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Abstract

Nowadays, surface defect detection systems for steel strip have replaced traditional artificial inspection systems, and
automatic defect detection systems offer good performance when the sample set is large and the model is stable.
However, the trained model does work well when a new production line is initiated with different equipment,
processes, or detection devices. These variables make just tiny changes to the real-world model but have a significant
impact on the classification result. To overcome these problems, we propose an evolutionary classifier with a Bayes
kernel (BYEC) that can be adjusted with a small sample set to better adapt the model for a new production line. First,
abundant features were introduced to cover detailed information about the defects. Second, we constructed a series
of support vector machines (SVMs) with a random subspace of the features. Then, a Bayes classifier was trained as an
evolutionary kernel fused with the results from the sub-SVM to form an integrated classifier. Finally, we proposed a
method to adjust the Bayes evolutionary kernel with a small sample set. We compared the performance of this
method to various algorithms; experimental results demonstrate that the proposed method can be adjusted with a
small sample set to fit the changed model. Experimental evaluations were conducted to demonstrate the robustness,

low requirement for samples, and adaptiveness of the proposed method.
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1 Introduction

With the growth in competition among producers of steel
strip, the quality of the steel strip surface has become
very important. Steel strip quality and the surface quality
of structural products have assumed increasingly signif-
icant importance [1]. The importance of surface quality
requires that effective and efficient methods be imple-
mented to replace conventional artificial visual inspection
during which an expert can only inspect 0.05% of the
total steel surface, which can be easily impacted by fatigue
and other unfavorable conditions. Artificial inspection
cannot satisfy the quality requirements. Therefore, auto-
matic, high-accuracy steel surface inspection systems
have become essential to the production system.

Surface defect inspection systems mainly consist of
two parts: defect segmentation and defect processing.
Defect processing entails feature extraction and defect
classification. In recent years, abundant research has been
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conducted, and different kinds of feature extraction and
classification methods have been introduced to classify
steel strip surface defect. In [2, 3], the defects were
classified by using K-nearest neighbor (KNN) methods
with a co-occurrence matrix. Santanu Ghorai et al. [4]
described an automated visual inspection system with dis-
crete wavelet transform (DWT) features and a support
vector machine (SVM). Wu et al. [5] described an algo-
rithm with an undecimated wavelet transform (UW'T) and
a mathematical morphology to detect geometric defects
that achieved a 90.23% accuracy that is difficult to achieve
in real industrial application in 2008. However, in 2013, a
noise-robust method based on a completed local binary
proposed by Song [6] averaged 98% accuracy and was
shown to be effective enough to be applied to real produc-
tion. A review of vision-based steel surface inspection sys-
tems [1] indicates that most such systems have achieved
>90% accuracy.

For application to real production, some difficulties for
steel surface defect detection remain. In a real production
environment, different products can be produced on a sin-
gle production line, and some products are manufactured
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on several production lines at the same time. With the
passage of time, the physical conditions of the equip-
ment and of the detection device will both change. Each
of these variables has only a small impact on the real-
world model; however, the classifier trained by the original
database will not work well on the changed real-world
model. If we trained every production line and every prod-
uct with a single database, it would take a long time for
a steel company to get a large enough sample set for a
newly built production line without a trained inspection
system.

Unfortunately, most research has focused on algorithms
that work only when a large number of samples is avail-
able, there little research has focused on this production
problem. Solly et al. proposed a rapidly evolving sys-
tem with an expert’s feedback; however, that research
describes an adaptive interactive evolution methodology
for determining parameters to control segmentation of
surface defects on images, and the classification accu-
racy will still be impacted by changing the real-world
model.

Therefore, to solve these issues, we propose an evo-
lutionary classifier with a Bayes kernel (BYEC) that
can be adjusted with small sample sets to fit the
changed model. Because the small changes to the real-
world model will impact some features of the clas-
sifier, the misclassification of the classifier is mainly
impacted by these features. Nevertheless, if we reduce
the impact of these features, we should be able to
restore the classifier to get a relatively high accuracy [7].
Thus, we built a classic classifier with an evolutionary
Bayes kernel and adjusted the kernel with a small sam-
ple set for the changed production model rather than
training every product and every production line with a
single data set.

Our technical contribution includes three points. First,
we propose an evolutionary classifier with a Bayes kernel
(BYEC) for steel defect classification. Second, we adopt
multiple SVMs to predict individual features, enabling
our evolutionary Bayes kernel to fit well with a small
sample set for the changed production model. Third,
and most importantly, we combine five selected fea-
tures and prove that our method has high accuracy, is
adaptive, and has a low requirement for samples in our
experiments.

The rest of the paper is organized as follows: Section 2
depicts the procedures of the surface defect inspection
system. Section 3 presents the features we used in this
paper. The method to build SVM subclassifiers on a ran-
dom subspace of features is provided in Section 4. The
method to build the Bayes kernel and evolve the ker-
nel is discussed in Section 5. Section 6 gives compara-
tive experimental results of this algorithm and research
on factors that affect the results. Finally, we conclude
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this paper in Section 7 and give some suggestions for
future work.

2 Structure of the evolutionary classifier for steel
surface defects

An evolutionary surface defect inspection system should
be trained as a classic classifier and evolve to fit the
changed real world on the real production line with a
small sample set. The structure of the inspection sys-
tem is presented in Fig. 1. Our system mechanism
mainly involves three processes: defect acquisition, fea-
ture extraction, and defect classification.

The image acquisition system has been discussed in
much of the literature [8—10] and has become a mature
field, so we will not discuss it in this paper again.

As it illustrated in the Fig. 1, five kinds of features
were introduced in this system. The reason of this is
because the penalize of some features in the adjust-
ment process drop some useful information of the defect
and may lead to misclassification, so superfluous features
were imported. We integrated the uniform local binary
patterns (ULBP) [11], gray-level co-occurrence matrix
(GLCM) features [12], the histogram of oriented gradient
(HOQG) feature, and gray-level histogram and Gabor fil-
ter features. These abundant features guarantee enough
information for the classifier. To utilize these features, a
multiple classifier system was imported into this classifier.

The classification part has two components in Fig. 1:
multiple SVM classifiers and a Bayes kernel classifier.
Compared with the classic steel surface inspection system,
the fuser Bayes kernel makes the key contribution to this
system by fusing the results from the multiple classifiers
and adjusting the hybrid parameters.

The SVM [13] is a popular small sample set learning
method. It offers very good performance for pat-
tern classification problems by minimizing the Vapnik-
Chervonenkis (VC) dimension and achieving a minimal
structural risk. Because of its small sample set require-
ment, fast learning capability, and good performance,
SVM is a good choice for this method. Because each SVM
classifier is trained by a subspace of the feature space,
we can evaluate and penalize the features by using the
corresponding SVM classifier.

A multiple classifier system (MCS) offers many
alternatives for unorthodox handing of realistic complex
problems [14], allowing us to exploit the potential of the
individual classifiers and get enhanced performance by
their combination. It can perform better than the individ-
ual classifiers and is easily implemented on parallel, mul-
tithreaded, and distributed architectures, which is very
important for the real-time production environment. The
critical aspect of a MCS is that it is well suited to treat-
ing drift, which means that the statistical dependencies
between object features and its classification may change
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Fig. 1 Structure of the evolutionary classifier for steel surface defects using a Bayes kernel

in time so that future data may be badly processed if we
maintain the same classification. Drift decreases the accu-
racy of the classification result, the individual classifier
evaluation is done on their accuracy on the new data.
The best performing classifiers are selected to constitute
the MCS committee after every loop. Kolter et al. [15]
described a dynamic weighted majority algorithm. We
also use an evolvable weighted method to change our
classifier with time.

The method to fuse the subclassifiers must be adjusted
with a small sample set and the accuracy of the subclas-
sifiers must be evaluated; therefore, the Bayes classifier

is a good candidate as it builds a reference from prior
probability to posterior probability. We can score the per-
formance of the classifiers on the changed model by the
posterior probability. With a small sample set, we can get
the approximate posterior of the classifiers and use it to
reweight the integrated classifier to fit the real model. A
Bayes kernel was built based on this concept.

Figure 2 depicts the processes to adjust the Bayes ker-
nel, which is executed in three steps. First, defect images
are classified by the SVM subclassifiers, then the defect
images are classified by the expert, and, finally, the results
of the classifiers and the corresponding tagged data are
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used to train the Bayes kernel classifier. This Bayes clas-
sifier is combined with the multiple SVM classifiers as an
integrated classifier.

3 Extraction of features

To avoid the lack of information after integration, we
introduce redundant features to overcome this weakness.
Five different kinds of features are extracted in the inspec-
tion system to describe the properties of texture, color,
and shape, respectively. The feature space consists of a
gray-level co-occurrence matrix, a uniform local binary
pattern, a histogram of oriented gradient, a gray-level
histogram, and a Gabor filter.

3.1 Gray-level co-occurrence matrix

Gray-level co-occurrence matrix is a Ny x Ny matrix where
Nj is the number of gray levels in the image, this matrix
reflects the direction, adjacent distance, and change range
of the image. Every value in the matrix represents a joint
probability that two gray-level pixels exist with a distance
of d and a direction 0, it is defined in Eq. 1. Where matrix
C is computed over an n x m image I , d and 6 are
described by Ax and Ay that Ax = sin(0) x d, Ay =
cos(0) x d. Where i and j are the image intensity values of
the image, p and g are the spatial positions in the image.

p=1q=1
S 1,ifI(p,q)=iand I(p+Ax, g+ Ay =j
Caus D=L 2|5 e
n m

(1)

The GLCM is sensitive to rotation, so we choose four
directions 0°, 45°, 90°, and 135° to cover more information
and select a distance of 8. The dimensions of the GLCM is
too large for us to process, so we choose Haralick features
[12] to describe it which calculates the correlation, energy,

contrast, entropy, and inertia quadrature of the GLCM.
Finally, we get a vector to describe the GLCM feature.

3.2 Histogram of oriented gradient and gray level

The histogram is a key tool in image processing, it is one of
the most useful techniques in gathering information about
a matrix. The gray-level histogram of the defect image
represents the distribution of the pixels over the gray-level
scale and reflects the contrast, gray level, and other infor-
mation of the image. It can be visualized as if each pixel
is placed in a bin corresponding to the color intensity of
that pixels. We make the histogram of the defect image to
40 bins and turn it into a feature vector as the gray-level
feature.

Dalal Navneet and Triggs Bill proposed the histogram of
oriented gradient in 2005 [16], this feature is used in com-
puter vision and image processing for object detection,
which counts the occurrences of the oriented gradient in
an image. The image can be described by the distribution
of intensity gradients and edge directions. In convention-
ally procedure, the image is divided into many small cells
and calculated respectively, but in this paper, we make the
histogram on the whole picture.

Gy=Hx+ 1,y —Hx-1,9)
Gy=Hxy+1)—H(xy—1)

Gx,y) = \/ Ga(®,9)? + Gy (x,9)> (2)

@@ﬁ)
Gx(%,7)

Equation 2 defines the gradient orientation and value,
G, is the gradient value of x orientation, Gy, is the gradi-
ent value of y orientation, G(x, y) represents the gradient
value, and o (x,y) represents the orientation of the pixel.
As the Fig. 3 described, we firstly convert the defect image
to the orientation image (gray level range from 0° to 180°),

a(x,y) = tan~! (
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then we make the histogram of the image with 50 chan-
nels. Finally, we get the value of every bin and convert it to
a feature vector to represent the HOG.

3.3 Uniform local binary pattern

The local binary pattern (LBP) is one of the most success-
ful statistical approaches for texture classification due to
its gray-scale and rotation invariance, this feature reflects
the local texture of the image. LBP filter is a 3 x 3 win-
dow. As it defined in Eq. 3, the gray level of the center pixel
is set as the threshold, gray value of the adjacent 8 pixels
around center pixel is compared with the threshold. If the
value of a surrounding pixel is larger than the threshold,
the position of this pixel is marked as 1, otherwise 0.

lifx>0

0ifx <0 )

P-1
LBPp = ) s(gy — g)2,s(x) = {

p=0
One local binary filter can produce 27 different values,
and this dimension is too high for us to process. Ojala [11]
proposed ULBP to reduce the dimension of the LBP. ULBP
introduces a uniformity measure U which corresponds to
the number of spatial transitions (between [0, 1]) in the
pattern. For example, U (00000001;) and /(00000010,)
equal 2 as they have two transitions between [0, 1] . The
U value of most LBPs is not greater than 2, and the num-
ber of these LBPs is 57. The ULBP is defined as Eq. 4, a
unique id is assigned to a pattern that its U value is not
greater than 2, so we reduce the dimension from 256 to
58. As Fig. 4 described, to get the ULBP feature, firstly, we
convert the defect image to a ULBP image and then we
make the histogram of the ULBP image and convert the

histogram to a feature vector.

id(LBP) if U (LBP(x)) > 2

58 if U (LBP(x)) < 2 @

ULBPp = {
3.4 Gabor filter
The Gabor filter is used for edge detection in image pro-
cessing, the frequency and orientation representations of

Gabor filters are similar to those of the human visual
system and efficient to describe the texture. Its impulse
response is defined by a sinusoidal wave multiplied
by a Gaussian function. Because of the multiplication
convolution property (Convolution theorem), the Fourier
transform of a Gabor filter’s impulse response is the con-
volution of the Fourier transform of the harmonic func-
tion and the Fourier transform of the Gaussian function.
The filter has a real and imaginary component represent-
ing orthogonal directions [17]. We only take the real part
of the Gabor filter in this paper. The real Gabor filter
kernel is defined as Eq. 5.

’

( 6 1// O )— _7/ y/ 2 —, +
YA 0, »Ys 29 )
g X y /\- y eXp ) COS T

A is the wavelength of the sinusoidal factor, 6 repre-
sents the orientation of the normal to the parallel stripes
of the Gabor function, i represents the phase offset of the
sinusoidal function, o represents the sigma deviation of
the Gaussian envelope, and y represents the spatial ratio.
As depicted in Fig. 5, in this paper, we make a Gabor fil-
ter bank with A(2,3,4,5,6) and 6 (0, %n, %n, %n, %n, gn,
gn, %n), totally with 40 Gabor filter kernels, and apply
convolution on the defect image with these Gabor filters
and get 40 Gabor images. We make a Gabor feature vector
composed of the energy of these Gabor images.

4 The SVM subclassifiers on a random subspace
of features

After feature extraction, we get a feature vector of dimen-
sions. In general, when the feature dimensions are too
large compared with the scale of the sample set, over-
fitting problems can arise. Therefore, instead of training
one classifier to cover all the feature space, we separate
the features with a random sampling scheme without
replacement and keep almost equal dimensions for every
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subspace. We choose a feature subspace with the ran-
dom sampling scheme rather than with a feature category
or in sequence for two reasons: (1) the feature punished
will involve features nearby that may contain some useful
information and not interfered by the real-world model,
and (2) features nearby may contain the same information
and the classifier will not get a good result with nearby
features.

To overcome the small sample set issue on the produc-
tion line, we introduce a support vector machine, which

has been widely used in many areas, such as computer
vision, natural language processing, and neuroimaging,
for its good performance, fast training capability, and
small sample set requirements for labeled samples.

There are six kinds of defects in the database which we
used for the experiment, as SVM is a binary classifier, we
implemented the multiclass classification with the “one-
against-one” scheme which is usually applied for binary
classifier [18, 19]. For every multiclass SVM classifier in
this paper, the number of binary SVM classifiers we need

/A
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Fig. 5 Process to convert defect image to Gabor feature vector
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is defined as Eq. 6, the k is the number of classes exists in
data set.

ngym = k(k —1)/2 ,where k > 1. (6)

Corinna describes the standard SVM for two classifica-
tions in [20] within the structural risk minimization. The
key of SVM is to find the hyperplane to minimize the
distance between the two classes to be separated.

With a training vectors x; € R”,i = 1,...,/, belong to
two classes, and vector y C R; such that y; € {1, —1} indi-
cate the class of the corresponding data, the SVM try to
solve the following minimization problem in Eq. 7:

/
L r
min —w'w+ C i
wbg 2 ;sl
subject to y; (WT¢ (%) + b) >1-§
gl’ ZOyl: 1,...,1,

(7)

the &; is a map function which maps x; into higher feature
space make the points easily to be separated and C > 0 is
the regularization parameter, w is the weight vector for the
feature space. To solve the possible high dimensionality of
the vector w, we usually convert it to the dual problem as
Eq. 8 presents:

1
min faTQa —ela
a 2
subject to y o = 0, (8)
O0<o; <C, i=1,...,L
In which e = [1,...,1]T is the vector of all ones, Q

represents an [ by [/ positive semidefinite matrix, Q; =
yiyiK (xi,%7), and K(x;,%) = ¢(xi)T¢(xj) is the kernel
function.

Then, the problem is solved with the primal dual rela-
tionship, we can calculate the w with Eq. 9.

!
w= Zyiai¢ () ©)

i=1

Finally, we can classify the data points with the Eq. 10:

l
sgn (wT¢(x) —+ b) = sgn (Zyiozl]((x,’,x) + b) . (10)
i=1

For the classification of ith and jth classes, we solve it
with the Eq. 11 deduced from Eq. 7.

1 .1 ..
in —wl'wi+cC ij
i 2 L,
subject to wiiT¢ () + b7 >1— &tij, if x; in the ith class

wijT¢ (x) + b>1-— é;‘tij, if x; in the jth class

/=0 (1)
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We combine the results from the binary classifier with
a voting scheme: every binary classifier has a vote, and a
data point is classified into the class with the maximum
number of votes. To solve the clash of the same votes, we
simply choose the class with the greater sequence num-
ber. In addition, we increase the sequence number for the
classes with every multiclass SVM to avoid accumulated
deviations. A simple example indicates the risks without
this strategy: Assume we have three classes, A, B, and C, all
with the same accuracy and scale. Then, samples classified
into A are least.

5 Combining subclassifiers by using the Bayes
kernel

The combination of the subclassifiers is very important
to this evolutionary classifier because it not only response
for improving the performance of the final integrated clas-
sifier but also for the ability to evolve itself to fit the
new changed model. Many ensemble methods have been
presented [21-23]; however, these methods do not suit
this adaptive inspection system. This is because (1) these
methods are sensitive to the size of the training sample set
(although, even for a mature production line, there are not
too many labeled samples), and (2) the fusion of classifiers
may be biased from the combination of samples from the
changed model.

For these reasons, we propose a new fusion strategy
based on a native Bayes classifier. This is a highly practi-
cal Bayesian learning method deduced from the Bayesian
theorem

P(B;)P(A|B;)
i1 P(B)P(A|B;)

P(BilA) = (12)

This theorem was proposed for about 300 years by
Thomas Bayes 12 and has developed into a great branch
of machine learning. In some domains, it is presented
as comparable to neural networks and to other machine
learning methods. The naive Bayes classifier f(x) is
described by a conjunction of attribute values when the
f(x) is limited to a finite set V.

In Bayes learning, the training examples are described
by a feature vector (a1,a,4s.. a,)T; the Bayes classi-
fier makes decisions based on the probability for every
possible value and selects the most portable target.

In this model, we assign every subclassifier as a fea-
ture in the feature vector and described it as a prob-
ability matrix. The feature vector of the Bayes vector
is defined as (Di,Dy,Ds...D,,)T, the D; is the deci-
sion made by the ith classifier, and the decision of the
Bayes classifier is taken from a finite set V(v1,va...vy).
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The prior probability that the ith classifier make decision
k and the real class is j is defined as Eq. 13.

. 1 (1 ifD;=kandR =]
PR =jID; = k) = m 21: {O otherwise
i=

(13)

The variable m describes the number of the samples;
then, we can deduce the post probability of the decision j,
that the ith classifier make decision &, defined by Eq. 14:

P(R = ID; = k)
S PR=jIDi=1)

The advisable number of decisions that the classifier can
make is defined by the variable n. With this post prob-
ability for every individual classifier, the Bayes classifier
can make decisions based on a multinomial model [24].
The naive Bayes classifier uses the simplifying assump-
tions that the attribute values are conditionally indepen-
dent and that individual classifiers are independent in this
model. The probability of observing the conjunction of
classifiers Dy, Dy, D3 . .. Dy, is just the product of the post
probability of the individual classifiers, in which case, our
Bayes classifier will make a decision based on Eq. 15.

P(D; = kIR =) = (14)

m
v = argmaxP(R = /) ]_[P(R = [|D;)
viev i=0

(15)

The key structure of the naive Bayes fusion kernel in this
model is the post probability matrix for individual classi-
fiers that we trained with labeled samples. To adjust our
model to fit the changed real-world model, we changed
the post probability matrix.

As depicted in Fig. 2, to evolve the Bayes kernel, a new
post probability matrix was trained to replace the old one
with the labeled samples from the changed production
line. The new classifier model is combined by the naive
Bayes kernel with a new post probability matrix and SVM
subclassifiers. The Bayes classifier takes advantage of not
only the true positive result but also the true negative
result from the subclassifiers. Because some subclassi-
fiers may lose efficacy after a real-world model change
and make a biased classification, this message can also be
utilized by the integrated classifier.

6 Experimental results

To evaluate the effectiveness of the inspection system
for surface defects, a surface defect data set was used.
We then compared this approach with some other
classification methods. In addition, some factors were
examined that demonstrate how they affected classifica-
tion accuracy.
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6.1 Experiment implementation details

The accuracy of this evolutionary classifier has been
compared with other classifiers such as SVM [25], NN-
BP [26], and KNN [3]. To reveal the fairness of the clas-
sifier, a surface defect database, the NEU surface defect
database! [6] was used. There are six kinds of typical
defects of the hot-rolled steel strip surface in the database
and 1800 gray-scale images, with 300 samples for every
defect: rolled in scale (RS), crazing (CR), inclusion (IN),
patches (PA), scratches (SC), and pitted surface (PS).
Defect images collected and sampled at resolution are
presented in Fig. 6.

The bias between different production lines is mainly
caused by electronic circuit noise and sensor noise owing
poor illumination and/or high temperature and these fac-
tors often lead to Gaussian noise in image acquisition [27],
so we added Gaussian noise to the NEU database with
different variances to simulate the defect images from
different changed production lines. Fourteen contrasting
data sets are used with standard deviations from (0 — 13),
the data with 0 deviation are the original data set. Paired
photographs are shown in Fig. 7.

6.2 Adaptiveness of the classifier

To evaluate the adaptiveness of this evolutionary inte-
grated classifier, the original NEU defect data set and 13
defect data sets formed by adding noise to the NEU defect
data set were used. The standard deviations of the noise
added to the NEU defect set were used (0—13), with an
equal mean of 0. A total of 212 features were extracted
from every defect image.

A BYEC classifier composed of 25 SVM subclassi-
fiers was trained by 70% of the original NEU defect
data set, and the remaining 30% of the data were used
to evaluate the accuracy of the BYEC classifier on the
original data set. Then, we randomly sampled 10% of
the processed data sets to adjust our BYEC classifier.
Finally, the accuracy of the adjusted BYEC classifier and
the original classifier on the processed data set were tested
by the remaining 90% of the processed data. As for the
BYEC classifier, 70% of the original data set were used
to train the KNN, BPNN, and SVM classifier and 30%
were used to evaluate the accuracy on the original data
set, then the accuracy of these classifiers on the processed
data set was tested by 90% of the processed data set. The
BPNN and KNN parameters were determined by cross-
validation testing. The average accuracy of the classifiers
on every data set was run 100 times, and the data sets were
sampled individually.

Figure 8 depicts the accuracy obtained by using the
KNN, BPNN, SVM, original BYEC, and BYEC classifiers.
The standard deviation of the defect samples ranges from
0 to 13 and increases by 1 at each iteration, so the first
data set is the original data set, the second has added
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Crazing Inclusion Patches Pitted surface Rolled in Scale Scratches

Fig. 6 Defect images, with each row being one of the six typical surface defects in the NEU database of sampling from 300 samples for one class

Gaussian noise with standard deviation 1, and so on. The decline as the standard deviation increases. The accura-
accuracy associated with the SVM is higher than the cor-  cies of the KNN, SVM, and BPNN classifiers decline by
responding values for the KNN, original BYEC, and BYEC  nearly 30%, and the original BYEC classifier declines a lit-
classifiers for the original data set, but the accuracies of tle more slowly than them. One possible reason for the
the SVM, KNN, BPNN, and original BYEC classifiers all  slower decrease of the original BYEC classifier may be

Origin defect image defect image with defect image with defect image with defect image with
Standard deviation=3 Standard deviation=6 Standard deviation=9 Standard deviation=12

Fig. 7 Paired photographs of defects
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Fig. 8 Accuracy of different classifiers on the defect samples with different standard deviations (0 — 13)

that more subclassifiers balance the bias from the original
data set.

However, the increase of standard deviation has little
impact on our BYEC classifier. It can be observed that this
proposed method is more adaptive to different standard
deviations in comparison with other classifiers. The accu-
racy of the BYEC classifier on the original data is lower
than that of the SVM classifier, perhaps because of infor-
mation loss from the combination of SVM classifiers. The
original BYEC classifier without an adjustment process
also suggests a relatively high adaptiveness compared with
other classifiers.

6.3 Number of the sub-SVM classifiers
The number of sub-SVM classifiers, defined as k, is a key
parameter for our BYEC classifier. It decides the particle

size to which our system can be adjusted. The purpose of
this section is to examine how k affects the accuracy and
the adaptiveness of the BYEC classifier.

We trained five BYEC classifiers with k=5, 15, 25, 35,
and 45. These classifiers were trained as described in
Section 6.2 with the original defect set, and they were
adjusted with 10% of the processed data and tested with
90% of the data set for evaluation. The experimental
results are presented in Fig. 9. The highest accuracy on
the original defect set is acquired by the classifier with
k = 5, but the accuracy drops more rapidly compared with
the other classifiers that perform at lower accuracy on the
defect set with highest noise. The classifier with k = 25
gives the third highest accuracy compared to the original
data set but acquires the highest accuracy on the defect set
with the highest bias to the original data set. This figure
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Fig. 9 Accuracy of BYEC classifiers with different k values (5, 15, 25, 35, and 45) on the defect samples with different standard deviations (0 — 13)
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suggests that the BYEC classifier is more adaptive with a
larger k value, but lower accuracy will be achieved with
the BYEC classifier on the original data set.

As the results indicate in Fig. 9, k should be set with
the real production environment. The BYEC classifier
should be set with a larger k value when higher adaptive
performance is needed. However, to avoid information
loss, we should set the BYEC classifier with a smaller k
value when the changed model has a small bias with the
original model.

6.4 Setsize of the sub-SVM classifiers

An important characteristic of classifiers is the size of the
sample set that used to train the classifier. The more sam-
ples that are supplied, the more information the classifier
machine can learn about the model. For our BYEC clas-
sifier, the accuracy of the subclassifiers can be evaluated
more precisely with more samples.

The Fig. 10 depicts the accuracy of BYEC classifiers
adjusted by different sizes of the samples. All the classifier
were performed on the data set described at Section 6.2.
We can see that the classifiers trained by 10% reach a low-
est accuracy and have least adaptive, but the classifiers
trained by 30% reached fairly good performance that the
classifiers with more samples adjusted have little advan-
tage over this classifier on accuracy and adaptive. Even in
the defect set with standard deviation 13, the gap between
the BYEC classifier trained by 10 and 50% is 1.01%. This
illustrated that our BYEC converged very fast and the low
requirement for the sample size.

Page 11 0f 13

Figure 10 depicts the accuracy of BYEC classifiers
adjusted by different sizes of the samples. All the classi-
fiers were used on the data set described in Section 6.2.
We can see that the classifiers trained by 10% reach the
lowest accuracy and are the least adaptive, but the clas-
sifiers trained by 30% reach fairly good performance and
classifiers with more samples adjusted have little advan-
tage over this classifier in terms of accuracy and adap-
tiveness. Even in the defect set with a standard deviation
of 13%, the gap between the BYEC classifier trained by
10% and that trained by 50% is only 1.01%. This illustrates
that our BYEC classifier converged very fast and the low
requirement for sample size.

6.5 Evaluating the effect of features

The five types of features selected are able to capture the
properties of texture, color, and shape, respectively. Those
features are described in detail by Neogi and proved
to be very important for classifying steel defects [1].
To evaluate the effect of each feature, when the num-
ber of features is less than four, we observe that the
accuracy of our method dropped very significantly, with
accuracy barely reaching 70%. Therefore, we discuss the
meaningful situation in which four features are used to
classify the steel.

The Fig. 11 shows the accuracy of EFIC classifiers
adjusted by different features. All the classifiers were used
on the data set described at Section 6.2.

As shown in Fig. 11, the accuracy of EFIC classifiers
without the Gabor feature is the lowest. However, the
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0 1 2 3 4 5
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0—13)

Defect samples with different standard deviations

Fig. 10 Accuracy of BYEC classifiers adjusted by different sizes (0.1,0.2,0.3, 04, 0.5, and 0.6) on the defect samples with different standard deviations
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Fig. 11 The accuracy of BYEC classifiers adjusted by different features on the defect samples with standard deviations (0 — 13)

Gabor feature is the most suitable for texture representa-
tion and discrimination of steel defect classification.

In contrast, the accuracy of EFIC classifiers without
GLH is the highest. This demonstrates that the GLH fea-
ture is the least suitable for steel defect classification. The
main reason for this is that the GLH feature can only cap-
ture gray features but not texture and or shape. Other
good performance features followed by four features no
HOG, GLCM, and LBP.

In conclusion, in our experiments, the absence of any
one feature of EFIC classifiers significantly reduced the
accuracy. Therefore, by combining these five features, our
method can obtain satisfactory accuracy for steel defect
classification.

7 Conclusions

Because accuracy decreases in steel surface classifica-
tion systems with a changed production line model, in
this research, we propose an evolutionary method that
can be adjusted with a small sample set to fit a changed
model and maintain relatively high accuracy. First, to
overcome information loss in the process of evolution, we
proposed five kinds of features that cover texture, color,
and shape, respectively. Second, random subspace SVM
classifiers are proposed to conquer the overfitting prob-
lem and fit for adjustment. Then, we introduced a naive
Bayes machine to fuse the results from SVM subclassi-
fiers that suits the adjustment and requires a small sample
set. Finally, we introduced a simple method to adjust the
Bayes kernel. The experimental results indicate that the
BYEC algorithm is more adaptive with changed steel sur-
face defect data set compared with other algorithms. Our

research suggests that the adaptiveness of the classifier is
highly related to the parameter k; with the growth of k, the
BYEC classifier shows a greater adaptiveness but, unfor-
tunately, with some accuracy loss on the original data set.
The small sample set requirement was shown to have been
fulfilled from the experiment results.

With the advantages and disadvantages of the BYEC
algorithm, in a new production line, we can use the orig-
inal BYEC algorithm without any labeled samples on the
changed model; with the growth of the sample set size, we
can adjust the BYEC model to become more adaptive. A
new classifier can be trained to replace the old classifier as
the relatively low accuracy on large sample set. Our future
work will focus on increasing the accuracy on both a large
sample set and a changed production model. Meanwhile,
more noise-robust methods can be combined with this
method to increase the adaptiveness.

Endnote

INEU surface defect database is the the Northeastern
University (NEU) surface defect database, download link:
http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_
database.html.
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