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Abstract

Random measurement matrices play a critical role in successful recovery with the compressive sensing (CS)
framework. However, due to its randomly generated elements, these matrices require massive amounts of
storage space to implement a random matrix in CS applications. To effectively reduce the storage space of
the random measurement matrix for CS, we propose a random sampling approach for the CS framework
based on the semi-tensor product (STP). The proposed approach generates a random measurement matrix,
where the dimensions of the random measurement matrix are reduced to a quarter (or 1/16, 1/64, and even
1/256) of the number of dimensions, which are used for conventional CS. We then estimate the values of the
sparse vector with a modified iteratively re-weighted least-squares (IRLS) algorithm. The results of numerical
simulations showed that the proposed approach can reduce the storage space of a random matrix to at least
a quarter while maintaining quality of reconstruction. All results confirmed that the proposed approach significantly
influences the physical implementation of the CS in images, especially on embedded system and field programmable
gate array (FPGA), where storage is limited.

Keywords: Compressed sensing, Compressive sensing, Random measurement matrix, Storage space, Semi-tensor
product

1 Introduction
Compressive sensing (CS) [1] theory provides a new way to
sample and compress data. The basic idea of CS is that a
higher-dimensional signal is projected onto a measurement
matrix, by which a low-dimensional sensed sequence is ob-
tained. Meanwhile, [2–4] prove that if the sensed sequence
consists of a small number of non-zero elements, then it
can recover the original signal from the sensed sequence.
CS applications confirm that random measurement matri-
ces are suitable for compressed sensing. However, these
applications require considerable storage space to realize
random matrices [3]. As a result, much work has been done
to reduce the storage space and improve performance.
In [5, 6], an intermediate structure for the measurement

matrix is proposed based on random sampling, called
block compressed sensing (block CS). Using the block CS,
the data sampling is conducted in a block-by-block
manner through the same measurement matrix, which
overcomes the difficulties encountered in traditional CS

technology, for which the random measurement ensem-
bles are numerically unwieldy.
In [7, 8], Thong, et al. introduced a fast and efficient

way to construct a measurement matrix, called the
structurally random matrix (SRM), which attempted to
improve the structure of an initial random measurement
matrix using optimization techniques. SRM is related to
large-scale, real-time CS applications for low require-
ments in storage space.
To reduce the storage space for CS, many determinis-

tic measurement matrices have been designed [9–14].
They satisfy the restricted isometry property (RIP) and
recovered the sparse signal successfully.
In [15, 16], low-dimensional orthogonal basis vectors

or matrices were used to construct high-dimensional
matrices according to the Kronecker product. The pro-
posed algorithm effectively reduces the storage space of
a measurement matrix.
Low-rank matrices and rank-one matrices are attract-

ive because they need less storage space than general
measurement matrices [17–20]. Indeed, if the measure-
ment matrix is sparse, it takes less storage space and

* Correspondence: wjm7878@163.com
Collage of Information Science and Technology, Zhejiang Shuren University,
Hangzhou 310015, China

EURASIP Journal on Image
and Video Processing

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Wang et al. EURASIP Journal on Image and Video Processing  (2017) 2017:51 
DOI 10.1186/s13640-017-0199-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0199-9&domain=pdf
mailto:wjm7878@163.com
http://creativecommons.org/licenses/by/4.0/


incurs less computational cost. Low-rank or rank-one
matrices have been designed to sample and reconstruct
the original signal, obtaining high-quality reconstructions.
All of the above findings are directed at how to reduce

the storage space of a measurement matrix for CS. How-
ever, using the block CS, several block artifacts occur in
the reconstructed images, owing to the block-by-block
manner and the neglect of global sparsity. However, the
SRM method is more complicated and difficult to
achieve. Deterministic measurement matrices require little
storage space and incur less computational cost, but the
accuracy of the reconstruction is not as high as a random
measurement matrix. To reconstruct the original signals,
the Kronecker algorithm must generate an M × N dimen-
sional measurement matrix, and this requires large-scale
memory space.
For the same purpose, we propose a random sampling

scheme for CS. The aim is to propose an algorithm that
can maintain the same reconstruction performance as
conventional compressive sensing, but requires less re-
quired storage for the measurement matrix and less
memory for reconstructing.
The proposed algorithm is based on the semi-tensor

product (STP) [21, 22], a novel matrix product that
works by extending the conventional matrix product in
cases of unequal dimensions. Our algorithm generates a
random matrix, with dimensions that are smaller than
M and N, where M is the length of the sampling vector
and N is the length of signal that we want to reconstruct.
Then, we use the iteratively re-weighted least squares
(IRLS) algorithm to estimate the value of the sparse co-
efficients. Experiments were carried out using the sparse
column signals and images, demonstrating that it out-
performs other algorithms in terms of storage space and
a suitable peak signal to noise ratio (PSNR) performance.
The experimental results show that if we reduce the di-
mensions of the measurement matrix appropriately,
there is almost no decline in the PSNR of the recon-
struction, yet the storage space required by the measure-
ment matrix can be reduced to a quarter (or even 16th)
of the size.
The remainder of this paper is organized as follows: In

Section 2, the preliminaries of the STP and the conven-
tional CS algorithm are introduced. In Section 3, we de-
scribe the proposed STP approach to the CS algorithm
(STP-CS). In Section 4, we present the experimental
results and a discussion. Finally, Section 5 concludes the
paper and contains a discussion of our plans for future
research.

2 Related works
In this section, the concepts of the conventional CS
algorithm and some necessary preliminaries to the STP

are briefly introduced. The STP of matrices was intro-
duced by Cheng [21, 22].

2.1 Semi-tensor product
In [21, 22], the STP is presented as an extension of the
conventional matrix product. For a conventional matrix
product, if Col (A) ≠ Row (B), then matrices A and B are
multiplicative. The STP of matrices, on the other hand,
extends the conventional matrix product in cases of un-
equal dimensions. In [22], the STP is defined as follows:
Definition 1: Let A ∈ℝm × n and B ∈ℝp × q. If either n

is a factor of p—i.e., if nt = p (denoted as A≺tB)—or if p
is a factor of n—i.e., n = pt. (denoted as A≻tB)—then the
(left) STP of A and B can be denoted by C = {Cij} = A ⋉
B, as follows: C consists of m × q blocks, and each block
is defined as

Cij ¼ Ai⋉Bj; i ¼ 1;⋯; m; j ¼ 1;⋯; q;

where Ai is the ith row of A, and Bj is the jth column of B.
If we assume that A≻tB (or A≺tB), then A and B are

split into blockwise forms as follows:

A ¼
A11 ⋯ A1s

⋮ ⋮

Ar1 ⋯ Ars

2
64

3
75; B ¼

B11 ⋯ B1t

⋮ ⋮

Bs1 ⋯ Bst

2
64

3
75:

If Aik ≻t B
kj , ∀ i , j , k (correspondingly, Aik ≺t B

kj , ∀
i , j , k), then

A ⋉ B ¼
C11 ⋯ C1t

⋮ ⋮

Cr1 ⋯ Crt

2
64

3
75; ð1Þ

where Cij ¼Ps
k¼1A

ik ⋉ Bkj , and the dimensions of A ⋉ B
can be determined by deleting the largest common fac-
tor of the dimensions of the two factor matrices. If
A≻t B, the dimensions of A ⋉ B are m × tq. Likewise, if
A≺t B, the dimensions of A ⋉ B are mt × q. In order to
allow the reader to clearly understand the STP, we use
the following numerical example to describe it:

Let X ¼
1
0
3

2
1
3

−1
2
1

2
3
1

2
4

3
5; Y ¼ 1 2

−1 3

� �
: Then

X⋉Y ¼
1 2ð Þ− −1 2ð Þ 2 1 2ð Þ þ 3 −1 2ð Þ
0 1ð Þ− 2 3ð Þ 2 0 1ð Þ þ 3 2 3ð Þ
3 3ð Þ− 1 1ð Þ 2 3 3ð Þ þ 3 1 1ð Þ

2
64

3
75

¼
2
−2
2

0
−2
2

−1
6
9

10
11
9

2
4

3
5:

In comparing the product of the conventional matrix
with the STP of the matrix, it is easy to see that there
are significant differences between them.
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If A ∈ℝm × n , B ∈ℝp × q, and n = p, then

A ⋉ B ¼ AB:

Consequently, when the conventional matrix product
is extended to the STP, almost all of its properties are
nevertheless maintained. Two properties of the STP are
introduced as follows.

Proposition 1 : Suppose A ¼ αij
� �

∈ℝp�qr ;

B ¼ bij
� �

∈ℝr�s; and C ¼ cij
� �

∈ℝqst�l; then

Ap�qr⋉Br�s⋉Cqst�l ¼ A⋉Bð Þp�qs⋉Cqst�l ¼ A⋉B⋉Cð Þpt�l:

ð2Þ

Referring to Proposition 1, the dimensions of the STP
of two matrices can be determined by removing the lar-
gest common factor of the dimensions of the two-factor
matrices. As shown in (2), in the first product, r is de-
leted, and then the qs is deleted.

Proposition 2 : Suppose A ¼ aij
� �

∈ℝm�tp;

B ¼ bij
� �

∈ℝp�p; and C ¼ cij
� �

∈ℝp�p:

The STP satifies the associative law :

A ⋉ Bð Þ⋉C ¼ A ⋉ B ⋉Cð Þ:
ð3Þ

In recent years, the STP has been exploited by a wide
range of applications: in nonlinear system control for
structural analysis and control of Boolean networks [23,
24], in biological systems as a solution to Morgan’s
Problem [25], in a linear system for nonlinear feedback-
shift registers [26, 27], etc. However, we have not yet
seen publicly reported applications for the STP in the
field of CS, to the best of our knowledge.

2.2 Conventional CS algorithm
The conventional CS algorithm can be described simply
as follows. Assume x ∈ℝN × 1, which can be represented
sparsely in a known transform domain (e.g., Fourier, or
wavelet). Although x can be sparse in the current domain
(e.g., time or pixel), we always assume that x is sparse in a
known transform domain. The so-called sparsifying trans-
form can be denoted as Ψ ∈ℝΝ ×Ν. Considering the above
notations, the signal x can be denoted as

xN�1 ¼ ΨΝ�ΝθN�1; ð4Þ

where ΨΨT = ΨTΨ = I, I is the unit for the matrix, and
θ ∈ℝn × 1 is a column vector of sparse coefficients,
having merely k≪N non-zero elements.
Here, the vector θ is called exact-sparse because it has k

non-zeros and the rest of the elements are equal to zero.
However, there might be cases where the coefficient vec-
tor θ includes only a few large components with many

small coefficients. In this case, x is called a compressible
signal, and sparse approximation methods can be applied.
Then, the data acquisition process of the conventional

CS algorithm is defined as follows:

yM�1 ¼ ΦM�NΨΝ�ΝθN�1; ð5Þ
where ΦM ×N ∈ℝM ×N (M <N) is defined as the meas-
urement matrix and yM × 1 ∈ℝM × 1 is treated as
measurements.
As shown in (5), the higher dimensional signal x is

projected onto the matrix ΦM×N, and a low-dimensional
sensed sequence yM×1 is obtained. Assume a signal is
sampled using the above scheme and then the measure-
ments y are transmitted. The crucial task (for the re-
ceiver) is to reconstruct the original samples x with
knowledge about the measurements yM×1 and the meas-
urement matrix ΦM×N. The recovery problem is ill
conditioned since M < N. However, several methods
have been proposed to tackle this problem, such as the
iteratively re-weighted least squares (IRLS) algorithm.
When the original signal is sampled and reconstructed,

the role played by the measurement matrix is vital in
order to faithfully reconstruct with precision and com-
plexity [4]. However, this requires a lot of storage space
in order to realize the measurement matrices in CS
applications. This is especially true of random measure-
ment matrices, because they are computationally expen-
sive and require considerable memory [3]. Therefore,
reducing the storage space of the measurement matrix is
essential to practical CS applications, especially in terms
of the feasibility of embedded hardware implementations.

3 Proposed algorithm
To effectively reduce the storage space of a random
measurement matrix, we propose an STP approach for
the CS algorithm (STP-CS), which can reduce storage
space to at least a quarter of the size while maintaining
the quality of reconstructed signals or images.
Then, the STP-CS algorithm is defined as follows:

yM�1 ¼ ΦM
t�N

t ⋉ ΨΝ�Ν ⋉ θN�1;==

ð6Þ
where the dimensions of the measurement matrix Φ are
(M/t × N/t) with t < M (M, N, t, M/t, and N/t are posi-
tive integers). For convenience, we denote by Φ a matrix
whose dimensions had been reduced to Φ(t). Here, Ψ
and θ are defined as the conventional CS.
We assume xN × 1 is a k-sparse signal of length N.

Then, x can be represented by Φ(t) as follows:

yM�1 ¼ Φ tð Þ ⋉ xN�1; ð7Þ
Equation (7) can be expanded by multiplication, such

that the following holds:
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y1
y2
⋮
yM

0
BB@

1
CCA¼ð φ1;1 ⋯ φ1;j ⋯ φ1; N t

⋮ ⋮ ⋮

φi;1 ⋯ φi;j ⋯ φi; N t

⋮ ⋮ ⋮

φM
t;1

⋯ φM
t;j
⋯ φ

M t ;
N

t
Þ⋉ x1

x2
⋮
xN

0
BB@

1
CCA;

,,,,

,

,

ð8Þ

where φi , j ∈Φ(t) (i = 1, 2, ⋯, M/t, j= 1, 2, ⋯, N/t).
According to the definitions of STP shown above,

Eq. (8) can be expressed as:

y1
y2
⋮
yM

0
BB@

1
CCA ¼ ð η1;1 þ⋯þ η1;j þ⋯þ η1;N=t

ηi;1 þ⋯þ ηi;j þ⋯ þ ηi;N=t

ηM=t;1 þ⋯þ ηM=t;j þ⋯þ ηM=t;N=t
Þ
;

ð9Þ
where ηi , j =φi , j(x(j− 1)t+ 1 ⋯ xjt)

T, i = 1 , 2 , ⋯ , M/t,
j= 1 , 2 , ⋯ , N/t. ηi , j is a column vector of length t, andPN=t

j¼1 η
i;j is also a column vector of length t.

If we assume t = 2, N = 10, M = 6, x10×1 is the sparse
signal, y6×1 is the measurement, Φ3×5 is the random
measurement matrix, the acquisition process of STP-CS
can be described as follows:

y1
y2
⋮
y5
y6

0
BBBB@

1
CCCCA ¼ ð φ1;1

φ2;1

φ3;1

φ1;2

φ2;2

φ3;2

φ1;3

φ2;3

φ3;3

φ1;4

φ2;4

φ3;4

φ1;5

φ2;5

φ3;5
Þ⋉

x1
x2
⋮
x9
x10

0
BBBB@

1
CCCCA

¼ð φ1;1
x1
x2

� �
þ φ1;2

x3
x4

� �
þ φ1;3

x5
x6

� �
þ φ1;4

x7
x8

� �
þ φ1;5

x9
x10

� �

φ2;1
x1
x2

� �
þ φ2;2

x3
x4

� �
þ φ2;3

x5
x6

� �
þ φ2;4

x7
x8

� �
þ φ2;5

x9
x10

� �

φ3;1
x1
x2

� �
þ φ3;2

x3
x4

� �
þ φ3;3

x5
x6

� �
þ φ3;4

x7
x8

� �
þ φ3;5

x9
x10

� �Þ
¼

�
φ1;1x1 þ φ1;2x3 þ φ1;3 x5 þ φ1;4x7 þ φ1;5x9

φ1;1x2 þ φ1;2x4 þ φ1;3x6 þ φ1;4x8 þ φ1;5x10

φ2;1x1 þ φ2;2x3 þ φ2;3x5 þ φ2;4x7 þ φ2;5x9

φ2;1x2 þ φ2;2x4 þ φ2;3x6 þ φ2;4x8 þ φ2;5x10

φ3;1x1 þ φ3;2x3 þ φ3;3x5 þ φ3;4x7 þ φ3;5x9

φ3;1x2 þ φ3;2x4 þ φ3;3x6 þ φ3;4x8 þ φ3;5x10

�
:

ð10Þ
According to the example, we can see that the sparse

signal x10×1 can project onto Φ3×5, by which a low-
dimensional sensed sequence y6×1 is obtained. The mea-
surements are simply linear combinations of the ele-
ments of x10×1.

If we assume t = 1, measurement y’6×1 is obtained by
Φ6×10, which is the same as in the conventional CS.
Thus, Eq. (7) can be expressed as yMx1 =ΦM ×N ⋅ xN × 1.
It should be pointed out that, for the same sparse sig-

nal, the measurements obtained from different measure-
ment matrices are different. That is y6×1 ≠ y’6×1.
Let the measurement matrix Φ(t) be of full-row ran-

k—i.e., Rank(Φ(t)) = M/t (t > 1)—and be a random
matrix, such as Gaussian N(0, 1/(M/t)) with i.i.d. entries.
Given a sparsifying basis Ψ, as shown in Eq. (6), we can
get Θt as follows:

Θt ¼ ΦM
t�N

t ⋉ ΨN�N ;== ð11Þ

where Θt is an N × N matrix.
The mutual coherence [3] of Θt can be obtained as

follows:

μ Θtð Þ≜ max
i≠j

1≤i;j≤N

θTi θj
�� ��
θik k2 θj

		 		
2

; ð12Þ

where θi is the column vector of Θt.
If μ Θtð Þ∈ 1;

ffiffiffiffi
N

p� �
; Φ tð Þ is incoherent with basis Ψ

with a high probability, such that Θt
N�N satisfies the RIP

with high probability [1–3]. This guarantees that a k-
sparse or compressible signal can be fully represented by
M measurements with the dimension-reduced measure-
ment matrix Φ(t). The approach does not change the
linear nature of the CS acquisition process, except for
involving a smaller measurement matrix to obtain mea-
surements. It is clear that the STP approach fits well
with the conventional CS for t > 1.
With Propositions 1 and 2, we can verify that the STP

approach in Eq. (6) is compatible with the conventional
CS in Eq. (5):

Φ
M

t�N
T⋉ ΨN�N⋉θN�1ð Þ¼ Φ

M
t�N

t⋉ Ψ⋉θð ÞN�1

¼ Φ ⋉Ψ ⋉ θð ÞM�1
¼ yM�1;

or�
ΦM

t�N
t ⋉ΨN�N

�
⋉ θN�1¼ Φ⋉Ψð ÞM�N ⋉ θN�1

¼ Φ ⋉Ψ ⋉ θð ÞM�1
¼ yM�1:

,,

,,,,

When we assume t = 2, then the dimensions of Φ(t)
are (M/2) × (N/2), and when we assume t = 4, the di-
mensions are (M/4) × (N/4), etc.. Thus, the storage
space of Φ(t) is reduced quadratically. For example, to
process a 1024 × 1024 image, when the sampling rate is
50% and the data is with double precision floating-point,
there are 512 K measurements. A Gaussian random
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matrix requires 4096 K bytes when t = 1. While t = 2,
the needed storage is 1024 K bytes, and when t = 4, this
is reduced to 256 K bytes.
Thus far, the STP approach could be an effective way

to reduce the storage space of the measurement matrix.
There remains a key question, however, regarding how
the original signal can be reconstructed based on the
STP approach acquisition process.
To reconstruct the original signal, we adopted the

IRLS to reconstruct the original signal [28–35]. In [29],
it was shown empirically that using ℓq-minimization
with 0 < q < 1 can do with fewer measurements than ℓ1-
minimization. In case of a noisy k-sparse vector, using
ℓq-minimization with 0 < q < 1 is more stable than ℓ1-
minimization [31, 32]. In [33–35], an approximate ℓ0-
norm minimization algorithm was proposed. The ap-
proximate ℓ0-norm minimization shows attractive con-
vergence properties, which is capable of very fast signal
recovery, thereby reducing retrieval latency when hand-
ling high-dimensional signals.
According to the algorithm of IRLS, the solution to

the original sparse signal xN × 1 can be obtained as
follows:

x nþ1ð Þ
N�1 ¼ Dn ⋉ΦΤ tð Þ ⋉ Φ tð Þ ⋉Dn ⋉ΦΤ tð Þ� �−1

⋉ yM�1;

ð13Þ

where x nþ1ð Þ
N�1 denotes the (n + 1)th iteration, Dn is the

N × N diagonal matrix, and the ith diagonal element is
1/wi

(n) (i = 1, 2, ⋯ , N).
For ℓq-norm (0 < q < 1) minimization, weight wi

(n) is
defined as

w nð Þ
i ¼ x nð Þ

i


 �2
þ ε1þq

n

� � 2−qð Þ=q; ð14Þ

and for approximate ℓ0-norm minimization, the weight
is defined as

w nð Þ
i ¼ exp − x nð Þ

i


 �2
=2ε2n

� �
; ð15Þ

where εn is a positive real number. During the iterations,
it decreases as εn+1 = ρ εn (0 < ρ < 1).
When we derive a vector of measurements yM×1 by a

random measurement matrix Φ(t), we initialize the algo-
rithm by taking w0 = (1, ⋯ , 1)1 ×N , x0 = (1,⋯1)1 ×N, and
ε0 = 1. The k-sparse signal x is then reconstructed by
iterations.
Therefore, in Section 4, we experimentally reconstruct

the original sparse signal with ℓq-norm (0 < q < 1)
minimization and approximate ℓ0-norm minimization,
respectively.

4 Experiments results and discussion
In this section, we verify the performance of the
proposed STP-CS. Our intent is to determine trade-
offs between recovery performance and the reduction
ratio of the measurement matrix. We also compared
the performance of STP-CS with that of CS with ℓq-
minimization (0 < q < 1) and approximate ℓ0-
minimization. We begin the numerical experiments
with some N × 1 column-sparse vectors and some
N × N gray-scale images. In our experiments the di-
mensions of the measurement matrix Φ(t) are (M/
t) × (N/t), where t could be 1, 2, 4, or even larger,
and the matrix Φ(t) is Gaussian N(0, 1/(M/t)) i.i.d.
entries, which approximately satisfy the RIP with
high probability [2, 32]. In addition, as we have
shown in Section 3, when t = 1, there is no reduc-
tion to the dimensions of the matrix Φ(t). As such,
it can be treated as conventional CS, whereas when
t = 2, 4 or higher, the dimensions of the matrix Φ(t)
are reduced. Therefore, we performed the compari-
son with different t. Our experiments and compari-
sons were implemented in Matlab R2010b on an
Intel i7–4600 laptop with 8 GB of memory, running
Windows 8.

4.1 Comparison with one-dimensional sparse signal
vectors
To compare the performance with the matrices Φ(t), we
measured the rate of convergence and the probability of
an exact reconstruction for different sparsity values k
and for different numbers of measurements.
First, we considered one-dimensional sparse vectors

xN×1, where N is the length of the sparse vector.
When N = 256, M = 128, and k = 40, a 40-sparse

vector is generated with a random positioning of the
non-zeros. Here, according to [1], if a sparse vector is
used to ensure the uniqueness of a sparse solution,
the number of non-zero elements can reach a limit of
M/2. Therefore, we give a maximum number of k (k =
1, 2, ⋯, M/2).
Given N = 256 and the measurement numbers M, we

generated some Gaussian random measurement matri-
ces Φ(t), with t = 1, 2, and 4. The matrices Φ(t) are pro-
vided in Table 1.

Table 1 Different dimensional measurement matrices Φ(t) for
STP-CS (N = 256)

M t = 1 t = 2 t = 4

32 Φ32×256 Φ16×128 Φ8×64

64 Φ64×256 Φ32×128 Φ16×64

128 Φ128×256 Φ64×128 Φ32×64
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As shown in Table 1, when t = 1, the matrix Φ(1) is
M × N, whereas when, t = 2, 4, the dimensions of the
matrices Φ(2) and Φ(4) are (M/2) × (N/2) and (M/
4) × (N/4), respectively. Hence, the storage space needed
for the matrix Φ is reduced effectively. Meanwhile, there
is also a significant reduction in the memory require-
ments for reconstruction.
With the sparse vector x and Gaussian random

measurement matrices Φ(t), we obtained the measure-
ment vectors of length M = 128 by (7). Then, we ini-
tialized the reconstruction process with ε0 = 1, after
iterating, if εn < 10−8, the process of recovery is con-
sidered to be completed, and a solution to the sparse
vector x̂ is returned. Then, we calculate the relative
error between x̂ and x by following:

Error ¼ x−x̂
		 		

2

xk k2
: ð16Þ

If the relative error is less than 10−5; x can be con-
sidered the correct solution, and the recovery is suc-
cessful. Otherwise, the recovery is considered to have
failed.
If we consider the solution to be correct, we execute

the operation Tcorrect + 1. To measure the probability of
exact reconstruction, we performed 500 trials for a sin-
gle sparsity value of k. Thus, the probability of exact re-
construction is measured as follows:

pr ¼ Tcorrect

Ttotal
ð17Þ

where Ttotal denotes the total attempts that were made.
Here, Ttotal = 500.
It needs to be pointed out that matrices Φ(t) were gen-

erated only once during the trails.
For a different sparsity value k, the curves of probabil-

ity of exact reconstruction are shown in Fig. 1. The
curve with t = 1 denotes that the matrix we employed is
Φ128×256. Curves with t = 2 and 4 denote that the matri-
ces are Φ64×128 and Φ32×64, respectively.
As shown in Fig. 1, when the sparsity value k is

relatively small, namely k ≤ 20, the probability of an
exact reconstruction remains almost 100%, regardless
of whether the dimensions of the measurement
matrix are reduced. When we increase the value k,
the probability of an exact reconstruction declines.
Compared to the probability curve with t = 1, the
probability curves with t = 2 or 4 decline quickly.
However, they nevertheless maintain a high probabil-
ity of an exact reconstruction. It is clear that we can
recover the original sparse vector in the matrices
with reduced dimensions. Furthermore, by contrast-
ing frames (a) and (b), we can see that when sparsity

value k approaches the limit value of M/2, (a) still
has a higher probability of reconstruction than (b).
During the comparisons, an issue emerged that caught

our attention, regarding why the probability of an exact
reconstruction declines so quickly, when we reduced the
dimensions of matrix Φ(t) (t > 1).
As shown in Eqs. (9) and (10), we can see that when we

reduce the number of dimensions of matrix Φ(t), the
number of coefficients is also reduced. The number of co-
efficients in (9) is only (M/t). Furthermore, the measure-
ments y with length M can be divided into (M/t) groups,
where each group is defined as an adjacent measurement
with length t, such that (y1, …, yt)

T is the first group, and
(y(i − 1) × t + 1, …, yi × t)

T is the ith group. For the ith group,

Fig. 1 Comparison of probabilities of exact reconstruction with
different dimensions of measurement matrices (M = 128, N = 256).
Frame a is obtained from l0-norm minimization with ρ = 0.8. Frame
b is obtained from lq-norm minimization with q = 0.8 and ρ = 0.8. In
frame a and b, t = 1, 2, 4 mean the dimensions of the measurement
matrices are 128 × 256, 64 × 128, and 32 × 64, respectively
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where 1 ≤ i ≤ (M/t), 1 ≤ j ≤ (N/t), and φi,j is defined as
in (8).
In (18), we see that all the coefficients for different

measurements in the ith group are the same—namely,
(φi,1, …, φi,N/t). As shown in (10), (y1, y2)

T, (y3, y4)
T, and

(y5, y6)
T are the groups.

If the original sparse vector x has a comparably large
sparsity value k, it needs more iterations to derive the
sparse solutions. That is, the rate of convergence is rela-
tively slower compared to conventional CS with the
IRLS algorithm. This exacerbates the decline to the
probability of exact reconstruction. Whereas the sparsity
value k is relatively small, less iteration are needed, and
the rate of convergence is still fast, despite reducing the
dimensions in the measurement matrix. To verify our
analysis, we compared the rate of convergence with
varying sparsity values k and Φ(t); the numerical results
are shown in Fig. 2.
The sparse vector we used in this experiment had a

value of k—namely, k = 40 or 60. In these comparisons,
500 attempts were executed for generating the three dif-
ferent measurement matrices. We generated the sparse
vector x only once with a given k. The numerical results
on the curves represent the mean of these 500 attempts.
As shown in Fig. 2, for k = 40, the rate of convergence

was roughly the same for different matrices. For k = 60,
more iterations were needed to achieve a sparse solution
when increasing the value of t. This showed that if the
original signal is sufficiently sparse, the rate of conver-
gence was still fast, despite a reduction in the number of
dimensions of the measurement matrix.
To further compare the probability of the exact re-

construction with the matrices Φ(t) for different
numbers of measurements, we conducted a third ex-
periment, with N = 256 and k = 40. In this experiment,
the conditions for completing of the reconstruction
process and the success of the reconstruction were the
same as they were in the first experiment. That is, there

were 500 attempts at generating the measurement
matrices Φ(t), whereas the sparse vector x was gener-
ated only once. The numerical results on the curves
represent the mean of 500 attempts, these results are
shown in Fig. 3, where the number of measurements M
varied from 0 to N.
As shown in Fig. 3, for the same number of measure-

ments, the probabilities of exact reconstruction differed
little with different measurement matrices. Hence, there
was no need to increase the number of measurements to
derive the solution when we reduced the number of di-
mensions of the measurement matrix.
According to the comparisons of one-dimensional

sparse signals, we can see that the STP approach can
reconstruct a sparse signal with a randomly

Fig. 2 Comparison of the rates of convergence for different dimensions
of measurement matrices (M = 128, N = 256, ρ = 0.8). Frame a was
obtained from l0-norm minimization with k = 40. Frame b was obtained
from l0-norm minimization with k = 60. In frame a and b, t = 1, 2, 4
mean the dimensions of the measurement matrices are 128 × 256,
64 × 128, and 32 × 64, respectively

Wang et al. EURASIP Journal on Image and Video Processing  (2017) 2017:51 Page 7 of 13



measurement matrix Φ(t) (t > 1). Moreover, perform-
ance with dimensionality reduction for a Gaussian
random measurement matrix Φ(t) is generally com-
parable to that of the random matrix without any re-
duced dimensions. Furthermore, the performance
with the dimensionality reduction to matrix Φ(t) de-
pends on the sparsity of the signal x. In particular, if
the original signal is sufficiently sparse, its perform-
ance with dimensionality reduction was relative good
compared to that of the matrix without reduced di-
mensions. On the other hand, if the original signal is
not sufficiently sparse, the performance declines.
Therefore, there is a tradeoff between the perform-
ance of the reconstruction and the dimensionality of
the measurement matrix.

4.2 Comparisons with two-dimensional signals
Here, to compare the performance with the matrices
Φ(t) for two-dimensional signals, we measured the
PSNR values of the reconstructed images.
In these comparisons, the signals were two-dimensional

natural images. We know that signals and natural images
must be sparse in a certain transform domain or diction-
ary, in order for them to be reconstructed exactly within
the CS framework. In our experiments, we employed coef-
ficients from the wavelet transform as two-dimensional
compressible signals, and projected the coefficients onto a
Gaussian random measurement matrix. When we derived
the measurements y with a matrix Φ(t), the coefficients
were reconstructed by IRLS with approximate ℓ0-
minimization. Three natural images of different sizes were
used in our experiments. Lena (size: 256 × 256), Peppers
(size: 256 × 256), and OT-Colon (size: 512 × 512), OT-
Colon is a DICOM gray-scale medical image, and it can
be retrieved from [36].
In this experiment, we stipulated the ratio for sam-

pling at 0.8215, 0.75, 0.5, and 0.4375. We then gener-
ated some Gaussian random measurement matrices
Φ(t), with t = 1, 2, 4, 8, and 16. The number of di-
mensions of the matrices for M/N = 0.5 generated
are shown in Table 2.
As shown in Table 2, with the increase in the value of

t, the storage space was reduced quadratically, such that
the storage space of Φ(16) was 1/256th that of Φ(1).
In this simulation, 50 attempts were made for generat-

ing these measurement matrices Φ(t), and the coeffi-
cients from wavelet transforms were generated only
once. The process for reconstruction uses the IRLS algo-
rithm with ℓ0-minimization per our proposal, where
ρ = 0.8. Visual reconstructions are shown in Figs. 4 and
5, which were reconstructed with ℓ0-minimization and
randomly selected from 50 attempts.
By comparing Frames (b–f ) in Figs. 4 and 5, we can

see that the quality of the reconstructed images
remained high. That is, the subjective visual quality of
the reconstructed images barely declined, despite redu-
cing the storage spaces needed for the matrices and the
memory required for reconstruction by t2 times, where t
can be 2, 4, 8, or 16. Then, we used the peak signal-to-
noise ratio (PSNR) to evaluate the quality of the recon-
structed images. A total of 50 attempts were carried out,
and the maximum (Max), the minimum (Min), and the
mean PSNR values are listed in Table 3.

Fig. 3 Comparison of probabilities of exact reconstruction for
different numbers of measurements with different dimensions of
measurement matrices (N = 256, k = 40). Frame a was obtained
from l0-norm minimization with ρ = 0.8. Frame b was obtained from
lq-norm minimization with q = 0.8 and ρ = 0.8. In frame a and b,
t = 1, 2, 4 mean the dimensions of the measurement matrices are
M × N, (M/2) × (N/2), and (M/4) × (N/4), respectively

Table 2 Different dimensional measurement matrices Φ(t) for
images (M/N = 0.5)

Size of image (N × N) t = 1 t = 2 t = 4 t = 8 t = 16

256 × 256 Φ128×256 Φ64×128 Φ32×64 Φ16×32 Φ8×16

512 × 512 Φ256×512 Φ128×256 Φ64×128 Φ32×64 Φ16×32
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In the maximum values listed, we see that there is al-
most no difference among the PSNR values, regardless
of whether the number of dimensions of the measure-
ment matrix was reduced by t2 times, even 256 times.
Moreover, some values from t > 1 were greater than
those from t = 1. This indicates that the proposed algo-
rithm is effective at sampling and reconstructing sparse
signals with measurement matrices where the number of

dimensions was reduced while maintaining a high level
of quality. We can therefore confirm that the quality of
the reconstructed image relies significantly on the ran-
dom matrix generated, rather than the dimensions of
the random matrix. This means that if we generate a
suitable random matrix (that is, if it satisfies RIP and
NSP), we can also obtain a precise reconstruction, even
if the dimensions of the matrix are reduced.

Fig. 4 Comparison of the reconstructed images with different dimensions of measurement matrices. (Lena, M = 128, N = 256, ℓ0-minimization
with ρ = 0.8). Frame a is the original image; Frame b is the reconstructed image from the original in Frame a using the matrix Φ128×256; Frame
c is the reconstructed image using the matrix Φ64×128; Frame d is the reconstructed image using the matrix Φ32×64; Frame e is the reconstructed
image using the matrix Φ16×32; Frame f is the reconstructed image using the matrix Φ8×16
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In the minimum values listed, some values from
t > 1 were significantly lower than those from t = 1.
For instance, the sampling rate of Lena was 0.4375
and t = 16, and the PSNR was only 8.2242 dB. By
calculating the corresponding mutual coherence
(μ(Θ16)), we found that this μ(Θ16) was considerably
greater than others. This confirmed that the random
matrix Φ(t) (t > 1) we generated should satisfy RIP

and NSP appropriately. Thus, we can improve the
stability of reconstruction quality.
Like Gaussian random matrices, the matrices of Ber-

noulli, Hadamard, and Toeplitz are also the random.
Therefore, we sought to verify the performance of the
reconstruction with these matrices. Again, 50 attempts
were made for generating random matrices with differ-
ent dimensions, and the wavelet coefficients were

Fig. 5 Comparison of the reconstructed images with different dimensions of measurement matrices. (OT-colon, M = 256, N = 512, ℓ0-minimization
with ρ = 0.8). Frame a is the original image; Frame b is the reconstructed image from the original in Frame a using the matrix Φ256×512; Frame c is the
reconstructed image using the matrix Φ128×256; Frame d is the reconstructed image using the matrix Φ64×128; Frame e is the reconstructed image
using the matrix Φ32×64; Frame f is the reconstructed image using the matrix Φ16×32
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generated only once for a natural image. The IRLS re-
construction algorithm was used with approximate ℓ0-
minimization. The results are shown in Table 4. We
opted to use 256 × 256 images from Lena and Peppers.
As demonstrated by the results in Table 4, the pro-

posed STP approach is suitable for other random meas-
urement matrices. It produces high-quality images with
a suitable number of dimensions in the random matrix.
Furthermore, in order to compare it with other low-

memory techniques, PSNR with a reconstructed Lena
under different sampling ratios are shown in Fig. 6. The
curves represented are the mean of 50 attempts.
As shown in Fig. 6, we can see that the PSNR of the

reconstructed Lena at different sampling ratios was bet-
ter than the other two low-memory techniques.
During these experiments, we focused on the perform-

ance of the reconstructed one- and two-dimensional sig-
nals, where the dimensions of the random measurement
matrices we used were reduced by t2 times (t ≥ 1). As
mentioned above, when t = 1, the dimensions of the ran-
dom matrix were not reduced. This can be treated as
equivalent to conventional CS. When t > 1, such as
t = 2, the dimensions of the random matrix were re-
duced by four times, and if t = 8, the dimensions can be
reduced by 64 times. From the results, we can see that
increasing the value of t is an effective way to reduce the
storage space of the random measurement matrix and

Table 3 Comparison of the PSNR of reconstructions with
different dimensions of Gaussian measurement matrices
(ℓ0-minimization with ρ = 0.8)

Ratio of
dimensionality
reduction

M/N PSNR

Lena Peppers OT-colon

Max t = 1 0.8125 41.4152 45.1162 41.4891

t = 2 41.2529 45.2535 41.2479

t = 4 41.2816 45.0404 41.2863

t = 8 41.6383 44.4560 41.3755

t = 16 41.6666 43.9702 41.0504

t = 1 0.7500 39.3990 42.5244 39.2847

t = 2 39.3532 42.5405 39.1986

t = 4 39.4859 42.8989 39.1524

t = 8 39.3292 41.9847 39.1286

t = 16 39.4723 41.0188 39.0994

t = 1 0.5000 35.4444 36.4737 30.5470

t = 2 35.3266 36.6717 30.3621

t = 4 35.2764 37.3340 30.6017

t = 8 35.0658 36.3877 30.5098

t = 16 35.5209 36.6022 30.3819

t = 1 0.4375 26.2675 27.5362 28.5509

t = 2 26.4057 27.7582 28.4599

t = 4 27.3657 28.1248 28.2993

t = 8 26.8054 27.9102 27.9184

t = 16 27.4303 29.2851 27.5377

Min t = 1 0.8125 40.6046 44.2813 41.0969

t = 2 40.6000 44.0375 40.5387

t = 4 39.7232 43.0134 40.6741

t = 8 38.3074 39.8453 38.9174

t = 16 36.2093 37.5271 36.5640

t = 1 0.7500 38.6814 42.0387 38.6598

t = 2 38.4750 41.6335 38.1730

t = 4 38.4480 39.8260 38.7530

t = 8 37.1189 38.5990 38.1803

t = 16 34.8398 33.6085 33.4261

t = 1 0.5000 34.9586 36.1277 30.1636

t = 2 34.7745 35.5442 29.9858

t = 4 34.4683 35.7925 29.7738

t = 8 34.0103 34.7392 29.3071

t = 16 17.1770 8.2242 28.3865

t = 1 0.4375 25.7846 27.1451 28.1552

t = 2 25.5322 26.9129 27.8469

t = 4 25.5191 26.4387 28.0847

t = 8 24.9147 21.1803 27.5269

t = 16 5.9977 21.0325 24.9710

Mean t = 1 0.8125 41.0056 44.8147 41.1039

Table 3 Comparison of the PSNR of reconstructions with
different dimensions of Gaussian measurement matrices
(ℓ0-minimization with ρ = 0.8) (Continued)

t = 2 40.9707 44.5737 41.1145

t = 4 40.6192 44.2741 41.1011

t = 8 40.1403 43.8523 41.0180

t = 16 39.7578 42.6253 40.9543

t = 1 0.7500 39.0722 42.2699 39.1848

t = 2 38.9532 42.0751 39.1056

t = 4 38.8577 41.6732 39.0522

t = 8 38.3079 41.3472 38.6734

t = 16 36.8636 40.0724 38.3980

t = 1 0.5000 35.1674 36.3082 30.3101

t = 2 35.0681 36.1250 30.2036

t = 4 35.1892 36.2985 30.1288

t = 8 34.8385 35.6255 30.1171

t = 16 34.4991 35.2709 29.1196

t = 1 0.4375 25.9959 27.3607 28.3191

t = 2 25.9664 27.3312 28.2886

t = 4 25.9391 27.0231 28.2801

t = 8 25.6793 26.1873 27.7021

t = 16 25.7151 26.8239 27.3460
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the memory required for reconstruction. The tradeoff
between more precise reconstructions and constrained
storage requirements depends on the specific applica-
tion, and this can significantly influence the physical im-
plementation of CS in images, especially with embedded
systems and FPGAs, where storage is limited.

5 Conclusions
In this paper, a novel approach to STP-CS was proposed.
Our work aimed at reducing the amount of storage
space needed with conventional compressive sensing.
We provided a theoretical analysis of the acquisition
process with STP-CS and that of the recovery algorithm

with IRLS. Furthermore, numerical experiments were
conducted on one-dimensional sparse signals and two-
dimensional compressible signals, where the two-
dimensional signals were the coefficients from wavelet
transforms. A comparison of the numerical experiments
demonstrated the effectiveness of the STP approach.
Moreover, they show that our proposed STP approach
for compressive sensing did not improve the quality of
the reconstructed signal, yet reduced the storage space
of the measurement matrix and the memory require-
ments for sampling and reconstruction. With a suitable
reduction to the dimensionality of the random measure-
ment matrix (e.g., when t = 2, 4, 8, or 16), we achieved a
recovery performance similar to that obtained when
t = 1, while the storage requirements reduced by t2

times.
Although the dimensions of the random matrix were

reduced and the PSNR of the reconstructed signal de-
clined somewhat, it was also possible to improve the ac-
curacy, provided that the generated random matrix
satisfies the RIP and NSP appropriately. Moreover, the
proposed algorithm is easy to execute, and additional
operations for sampling and reconstruction are unneces-
sary. This can significantly influence physical implemen-
tations of the CS.
However, more investigation is required to improve

the recovery performance and optimize the sampling
and reconstruction processes. Further work remains in
constructing the so-called independent identically dis-
tributed random matrix with fewer dimensions. More-
over, we shall attempt to optimize the matrix based on
QR decomposition, which could help to improve the in-
coherence between the measurement matrix and the

Table 4 Tests on other random measurement matrices with
different dimensions. (M/N = 0.5, ℓ0-minimization with ρ = 0.8)

Images Ratio of
dimensionality
reduction

PSNR

Bernoulli Hadamard Toeplitz

Lena
(256 × 256)

Max t = 1 35.3431 35.2931 35.6554

t = 2 35.3431 35.3935 35.7550

t = 4 35.6510 35.2870 35.4465

t = 8 35.2639 35.3398 35.8770

t = 16 36.2619 35.0118 35.9155

Min t = 1 34.9759 35.0136 34.5715

t = 2 34.8563 35.0056 34.3634

t = 4 34.8053 34.7791 34.1974

t = 8 34.1163 34.1614 33.8705

t = 16 15.8923 33.0596 13.8632

Mean t = 1 35.0819 35.1956 35.1887

t = 2 35.1102 35.2093 35.1094

t = 4 35.0779 35.1018 34.9980

t = 8 34.6943 34.7907 34.9373

t = 16 34.5464 34.4744 34.1420

Peppers
(256 × 256)

Max t = 1 36.4659 36.5146 36.7284

t = 2 36.8068 36.5124 37.1701

t = 4 36.6284 36.4531 37.0168

t = 8 37.1965 36.6096 37.0168

t = 16 37.6965 36.7270 37.8743

Min t = 1 36.1021 35.9480 36.0183

t = 2 35.9979 36.0554 35.2744

t = 4 35.4798 35.7992 35.6017

t = 8 34.2548 35.9329 35.6017

t = 16 17.7105 34.3432 15.4983

Mean t = 1 36.3395 36.2944 36.3954

t = 2 36.3561 36.3110 36.2393

t = 4 36.0967 36.1344 36.4202

t = 8 35.9423 36.1665 36.4202

t = 16 35.3987 35.7520 35.4352

Fig. 6 Comparison of performance with other low-memory techniques.
(Lena, ℓ0-minimization with ρ = 0.8). t = 2, 4, 8, and 16 were obtained
from ℓ0-minimization per our proposal, where ρ = 0.8; KCS was obtained
from the Kronecker CS approach in [15]. LDPC was obtained from a
deterministic measurement matrix in [12]
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sparse basis. This will help to improve the performance
of reconstruction. This has also motivated us to employ
other measurement matrices, such as the structurally
random matrix, low-rank matrix, rank-one matrix, and
etc., in order to reduce required storage while maintain-
ing or improving performance quality. Parallel frame-
work [37, 38] will also be considered to reduce the time
consuming during the reconstruction.
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