLPCA; and l PHPCA

The edges are preserved when using K-SVD, but K-SVD
fails to smooth properly flat areas, i.e., the sky in the
House image. Thin edges are not preserved with PCA
patch-based methods.
Figure 19 shows the denoised CurvedBand image. PPB

methods and BM3D have the best results, the results are
shown in Fig. 19g– i. Unlike BM3D, PPBmethods succeed
more in smoothing the gray gradations; zoomed versions

of Fig. 19g–i are shown in Fig. 20g–i. K-SVD and PCA
patch-based methods have similar results, Fig. 19f, j, k, l
shows these results. They preserve parts of the curve, but
they do not smooth properly flat areas; zoomed versions
of Fig. 19f, j, k, l are shown in Fig. 20f, j, k, l.
Figure 21 shows the denoised Chessboard image.

Figure 21g shows BM3D result, BM3D achieves the best
result when denoising the binary Chessboard’s image.
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Fig. 21 Denoised Chessboard images: a original Chessboard image; b AWG noise, σ = 40; c AD (Perona & Malik); d bilateral filtering; e NL-Means
filtering; f K-SVD; g BM3D; h Non-itPPB; i It-PPB; j PGPCA; k PLPCA; and l PHPCA

NL-Means method has the second good result, unlike its
performance on the other images. Figure 21e shows the
result of NL-Means method. With the K-SVD method
shown in Fig. 21f, edges are preserved and the flat areas
are smoothed appropriately. Disappointed results are
achieved by using PCA patch-based methods; Fig. 21j, k, l
shows the result of using PCA patch-based methods.

4 Summary of contribution
This paper provides a review of the state-of-art patch-
based denoising techniques and compares their effective-
ness for denoising natural, synthetic, and binary images.
Effort is drawn on details like smoothing flat regions
and objects and preserving details such as edges, lines,
and textures. The features, strengths, and limitations of
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the patch-based denoising techniques are also presented.
Moreover, the review covers the issue of time. Finally,
based on years of experience, we believe that this review
will be helpful for researchers to choose suitable denoising
techniques to be adapted further for their image process-
ing applications.

5 Future research directions
Like any other image denoising approaches, many impor-
tant research directions should remain in patch-based
image denoising. Improving patch similarity measures is
suggested for grouping accurately similar patches. More-
over, the research should also produce tools with bet-
ter shrinkage functions to suppress noise and preserve
fine details. Finally, developing effective image transform
strategies that meet the needs to differentiate between a
true and noisy signal is strongly recommended.

6 Conclusions
Among the best denoising methods is patch-based
denoisingmethod, which includes BM3D, NL-Means, and
K-SVD. This paper has dealt with the efficiency of each
of these methods when compared to other patch-based
denoising methods. Experimentally, BM3D method gives
the best result; it performs very well on all images and at
all levels of noise. K-SVD and PCA methods come second
to BM3D. Although the sparsity is learned from the data
itself in K-SVD, K-SVD fails to compete with BM3D. NL-
Means gives an encouraging result at low levels of noise.
Furthermore, PPB methods preserve the fine details but
fails to do so with respect to the sharp edges.
K-SVD is incomparable with the other compared meth-

ods in terms of its time consumption. As it is very expen-
sive. In contrast, BM3D execution time is the best among
the patch-based denoising methods because it computes
all similarity between whole patches first before starting
the actual denoising process.
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