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Abstract

We present a new image restoration method by combining iterative VanCittert algorithm with noise reduction
modeling. Our approach enables decoupling between deblurring and denoising during the restoration process, so
allows any well-established noise reduction operator to be implemented in our model, independent of the VanCittert
deblurring operation. Such an approach has led to an analytic expression for error estimation of the restored images
in our method as well as simple parameter setting for real applications, both of which are hard to attain in many
regularization-based methods. Numerical experiments show that our method can achieve good balance between
structure recovery and noise reduction, and perform close to the level of the state of the art method and favorably
compared to many other methods.
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1 Introduction
Image restoration aims to compensate for or undo the
defects that degrade an image. Degradation can come in
many forms such as motion blur, noise, and camera defo-
cus. In optical microscopes, there are predominately two
sources for degradation in the imaging systems, blurring
and noise, which can be described by the general imaging
model

J = PI + N , (1)

where I, J are the ground truth and the corresponding
observation, respectively, P is a point spread function
(PSF), and N is a noise which is assumed to be indepen-
dent to the ground truth. The simplest way to estimate the
ground truth from the observation is by minimizing the
residual,

min‖J − PI‖22, (2)

which can lead to the least square solution. Unfortunately,
a unbounded noise will be introduced into the solution
because the PSF matrix always has small eigenvalues even
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it is invertible. This is not surprising as (2) is well known
to be ill-posed [1].
There are now vast literatures to tackle the problem

of image restoration. A recent trend is concentrated on
a sparse block matching 3-D (BM3D)-based restoration
technique. BM3D algorithms are initially developed for
collaborative filtering through a non-local modeling of
images by collecting similar image patches in 3D arrays
[2]. They have recently been incorporated into image
restoration for solving regularized inverse problems for
image denoising as well as deblurring [3]. Another devel-
opment based on BM3D is sparse representation for
image restoration, where the image is considered to be
a combination of a few atomic functions taken from a
certain dictionary and can be parameterized and approx-
imated locally or non-locally by these functions [4]. The
dictionary is usually considered as an over-complete sys-
tem in order to better describe all variety of images. There
are now many published works on the sparsity-based
models and methods [5]. For example, the formulation
of IDD-BM3D image modeling in terms of the over-
complete sparse frame representation for image recon-
struction has led to impressive restoration performance
[6]. This approach allows decoupling between deblurring
and denoising by considering the optimization problem
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as a generalized Nash equilibrium balance of two objec-
tive functions. A distinct advantage of this approach is
that various denoising algorithms can be selected inde-
pendently with respect to deblurring algorithms, which
have demonstrated better performance than those where
deblurring and denoising are jointly performed in many
cases. However, for the decoupled algorithms such as [6],
[7], and [8], the parameters setting for optimal perfor-
mance of regularization is usually complicated and rea-
sons for the best setting are often not explained. Another
shortage of these methods is the lack of error analysis for
the solutions because of the complexity of the regulariza-
tion factors.
In this paper, we present a new image restoration

method based on the inverse operator theory. As we
know, the inverse operator theory [9] gives the solution of
P−1J = I+P−1N for the general imagingmodel (1), where
P−1 is the inverse or pseudo-inverse of the PSF matrix.
Due to small eigenvalues of P, P−1N leads to significant
noise amplification to the ground truth. To overcome this
problem, we propose a new approach that combines itera-
tive VanCittert algorithm with noise reduction modeling,
the latter enables to reliably estimate the gradient in the
presence of noise so that the VanCittert iteration can con-
verge to the ground truth even when the observation is
noise contaminated. This work has several contributions
to the research area of image restoration. Firstly, it extends
the inverse operator theory to image restoration in the
presence of noise, which offers a different approach to that
of the present popular regularization methods. Secondly,
our method enables decoupling between deblurring and
denoising, so any well-established noise reduction oper-
ator can be selected in our model, independent of the
VanCittert deblurring operation. Thirdly, our approach
allows error analysis of the solutions because the structure
recovery and noise amplification in the VanCittert itera-
tions can be separated analytically, which is an advantage
over many regularization methods for which errors are
difficult to be estimated due to complicated regularization
factors. Finally, parameter setting in our method is simple
and robust to the performance. There are only two param-
eters in our method: σ , as the noise reduction strength,
and s, the interval between two neighboring denoising
operations. We have further developed an automated
parameter setting procedure for our method, which has
no need to set the parameters manually. The above points
have been verified by numerical experiments, which also
show that our method performs close to the level of the
state of the art method and favorably compared to many
other methods.

2 Methods
Our method is motivated by the iterative VanCittert algo-
rithm, which has a long history as a simple and efficient

approach for image restoration. The algorithm is formu-
lated for spatially invariant or variant restoration prob-
lems with neglect of noise contribution in (1). Originally,
it is a steepest descent method but the solution does not
converge if the step parameter is assumed to be real val-
ues. To overcome this shortage, an iterative procedure was
proposed [10],

Ik = Ik−1 + βPT (J − PIk−1), (3)

which converges to the ground truth only if noise in
an observation is negligible, where PT is the transpose
of P. When an observation comprises noise, VanCittert
iteration (3) can be expressed as [9, 11, 12]

Ik =
∑

u,v

(
1 − (

1 − β|ζuv|2
)k)

(I,Zuv)Zuv

+
∑

u,v

1
ζuv

(
1 − (

1 − β|ζuv|2
)k)

(N ,Zuv)Zuv

for k = 1, 2, . . . , (4)

where {ζuv : u = 1, 2 . . . ,R, v = 1, 2, . . . ,C} and Zuv
are the eigenvalues and eigenvectors of P, and R, C are
image size, and u, v the indices of image pixels and β the
step parameter. The first term involving I describes struc-
ture recovery while the second term involving N shows
noise amplification, so structures and noise are separated
in (4). For a noisy observation, however, small eigenvalues
ζuv can lead to significant noise amplification in the sec-
ond term of (4) so the inverse problem becomes ill-posed.
Therefore, we have to suppress the noise in the second
term if the iteration gives any hope to converge to the
ground truth.
To tackle the above problem, we first introduce a noise

reduction operator, � , which minimizes the estimation
error of a cost function. Letting I be the ground truth,
N be a white noise and V = I + N , we define the cost
function for the noise reduction operator,

C(� , I) = E
{‖I − �(V )‖22

}
,

where E{·} is the expectation taken over the noise distri-
bution. The error is measured by L2 norm and averaged
over the noise distribution. For the general imaging model
(1), we propose our method as

⎧
⎪⎨

⎪⎩

Ik = Ik−1 + βPT (J − PIk−1) (5a)
RN = argmin

�
C(� ,Dk), (5b)

Ik = RN (Ik), for k = 1, 2, . . . , (5c)

where Dk = ∑
u,v

(
1 − (

1 − β|ζuv|2
)k)

(I,Zuv)Zuv, is the
first term in (4). As seen from (5), the VanCittert itera-
tion (5a) tends to recover the structures by searching a
solution along the gradient of (2). However, the gradient
is contaminated by noise, leading to noise amplification
in the iterative solution. A noise reduction operation (5b)
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and (5c) is then applied to remove noise and to optimize
the gradient for the next iteration.
As for noise reduction of (5b), ourmethod do not expect

an ideal operator removing all noise [13]. Instead, it can be
any denoising algorithm as long as the operator satisfies
the following condition,

RN (I + N) = I + o(N) and Var(o(N)) ∝ �σ 2, (6)

where σ 2 = Var(N) is the variances of noiseN and� � 1
is the noise reduction factor. The condition (6) implies
that remaining noise o(N) has a variance far less than the
initial noise N after applying the operator RN on a noisy
image. We will show in error analysis below that when the
condition (6) is satisfied, the iterative solution of (5) con-
verges to the ground truth with a higher order small noise
term, i.e., Ik→∞ = I + o(N). A necessary condition for the
iterative process (5) to converge is that |1 − β|ζuv|2| must
fall within [ 0, 1) for all the eigenvalues of P, which leads to

0 < β ≤ minu,v
2

|ζuv|2 . (7)

Since most of PSFs act as a low-pass filter, the maximum
absolute value of their eigenvalues is about 1. This means
that it is easy to set a value for β that satisfies condition (7)
and the following condition:

0 ≤ (1 − β|ζuv|2) < 1for all the eigenvalues. (8)

For example, we set β = 1 in our experiments.
To implement the method (5), we can apply any well-

established noise reduction algorithms to combine with
the VanCittert iteration, for example, the wavelet domain
shrinking filter TSW (V , δ) = Î = Ww, where Î is the
estimated image, W is a group of wavelet bases and w
is a vector of shrinking coefficients depending on the
smooth parameter δ [13]. The smooth parameter δ can be
determined in a similar form to (5b) by

argmin
δ

C(TSW(V , δ), I),

which has a noise shrinkage strength of � = (2logRC +
1)(logRC + 1)/RC, where R and C are the image size.
For images of modest size, � � 1 so the wavelet algo-
rithm satisfies (6). Another popular denoising method
is the state of the art BM3D method. BM3D improves
from wavelet domain shrinking by incorporating the con-
cept of image patches and non-local mean (NLM) [14]
into a transformed domain and has shown the highest
peak signal-to-noise ratio in its performance compared
to the wavelet domain and other algorithms. Moreover,
BM3D has simple parameter setting and is easy to use.
Mathematically, BM3D can be expressed as

OBM3D = AT3D−1WwieT3DZ, (9)

where Z is the stacked noisy blocks, T3D is the transfor-
mation from spatial domain to frequency domain with

discrete cosine bases, and Wwie is the Wiener shrinkage
operator and A is the aggregation operator, all defined in
[2]. In view of the advantage and excellent performance of
BM3D [2], we choose the operator RN = OBM3D in our
method (5) for the numerical experiments below.
We note that while we follow the same decoupled

approach for deblurring and denoising as IDD-BM3D [6],
our method has two advantages. Firstly, structure restora-
tion by the VanCittert algorithm in (5) has a simple step
parameter of β = 1, while the regularization factors for
optimal deblurring in [6] and [7] are much more complex
to set. This leads to overall simple parameter setting of
our method compared to many regularization methods.
Secondly, structure and noise can be separated analyti-
cally in (5), which allows us to perform error analysis for
a restored image, while error analysis for regularization
methods is generally hard to attain due to the complexity
of the regularization factors.

2.1 Error analysis
Given (4), the noise amplification is separated from struc-
tures so VanCittert algorithm allows error analysis for our
method.We begin with the following lemma and then give
theorem (1).

Lemma 1 Let Fk = 1/ζuv
(
1 − (

1 − β|ζuv|2
)k) be the

noise amplification factor in Eq. (4), then 1 ≤ Fk/Fk−1 < 2
for β satisfying (8) and k ≥ 2.

Proof For convenience we set a = (1 − β|ζuv|2), thus
Fk = 1/ζuv(1 − ak). Because of condition (8) a drops in
[ 0, 1). The ratio

Fk
Fk−1

= 1 − ak

1 − ak−1 = 1 + a + a2 + · · · + ak−1

1 + a + a2 + · · · + ak−2

= 1 + ak−1

1 + a + a2 + · · · + ak−2 ,

so 1 ≤ Fk/Fk−1 < 2 for any a ∈[ 0, 1) when k ≥ 2.

Theorem 1 For any operator RN satisfying condition (6)
and β satisfying (8), the iterative solution of model (5)
leads to

lim
k→∞

Ik = I + o(N), (10)

where I is the noise free solution(ground truth) and o(N)

denotes the remaining noise with the variance far less than
the variance of the noise N .
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Proof Let Fk = 1/ζuv(1 − (1 − β|ζuv|2)k) be the noise
amplification factors for k = 1, 2 . . . . Known from lemma
(1), Fk is infinite so there must be a minimum number k
satisfying

Var
(

∑

u,v

(
N
Fk

,Zuv

)
Zuv

)
< Var(N) (11)

when noise N is bounded. Here, we suppose k = 1 for
convenience though this number depends the eigenval-
ues of P. Thus, we start with the iteration solution(4) for
k = 1,

I1 = I0 + βPT (J − PI0)

=
∑

u,v

(
1 − (

1 − β|ζuv|2
))

(I,Zuv)Zuv

+
∑

u,v

1
ζuv

(
1 − (

1 − β|ζuv|2
))

(N ,Zuv)Zuv

= D1 + N1, (12)

where I0 is the initial image andD1 is the first sum on right
side. The first term in (12) is noise-free iterative solution
while the second term is noise contribution with the factor
F1 = βζuv. Since most of the eigenvalues have absolute
values small than 1, Var(N1) ∝ Var(N). Then we apply the
filter (6) to (12) and have

I1 = RN (I1) = RN (D1 + N1) = D1 + o(N1). (13)

The noise is now reduced by a factor � � 1 according
to (6), i.e., Var(o(N1)) ∝ �Var(N1) ∝ �σ 2, where σ 2 is
the variance of noise N .
The intensity of image I1 can be rewritten

I1 = D1 + o (N1)

=
∑

u,v

(
1 − (

1 − β|ζuv|2
))

(I,Zuv)Zuv

+
∑

u,v

1
ζuv

(
1 − (

1 − β|ζuv|2
)) (

o(N1)

F1
,Zuv

)
Zuv,

(14)

where o(N1) = ∑
uv (o(N1),Zuv)Zuv = ∑

uv F1 (o(N1)/F1,
Zuv)Zuv is used and F1 is defined at the beginning of the
proof.

From (14) and (4), we give the iteration solution for
k = 2

I2 = I1 + βPT (J − PI1)

= I1 + βPT
(
PI +

∑

u,v

(
o(N1)

F1
,Zuv

)
Zuv − n1

)

+ βPT
(
N −

∑

u,v

(
o(N1)

F1
,Zuv

)
Zuv

)

=
∑

u,v

(
1 − (

1 − β|ζuv|2
)2)

(I,Zuv)Zuv

+
∑

u,v

1
ζuv

(
1 − (

1 − β|ζuv|2
)2)

(
o(N1)

F1
,Zuv

)
Zuv

+ βPT
(
N −

∑

u,v

(
o(N1)

F1
,Zuv

)
Zuv

)

= D2 +
∑

u,v

F2
F1

(o (N1) ,Zuv)Zuv

+ βPT
(
N −

∑

u,v

(
o(N1)

F1
,Zuv

)
Zuv

)

= D2 + N2.

where N2 is the sum of the two noise terms on the right
side. By (11) and lemma (1), 1 ≤ F2/F1 < 2, Var(N2) ∝
Var(N) = σ 2 is obtained.
Repeating in the operation (13) we have

I2 = RN (I2) = RN (D2 + N2) = D2 + o(N2),

where the variance of o(N2) is far less than that ofN2, also
far less than that of N .
In general, we have

Ik = Dk + Nk ,

where

Dk =
∑

u,v

(
1 − (

1 − β|ζuv|2
)k)

(I,Zuv)Zuv

and

Nk =
∑

uv

Fk
Fk−1

(
o
(
Nk−1

)
,Zuv

)
Zuv

+ βPT
(
N −

∑

uv

(
o(Nk−1)

Fk−1
,Zuv

)
Zuv

)
.

By applying RN to Ik , we get the iterative image

Ik = RN (Ik) = Dk + o(Nk),

where Var(o(Nk)) ∝ �Var(N) = �σ 2. Therefore, the
iterative solutions converge to the real scene and the
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Table 1 PSF and noise variation for each scenario

Scenario Blur PSF σ 2

1 1/(1 + x2 + y2), x, y = −7, . . . , 7 2

2 1/(1 + x2 + y2), x, y = −7, . . . , 7 8

3 9 × 9 uniform 0.3

4 [ 1 4 6 4 1]T [ 1 4 6 4 1] /256 49

5 Gaussian with std = 1.6 4

6 Gaussian with std = 0.4 64

noise is controlled to the order of �σ 2 in the iterative
process.

It can be seen from the above derivation that the sep-
aration of structure recovery from noise amplification in
the VanCittert expression is the key that enables us to
express noise amplification factor in the kth iteration to
be Fk/Fk−1, which is always between 1 and 2 for all k. This
makes it possible to control the noise amplification over a
finite number of iterations by a noise reduction operator
satisfying (6). Consequently, the iterative solution con-
verge to the ground truth with higher-order infinitesimal
noise.

3 Results and discussion
In this section, we undertake two experiments to test
our method and compare the results with existing meth-
ods. The first experiment contains two images, ’Cam-
eraman256.png’ and ’Lena512.tif ’, that are commonly
used for measuring efficiency of algorithms for struc-
ture restoration because they contain elaborate structures,

such as lines, buttons, and textures. These images are the
subjects of a recent extensive investigation by an itera-
tive decoupled deblurring BM3D algorithm (IDD-BM3D)
[6], which is formulated based on the Nash equilibrium
balance of two objective functions undertaking sepa-
rate denoising and deblurring operations. IDD-BM3D has
showed state of the art restoration performance com-
pared to seven other existing methods, which include
Fourier-Wavelet regularized deconvolution (ForWaRD)
[15], space-variant Gaussian scale mixtures (SV-GCM)
[16], shape-adaptive discrete cosine transform(SA-DCT)
[17], BM3D deblurring (BM3DDEB) [3], analysis-based
sparsity (L0-Abs) [18], adaptive total variation image
deblurring by a majorization minimization approach
(TVMM) [19], and finally a method based on spatially
weighted total variation (CGMK) [20]. We test on the
same six scenarios in [6], which have different PSF shapes
and blurring strengths as well as noise levels listed in
Table 1. Comparisons with all the eight methods are made
quantitatively through the measurement of peak signal-
to-noise ratio (PSNR).
As discussed earlier, we choose BM3D (http://www.

cs.tut.fi/~foi/GCF-BM3D) as our noise reduction filter
because it combines the transform-domain filter [13] with
non-local mean filter [14] and has shown improved per-
formance over the both methods individually on their
own. Our method is easy to operate, requiring only two
parameters: noise standard deviation, σ , as an input for
BM3D denoising and the step interval, s, between two
neighboring denoising operations in the iteration (denois-
ing is not necessary for each iteration step for efficient
computing). In general, the two parameters depend on
the levels of blur and noise in an observation (input

Table 2 PSNR of the methods in six scenarios

Scenarios Scenarios

1 2 3 4 5 6 1 2 3 4 5 6

Methods Cameraman (256 × 256) Lena (512 × 512)

Input PSNR 22.23 22.16 20.76 24.62 23.36 29.82 25.61 25.46 24.11 28.06 27.81 29.98

ForWaRD [15] 28.99 27.24 28.10 27.02 26.50 33.74 33.30 31.94 32.81 31.74 32.66 35.45

SV-GSM [16] 29.68 27.71 28.09 27.35 26.61 34.01 - - - - - -

SA-DCT [17] 30.34 28.49 29.31 27.99 27.08 34.53 34.8 33.14 33.63 33.3 33.24 35.87

BM3DDEB [3] 30.42 28.56 29.1 27.96 27.09 34.52 35.2 33.57 33.81 33.62 33.53 36.43

L0-Abs [18] 29.93 27.93 29.72 27.61 26.94 33.21 33.91 32.75 33.63 32.9 33.38 31.96

TVMM [19] 29.64 27.33 29.3 27.19 26.72 31.12 33.61 32.02 33.31 32.33 32.77 32.82

CGMK [20] 30.03 27.65 29.91 27.42 26.9 33.15 34.01 32.41 33.7 32.3 33.09 34.49

IDD-BM3D [6] 31.08 29.28 31.21 28.60 27.67 34.71 35.22 33.65 34.75 33.78 34.01 36.37

Ours(BM3D) 30.73 28.71 30.57 28.25 27.43 34.65 35.29 33.41 34.53 33.70 33.91 36.46

Ours(TSW) 28.62 26.52 27.99 26.18 26.04 32.23 33.90 32.38 32.85 32.43 32.87 34.27

The italicized values in this table indicate the method which leads to the best result among all compared methods

http://www.cs.tut.fi/~foi/GCF-BM3D
http://www.cs.tut.fi/~foi/GCF-BM3D
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Table 3 SSIM of the four methods in six scenarios

Scenarios

1 2 3 4 5 6

Methods Cameraman (256 × 256)

Input SSIM 0.93 0.93 0.92 0.96 0.95 0.98

L0-Abs 0.99 0.98 0.99 0.98 0.98 0.99

BM3DDEB 0.99 0.99 0.99 0.98 0.98 0.99

IDD-BM3D 0.96 0.94 0.95 0.96 0.96 0.99

Ours(BM3D) 0.99 0.99 0.99 0.98 0.98 0.99

Ours(TSW) 0.97 0.97 0.97 0.96 0.96 0.99

The italicized values in this table indicate the method which leads to the best result
among all compared methods

image).We have found that our method can produce good
performance in a large area in the two parameter space,
showing the robustness of the method against the set-
ting of the two parameters. The solutions converge around
1200 iterations for all scenarios except scenario 3 which
requires 10,000 iterations because of severe blur in this
scenario. Due to high noise levels in scenarios 4 and 6,
BM3D is applied to the observations before our iterative
algorithm is implemented. To investigate the effects of dif-
ferent denoising algorithms on the performance of our
method, we have also implemented the wavelet domain
shrinking filter TSW as an alternative denoising operator
in our method. Table 2 shows the results of PSNR for our
algorithm, both with BM3D and TSW, and the eight exist-
ingmethods, the latter are from [6]. From the table, we can
conclude that our method with BM3D outperforms the
existing seven methods for both images under different

scenarios and is not far behind the state-of-the-art IDD-
BM3D. As expected, the algorithmwithTSW performs not
as good as that with BM3D, because the latter is better
than the former as a denoising method.
We have further investigated the above results by using

the structural similarity (SSIM) index matric, which is a
method for measuring the structural similarity between
two images. The results are shown in Table 3. As seen
from the table, L0-Abs, BM3DDEB, and our methods
both with BM3D and TSW have all performed better than
IDD-BM3D in terms of SSIM for the first five scenar-
ios, although IDD-BM3D gives the highest PSNR values
as discussed above. By comparing the results in Tables 2
and 3, it is pleasing to see that our method with BM3D
gives very good and balanced performance in terms of
both noise reduction and structure preservation. Figures 1
and 2 show the restored images by four methods used.
As seen by visual inspection, BM3DDEB produces some
obvious artifacts around the edge of cameraman and L0-
Abs cannot restore some details of the eye in the image
of Lena because of noise. In comparison, IDD-BM3D
and our method with BM3D denoise very well and our
method shows better recovery of elaborative features in
these images.
We have further developed an automated parameter

setting procedure for our method. Here, we first esti-
mate the noise standard deviation in the observation and
set this value as the denoising threshold, σthr . During
the iteration, the noise level of the image is estimated at
each iteration step and when it exceeds σthr , then BM3D
denoising is applied. The procedure is simple to operate,
which can be important for real scene applications. We

Fig. 1 Deblurring of Cameraman image, scenario 3. From left to right and from top to bottom are presented zoomed fragments of the following
images: original, blurred, and noisy, reconstructed by BM3DDEB, L0-Abs, IDD-BM3D, and our method. In our method, the two input parameters used,
(σ , s), are (7.5, 550) for this scenario, (7.5, 85) for scenario 1, (7.5, 25) for scenario 2, (7.5, 10) for scenario 4, (7.5, 50) for scenario 5, and (7.5, 5) for
scenario 6
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Fig. 2 Deblurring of Lena image, scenario 2. From left to right and from top to bottom are presented zoomed fragments of the following images:
original, blurred, and noisy, reconstructed by BM3DDEB, L0-Abs, IDD-BM3D, and our method. In our method, the two input parameters used, (σ , s),
are (7.5, 25) for this scenario, (7.5, 85) for scenario 1, (7.5, 550) for scenario 3, (7.5, 10) for scenario 4, (7.5, 50) for scenario 5, and (7.5, 5) for scenario 6

used this procedure in the second experiment of Jet-
plane.png, and the result are compared with those of
IDD-BM3D and the fast non-convex non-smooth method
(Fnnmm) method [21] on PSNR and text restorations.
Fnnmm introduces non-convex functions applied on dis-
crete total variation as a regularization and provides fast
algorithms to minimize the energy function. The code
of Fnnmm is downloaded at http://www.math.hkbu.hk/~
mng/imaging-software.html. We used the same six sce-
narios as in the first experiment, which in turn allows us
to use the same parameter setting for IDD-BM3D. For
Fnnmm, we fix parameter αep to be 0.5 as given in the
paper and scan the other parameter for each of the six sce-
narios for the highest possible value of PSNR. The PSNR
values of restored images are given in Table 4. As seen in
the table, our method with automated parameter setting,
IDD-BM3D and our method with fixed parameter setting

Table 4 PSNR of the three methods in six scenarios

Scenarios

1 2 3 4 5 6

Methods Jetplane (512 × 512)

Input PSNR 24.98 24.84 23.43 27.31 26.84 29.85

Fnnmm [21] 33.10 30.89 32.97 30.76 30.60 34.91

IDD-BM3D [6] 35.43 33.41 34.58 32.63 32.12 36.60

Ours (fixed parameters) 35.03 32.84 34.57 32.91 32.04 36.65

Ours (automated parameters) 35.44 33.34 34.29 33.35 32.42 36.27

The italicized values in this table indicate the method which leads to the best result
among all compared methods

achieved 3, 2, and 1 best values out of the 6 scenarios,
respectively, but differences among them are small and
all of them are significantly better than those of Fnnmm.
Figure 3 shows a zoomed area of the body of the plane.
Our results show slightly better resolution on some of the
letters on the plane.
Finally, we test the robustness of our method against the

fluctuations of the size of PSF in the model, since the exact
value is usually unknown in practice and is estimated. For
this, we undertake the experiment on image Jetplane.png,
which is blurred by a Gaussian PSF of standard deviation
σ = 2 and noise level of 40 db. We measure PSNR of
the restored images on varying σ by ±10% from the exact
value. As shown in Fig. 4, PSNR decreases from its peak
value of 29.5 on both sides, dropping faster when σ is
larger, due to more noticeable artifacts of the hard shoul-
der and plunge effects around an edge in this situation.
As a result, the restored image looks to artificially have
a higher contrast when σ is larger than the exact value.
Overall, the reduction of PSNR is 2 and 4% by varying the
standard deviation 10% smaller or larger than the exact
value, respectively.

4 Conclusions
In summary, we have developed a new robust iterative
method for image restoration in which an iterative cost
function is utilized to optimize the gradient in the steepest
descent by adaptively adjusting to the current state in the
iterative process. We show that the iterative solution con-
verges to the real scene despite noise contamination in an
observation, and the restoration error can be controlled

http://www.math.hkbu.hk/~mng/imaging-software.html
http://www.math.hkbu.hk/~mng/imaging-software.html
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Fig. 3 Deblurring of Jetplane image, scenario 5. From left to right and from top to bottom are the following images: blurred and noisy, fragments of
original, blurred, and noisy, results of Fnnmm, IDD-BM3D, and ours. In our method (fixed parameters), the two input parameters, (σ , s) , are (7.5, 50)
for this scenario, (7.5, 85) for scenario 1, (7.5, 25) for scenario 2 , (7.5, 550) for scenario 3, (7.5, 10) for scenario 4, and (7.5, 5) for scenario 6. In our
method with automated parameter setting, σthr = 3

by an order of magnitude smaller than the noise level in
the observation. Different from the well-established reg-
ularization methods, which introduce a penalty to solve
the ill-posed problem, we directly apply VanCittert algo-
rithm to minimize residual along gradient for structure
restoration and to suppress noise through a noise reduc-
tion operator. It turns out to be a denoising problem in an
iterativemanner, and the noise can be removed judiciously
by applying existing noise reduction methods. We have
undertaken two numerical experiments to investigate the
performance of this method and compare to existing reg-
ularization methods. We show that our method performs

Fig. 4 PSNR of reconstruction with different PSFs

to the level close to the best of the methods currently
available in terms of recovering elaborate structures and
reducing noise, and favorably compared to the many other
existing methods. Moreover, our method requires simple
parameter setting, particularly in the second experiment
where a single parameter is estimated from the obser-
vation. This could be a great advantage for real-world
applications. We note finally that we have only considered
additive noise in this paper, for images contaminated by
multiplicative noise, some newly developed noise reduc-
tion filters, such as [22] may be applied, which can be our
future work in this area.
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