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Abstract

recognition under noise.

Along with the developments of deep learning, many recent architectures have been proposed for face recognition
and even get close to human performance. However, accurately recognizing an identity from seriously noisy face
images still remains a challenge. In this paper, we propose a carefully designed deep neural network coined
noise-resistant network (NR-Network) for face recognition under noise. We present a multi-input structure in the
final fully connected layer of the proposed NR-Network to extract a multi-scale and more discriminative feature
from the input image. Experimental results such as the receiver-operating characteristic (ROC) curves on the AR
database injected with different noise types show that the NR-Network is visibly superior to some state-of-the-art
feature extraction algorithms and also achieves better performance than two deep benchmark networks for face
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1 Introduction

Nowadays, face recognition has made great progress for
various potential applications in security and emergency
[1-4], law enforcement [5] and video surveillance [6-8],
access control [9], etc. However, in some uncontrolled
conditions, including varying illumination, poses, facial
expressions, and noise, the performance of face recogni-
tion system would be dramatically affected. Extensive
works have been carried out towards the illumination,
pose, and expression problems and also get some excellent
results [10—-12]. But when it comes to the noisy images,
the recognition accuracy of most approaches would drop
significantly. Face image is vulnerable to noises during its
acquisition, quantization, compression, and transition.
And sometimes, it is even difficult to recognize an identity
from the seriously noisy face by human. Various methods
have been proposed to denoise the image before the rec-
ognition stage. A line of approaches is to transfer image
signals to an alternative domain where they can be more
easily separated from the noise [13—15]. Another thread of
methods is to capture image statistics directly in the image
domain [16, 17]. Both of the two categories of approaches
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can produce some good quality images. But the denoised
image tends to lose some of its edge information which
hurts the image recognition in the subsequent stage. To
address this issue, many methods are presented for direct
recognition of the identity from the noisy image. For ex-
ample, fuzzy local binary pattern (FLBP) [18] is proposed
to reduce the influence of noise which utilizes the prob-
ability measure to encode the pixel difference as 0 or 1.
However, given the magnitude of the pixel difference used
in the calculating process, the FLBP algorithm is still sen-
sitive to noise. Noise-resistant LBP (NRLBP) [19] and its
improved versions (NRLBP+, NRLBP++) [20] are another
kind of method to solve the noise-sensitive problem. In
[19], the authors propose a mechanism to recover the cor-
rupted image patterns in the original LBP. In the NRLBPs
(NRLBP, NRLBP+, NRLBP++), more information of other
bits and the prior knowledge of images are incorporated
into the encoding process. Thus, they can get some super-
ior performance when the optimal thresholds are selected
[19, 20], compared with other noise-resistant methods.
Recently, deep learning techniques to learn effective
feature representations have swept a variety of computer
vision tasks including face recognition with illumination,
poses, and expressions problems. Thanks to its deep
architecture and large learning capacity, some deep neural
networks even get close to human performance on tightly
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cropped face images of LFW dataset [21]. For instance,
DeepID2 [22] and DeepID2+ [23] utilize the idea of joint
face identification-verification to reduce intra-personal
variations which leads to a significant improvement on
face recognition accuracy. VGG net [24] stacks multiple
convolutional layers together to form complex features.
GoogLeNet [25] incorporates multi-scale convolutions
and pooling into a single feature extraction layer coined
inception which ranked in the top in general image
classification in ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2014, which has served as a testbed
for a few generations of large-scale image classification
systems. Later, sparse ConvNet is proposed to learn
high-performance deep networks with sparse neural
connections [26]. The sparse ConvNet model signifi-
cantly improves the face performance of the pervious
state-of-the-art DeepID2+ models, while it has only
12% of the original parameters. Besides, [27] proposes a
latent factor guided Convolutional Neural Network
(CNN) model to address the age-invariant face recognition
problem and gets a 97.51% recognition rate on the
MORPH dataset. Moreover, deep learning technique has
also been used for other tasks. For examples, Xie et al.
propose a novel approach to low-level vision problems that
combine sparse coding and deep networks pre-trained with
denoising auto-encoder (DA) [28]. Harmeling directly ap-
plies a plain multi-layer perceptron on the image patches
to solve the image denoising problem and outperforms
some state-of-the-arts [29]. Krause et al. use publicly avail-
able, noisy data sources to train generic models which
vastly improve upon state-of-the-art on fine-grained
benchmarks [30]. In [31], the authors use only monocular
camera images and independently of camera calibration to
train a CNN to predict the probability that task-space mo-
tion of the gripper will result in successful grasps. In
addition, Xu et al. propose the fractal dimension invariant
filtering (FDIF) method and re-instantiated approximately
via a CNN-based architecture to detect complicated curves
from the texture-like images [32].

Although many efforts and some progress have been
made in this field, accurately recognizing an identity
from seriously polluted face images under noise is still
difficult. Motivated by the DeepID [33] and GoogLeNet
[25], in this paper, we propose a carefully designed deep
CNN model which shows impressive performance on
face recognition under noise compared with some other
state-of-the-art noise-resistant approaches. This network
is named as noise-resistant network (NR-Network).
Generally, the proposed NR-Network mainly consists
of three parts. The main contributions of this work are
summarized as follows:

1. Considering the unknown noise level, we present a
“multi-inputs” structure, that is, the last fully
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connected layer has three different inputs to extract
multi-scale and more discriminative features from
the lower layers.

2. In order to testify the effectiveness of the new
structure, we also trained two benchmark networks
for comparisons which are shown in the following
section.

3. Except for the two benchmark networks, the
recognition rate of the NR-Network is also compared
with some other hand-crafted feature extraction
algorithms for face recognition under noise such as
FLBP and NRLBPs.

Experiments on AR [34] database injected with differ-
ent types of noise achieve evident results and verify the
effectiveness of our method based on a single sample
per gallery. The remainder of this paper is organized as
follows. Section 2 is some related works about this
paper. Section 3 describes the proposed NR-Network
and its training methodology. The database and imple-
mentation details are considered in Section 4. Extensive
experiments are also conducted to evaluate the NR-
Network compared with benchmark networks and other
robust face recognition algorithms in this section. Section
5 concludes this paper.

2 Related works
In this section, we briefly review several recent related
works on face recognition.

2.1 Feature extraction
A traditional face recognition system includes three key
stages: face image acquisition, face feature extraction,
and feature classification. Extracting an invariant and
discriminative feature representation is the most import-
ant stage for face recognition. In general, the feature ex-
traction methods can be grouped into two main
categories: hand-crafted features and deep features.
Gabor wavelets [35] have been extensively used in face
feature extraction for many years, and it can extract the
multi-scale and multi-orientation information from a
face image. In [36], Liu defined a “mother” wavelet and
derived 40 Gabor filters by considering five scales and
eight orientations. Each filter is convolved with the input
image. Finally, all the features produced by the different
Gabor filters are chained to derive an augmented vector
of Gabor feature. The Gabor features are robust to
changes in expression and lighting. However, the Gabor-
wavelet-based methods would result in a huge feature
dimension such as the method mentioned in [36], and
thus, it does not benefit the real-time application. Local
binary pattern (LBP) is another representative hand-
crafted feature extraction method which has been widely
used in face recognition [20, 37], facial analysis [38, 39],



Ding et al. EURASIP Journal on Image and Video Processing (2017) 2017:43

texture classification [40], and many other tasks [41, 42].
LBP and some variants of it can achieve impressive ac-
curacy in pattern recognition fields with a strong texture
discrimination capability.

Using deep natural networks to learn effective features
has become popular in face recognition. Recently, a few
carefully designed deep networks even achieve quiet ex-
cellent results. Convolutional neural networks are one of
the most commonly studied deep learning architectures.
Compared with other regular face recognition methods,
training CNN is more troublesome and computational
expensive, but nowadays, with the developments of the
computers and hardware accelerating techniques, these
issues can also be tackled. A number of well-established
problems in computer vision have recently benefited
from the rise in CNN as feature representations or clas-
sifiers. For example, Zhang and Yan devise an effective
convolutional neural network to estimate air’s quality
based on photos by a modified activation function to al-
leviate the vanishing gradient issue [43]. Girshick et al.
[44] applied high-capacity CNN to bottom-up region
proposals to localize and segment objects from an
image. Hong et al. [45] propose a visual tracking algo-
rithm based on a pre-trained CNN, where the network
is trained originally for large-scale image classification
and the learned representation is transferred to describe
targets.

2.2 Face recognition in noisy conditions

Existing approaches for face recognition mainly deal
with issues such as variations in expression, lighting,
pose, and aging, but none of them is free from noise.
Noise in human face images can seriously affect the per-
formance of the face recognition systems. The noise in a
face image can be produced by the sensor of a scanner,
cameras, or by the image transmission, quantization,
compression etc. Noise decreases the useful information
in the data and significantly influences the ability of
some algorithms to correctly recognize an object on the
image.

We include three types of noise in this paper:

1. Gaussian noise
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2. Uniform noise
3. Salt and pepper noise

Gaussian noise is defined by Gaussian normal distribu-
tion function p(x), which is expressed as:

po) = e O 1)

where 4 and ¢® are the mean value and variance of the
distribution, respectively.

Uniform noise is another common type of noise, which
means the different “values” of noise are equally probable.

Salt and pepper noise shows as some randomly white
and black pixels in images. It can be produced by, e.g.,
transmission through an erroneous channel, malfunction-
ing pixels in camera sensors or faulty memory locations in
hardware.

2.3 Existing approaches
In order to evaluate the performance of the proposed
method in this paper, the existing FLBP and NRLBPs ap-
proaches for face recognition under noise are compared.
Experiments in [18-20] show that the FLBP and
NRLBPs are two representative hand-crafted feature ex-
traction methods to face recognition under noise based
on LBP. Figure 1 shows the LBP coding process in a
3x3TU.
The definition of the LBP operator of the central gray
pixel g. in a 3 x 3 TU is defined as follows:

LBP(g) =Y (e =2,)" 2)

s ={ 1757 )

1,x<0’

where g, is the gray value of central pixel and g, are the
gray values of its neighbors.

2.3.1 FLBP

A drawback of the basic LBP is that a small image vari-
ation may alter the LBP code, and thus, it is very sensi-
tive to image noise. To tackle this problem, a probability
measure is used in fuzzy LBP [18] to represent the
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Fig. 1 The LBP coding process ina 3x3 TU
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likelihood of a pixel difference to be encoded as “0” or
“1”. SLBP in (4) is the operator of the central gray pixel
in the FLBP.

P-1

SLBP(i) = H[bp(i)fl,d (gc—g,,) + (1=bp(D)f 0 (gc—gp)},
(4)
0,z < -d
fra2) =4 05+ 0.52, Z| < d, (5)
l,z>d
Sfoa(z) = 1-f1 4(2), (6)

where b,(i)e{0,1} is the value of the p-th bit of binary
representation of i, d is a thread holding which controls
the amount of fuzzification the function performs, and P
is the neighbor number in a TU. Usually, the histogram
of FLBP codes is constructed as the feature extracted from
an image block and the number of the FLBP histogram bins
is 2% in a 3x3 TU. In the real-world applications, a face
image is usually separated into N > 10 blocks to get a better
recognition result.

2.3.2 NRLBPs
NRLBP, NRLBP+, and NRLBP++ are another kind of
method to improve the performance of LBP for face rec-
ognition under noise. In the NRLBP, the pixel difference
z, between the neighboring pixel and the central pixel is
encoded as:

1,ifz, >t
X, if |z| < ¢, (7)
0, lep <t

b, =

where X € {0,1}is an uncertain state and ¢ is a threshold.
An uncertain code C(X) in this state can be expressed as:

—_
CX) = b 00 (8)

The NRLBP codes are obtained as (9) based the uncer-
tain code:

SNRLBP = {C(X) |X€{0, l}n, C(X)E(Du} (9)

where @, denotes the collection of all the uniform LBP
[19] codes. According to the definition of the uniform
LBP, there are 59 histogram bins of the NRLBP in an
image block.

NRLBP+ and NRLBP++ are two improved versions of
NRLBP, and the detailed descriptions of them can be
found in [19, 20].

3 Noise-resistant network (NR-Network)
Previous researches have shown that deep architectures
effectively generate robust features by exploiting the
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complex non-linear interactions in the data [46]. Many
excellent convolutional neural networks have been pro-
posed in recent years and also get some significant results
on face recognition. But to the best of our knowledge,
there is still no specialized network designed to recognize
faces injected with serious noise. In this section, we first
present a novel deep convolutional neural network termed
NR-Network and then give a description of the training
process of our network.

3.1 The network architecture

We used CNN with rectified linear units (ReLUs) [41],
max pooling, dropout, and softmax regression. CNNs are
feed-forward neural networks designed to deal with large
input data, such as those seen in image classification tasks.
CNN s are mainly comprised of three types of layers. These
are convolutional layers, pooling layers, and fully con-
nected layers. When these layers are stacked, a CNN
architecture has been formed.

3.1.1 Convolutional layer

The convolutional layer is composed of several convolu-
tional kernels which are used to compute different fea-
ture maps. The new feature map can be obtained by first
convolving the input with a learned kernel followed by
the adoption of an element-wise nonlinear activation
function on the convolved results. There are four param-
eters to be considered in this layer: the depth, the filter,
the stride, and the setting padding. The depth indicates
the number of output feature maps. Reducing this param-
eter can significantly reduce the total number of neurons
of the network, but it can also significantly reduce the pat-
tern recognition capabilities of the model.

3.1.2 Pooling layer

The aim of this layer is to gradually reduce the dimen-
sion of the representation feature and thus further re-
duce the number of parameters and the computational
complexity of the model. It is often placed between two
convolutional layers or convolutional layer and fully con-
nected layer. In our model, the max pooling is used for
two reasons: (1) By eliminating non-maximal values, it
reduces computation for the upper layers. (2) It provides
a form of translation invariance.

3.1.3 Fully connected layer
There may be one or more fully connected layers to per-
form high-level reasoning after several convolutional
layers and pooling layers. They take all neurons in the
previous layer and connect them to every single neuron
of current layer to generate global semantic information.
Our NR-Network mainly consists of three parts marked
in different colors in the following figures apart from the
input layer, output layer, and the fully connected layer
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(Fc5). Figure 2 is the overview of the network architecture.
During training, the input to our NR-Network is a fixed-
size 64 x 64 gray image. The image is passed through a
stack of convolutional layers and pooling layers. The
output is a 256-cph. Though there are many image
compression and High Efficiency Video Coding methods
to speedup information transmission [47, 48], a shorter
feature size still benefits the real-time face recognition
system.

Part 1 labeled purple in Fig. 2 contains two convolu-
tional layers, and each layer is followed by a max pooling
layer, respectively. Convolutional layer 1 (Convl) has
5 x5 filters and a depth of 20. The convolution stride is
set to 1 pixel. Following it, max pooling (Pooll) is per-
formed over a 3 x3 pixel window, with stride 2. The
convolutional layer 2 (Conv2) has 3 x 3 filters which is
the smallest size to capture the information of left to

Pool52 Pool53
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Fig. 2 Architecture of the NR-Network
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right, top to bottom, center. The depth of this convolu-
tional layer is fixed to 20. Pool2 is also a max pooling
layer with a 2 x 2 pixel window to further down sample
the outputs of Conv2. We used ReLUs as an activation
function for each neuron in the convolutional layers.
ReLU is one of the most used activation functions. The
definition of the ReLU activation functions is shown as:

a = max(z,0) (10)
where z and a are the input and output of activation
function, respectively. Experiments in [41] show that deep
convolutional neural networks with ReLUs train several
times faster than their equivalents with tank units.

Next, part 2 marked in gray is an inception module
which contains one max pooling layer and four convolu-
tional layers with different kernel sizes. Inception mod-
ule is introduced by Szegedy et al. [25], which can be
seen as a logical culmination of network in network
(NIN). They use variable filter sizes to capture different
visual patterns of different sizes and approximate the op-
timal sparse structures by the inception module. Pool3
in the first line of this inception is a max pooling layer
with a 3 x 3 pixel window; the stride of Pool3 is set to be
2 pixels. Convolutional layer 31 (Conv31) has 3 x 3 filters,
with stride 1. The upper line of this inception contains
three convolutional layers (Conv321, Conv322, and
Con323) with different kernel sizes, and strides of these
convolution layers are all fixed to 1. Specifically, in one of
the configuration, we use the 1x1 convolutional filter
which can be seen as a linear transformation of the input
of the lower layer. Finally, the outputs of the three convo-
lutional layers are connected together by a concat layer
(Concl).

After this inception module, part 3 marked in green in
Fig. 2 with a max pooling layer and a convolutional layer
is inserted. Convolutional layer 4 (Conv4) has 3 x 3 fil-
ters, and the depth is 40. The filter size of the max
pooling layer (Pool4) in this inception is set to be 2 x 2
to have a same output size with Conv4. Following the
inception is also a concat layer (Conc2) as part 2.

In order to extract both the low-level and high-level
features hierarchically, the final fully connected layer is
connected to the outputs of all the three parts with 256
hidden neurons. The output of this fully connected layer
serves as the face representation. Followed by the final
inner product layer are the normalization and dropout.
Normalization ensures that the derived relative distance
of two images has an upper bound, while the objective
of the dropout is to reduce the risk of network overfit-
ting, which is first introduced by Hinton et al. [46]. The
dropout is an effective method to prevent the network
to be too dependent on any single neuron and force the
network to be more accurate at the same time.
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In the proposed network, following the output per part
is an average pooling layer marked in blue to adjust the
proportions of every part in the final feature. The aver-
age pooling layer 51 (Pool51) and average pooling layer
53 (Pool53) have the same filter size of 3 x 3. The strides
of them are set to 1 and 2 pixels, respectively. The aver-
age pooling layer 52 (Pool53) has 5x5 filters and a
stride of 5 pixels. Table 1 describes the specific configur-
ation of this NR-Network. The fourth column of Table 1
indicates the outputs of every functional sections of the
network. It is clear that the total neurons of part 1, part
2, and part 3 are 160 (2 x 2x 40), 240 (2 x 2 x 60), and
100, respectively. The part 1 indicates the lowest de-
scription of the face, and it can provide a global facial
contour feature after the pooling of Pool52. In contrast,
the output of part 3 is the highest-level face feature ex-
tracted from the input face which represents the crucial
detailed information of a face and is also very sensitive
to noise at the same time. The role of part 2 is to get a
balance between different levels of the feature. These
multi-level features are combined together to get a more
robust face feature.

Figure 3(a) and (b) are two benchmark networks
named as BN1 and BN2, which are discussed in the fol-
lowing sections. For simplicity, we just show several top
layers of BN1 and BN2 in Fig. 3 and the rest layers in-
cluding the depth, filter size, and stride are same with
the proposed NR-Network in Fig. 2. Compared with the

Table 1 The specific configuration of the NR-Network

Name Type Filter size/stride  Output size  #Params
Conv1 Convolution 5x5/1 60x60x20 500
Pooll Max pooling 3x3/3 20x20x20 -
Conv2 Convolution 3x3/1 18x18x40 7K
Pool2 Max pooling 2x2/2 9% 9x40 -
Conv31 Convolution 3x3/1 7% 7x40 14 K
Pool3 Max pooling 2X2/2 5X5x40 -
Conv321  Convolution 1x1/1 5x5x20 800
Conv322  Convolution 3x3/1 5x5x20 7K
Conv323  Convolution 5x5/11 5x5x%x20 19K
Concl Concat - 5x5x60 -
Conv4 Convolution 3x3/1 3x33x40 21K
Pool4 Max pooling 2x2/1 3x3x60 -
Conc2 Concat - 3x3x100 -
Pool51 Average pooling 3% 3/1 Tx1x100 -
Pool52 Average pooling 5% 5/5 2X2x40 -
Pool53 Average pooling  3x3/2 2x2x60 -
Conc3 Concat - 500

Fc5 Fully connected 256 125 K
Total - - - 194 K
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NR-Network, the final fully connected layer (Fc5) of
BN1 is connected with the outputs of part 2 and part 3.
However, in BN2, only the output of part 3 is connected
to the fully connected layer (Fc5). We also use ReLUs in
all the convolutional layers of BN1 and BN2 to avoid the
vanishing gradient problem. Besides, batch normaliza-
tions (BN) are also used for all convolutional layers to
be less careful about initialization. BN is an efficient
method proposed by Ioffe et al. [49] in 2015. When the
data flow through a deep network, the distribution of
the input data to the internal layers may be changed;
thus, the network will lose the learning capacity and ac-
curacy. BN fixes the mean and variances of the input
layers to solve this so-called problem which can be seen
as a normalization step.

3.2 Training methodology

There are two steps in the training process: forward
propagation and back propagation. The aim of the for-
ward propagation is to compute the actual classification
results of the input data with current parameters. The
back propagation is employed to update the parameters
during the training process with the objective of making
the difference between the actual classification output
and the desired classification output as small as possible.

To obtain a noise-resistant model, the proposed net-
work is trained by the CASIA-WebFace dataset [50].
The CASIA-WebFace dataset is collected from the web-
site including 10,575 subjects with 494,414 face images.
The size of this dataset ranks second in the literature,
only smaller than the private dataset of Facebook. For
each subject, there exist several false images with wrong
identity labels and few duplicate images. In order to get
a balance between different subjects, we remove the sub-
jects having less than 14 and more than 200 face images
from the dataset. The cleaned CASIA-WebFace dataset
used in our network finally contains 8792 subjects with
402,852 face images.

In the training stage, first, all the face images of the
CASIA-WebFace are converted to gray scale and nor-
malized to 64 x 64. After the normalization, the only
preprocessing we do is subtracting the mean gray value
which is computed on the training set from each pixel.
Before being input to the network, we then inject the
Gaussian noise, the uniform noise, and the salt and
pepper noise of various noise levels onto the images as
Section 4. This is critical to train a noise robust network.
The images are split in ratios of 90 and 10% for training
and testing, respectively, where 360,000+ images are
used to train the network and the remaining 40,000+ are
used for testing. The network is implemented by Caffe
toolbox [51]. Stochastic Gradient Decent (SGD) is used
for optimization in our model with back propagation.
We set the weight decay and momentum to 0.005 and
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Fig. 3 Architecture of a BNT and b BN2

0.9, respectively. The base learning rate is initially set to
0.01 which will decreases through iterations. For the sake
of fairness, in our experiments, the training methodologies
of the NR-Network and the two benchmark networks
BN1 and BN2 are the same.

It is clear that the proposed network can extract a 256
dimensional feature from an input face image. Compared
with the feature size of FLBP and NRLBPs given in Section
2, the feature size of NR-Network is much shorter and
hence benefits the real-time application.

4 Experimental results and discussions

We compare the proposed network with BN1, BN2, FLBP,
and NRLBPs on the AR database injected with Gaussian
noise, uniform noise, and salt and pepper noise. For FLBP
and NRLBPs, all the images are normalized to 100 x
80 pixels and divided into 20 patches of 20 x 20 pixels. For
the NR-Network, BN1, and BN2, the images are normal-
ized to 64 x 64 pixels.

4.1 The database and implementation details

4.1.1 AR database

The AR database is of high image quality and considered
as a face database having almost no image noise. In this
paper, a subset that contains 100 subjects is chosen from
the AR database. Fourteen images with only facial expres-
sions and illumination changes were taken per subject for
our experiments.

The performances of different methods are evaluated
by the recognition rate. In the experiments, 14 runs are
performed in order to obtain the average recognition rate.
In each run, only one image per subject is selected as the
gallery set in turn, and the rest 13 images as the probe set.
Finally, the 14 recognition rates are averaged as the final
result.

In the classification process, the similarity between
extracted features of the gallery set and the probe set is

evaluated by the nearest-neighbor classifier with different
distance measures. For FLBP and NRLBPs, Chi-square
distance (CS), histogram intersection (HI), and modified
G-statistic (MG) are utilized in our experiments, which
are defined in Eq. (11), Eq. (12), and Eq. (13), respectively.
But experimental results show that CS, HI, and MG are
not suitable for the NR-Network, BN1, and BN2. There-
fore, in the following experiments, the Pearson correlation
coefficient, Euclidean distance, and Cosine distance are
used to measure the similarity for the networks BN1, BN2,
and NR-Network. Table 2 shows some of the recognition
rates of the networks using different distance measures on
the AR database injected with Gaussian noise (o = 0.05).

2
(xi,/—yi,j)

2 —
X (x,y) = Zgj xij+ (11)
D]-[](X, y) = _Zi,j min (xw‘, yi,j) (12)
Duc(x,y) = —Ziﬁ log (xi,j +J’i,/) (13)

where x, y are the concatenated feature vectors and ux;;
and y;; are the j// dimension of the i patch, respectively.
We set 0 log(0) = 0, when x;;=y,;=0.

Table 2 The average recognition rates of the networks using
different distance measures on the AR database

BN2 BN1 NR-Network
Chi-square distance 0.8079 0.8187 0.8212
Histogram Intersection 0.8138 0.8243 0.8314
Modified G-statistics 0.8147 0.8207 0.8224
Pearson Correlation Coefficient 0.8234 0.8368 08514
Euclidean Distance 08157 0.8350 0.8509
Cosine Distance 0.8274 0.8414 0.8523
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Table 3 The average recognition rates of different methods on the AR database injected with Gaussian noise

Algorithm Chi-square distance, 0 =

0.05 0.10 0.15 0.20 0.05
FLBP 0.7864 0.7228 0.5216 04227 0.7992
NRLBP 0.8005 0.7333 0.5401 04175 0.8010
NRLBP+ 0.7987 0.7547 0.5874 04463 0.8023
NRLBP++ 0.8094 0.7651 06275 0.5056 08174

Pearson correlation coefficient ¢ =

0.05 0.10 0.15 0.20 0.05
BN2 0.8234 0.7896 06731 0.6100 0.8157
BN1 0.8368 0.8340 0.7306 0.6868 0.8350
NR-Network 0.8514 0.8458 0.7584 0.7062 0.8509

Histogram intersection, o =

0.7261
0.7301
0.7354
0.7431

Euclidean distance, 0 =

0.7766
0.8239
0.8465

Modified G-statistics, 0 =

0.10 0.15 0.20 0.05 0.10 0.15 0.20
0.5341 04249 0.7742 0.7253 0.5089 04036
0.5291 04205 0.7882 0.7107 0.5275 04159
0.5459 04388 0.7909 0.7399. 0.5470 04334
0.5948 04946 0.7987 0.7363 0.5695 04866

Cosine distance, 0 =

0.10 0.15 0.20 0.05 0.10 0.15 0.20
0.6679 06023 0.8274 0.7832 06779 0.6088
0.7189 0.6788 0.8414 0.8301 0.7258 06815
0.7452 0.6924 0.8523 0.8483 0.7595 0.7096

The bold indicates the best

The Pearson correlation coefficient, the Cosine dis-
tance, and the Euclidean distance are formulated as Eq.
(14), Eq. (15), and Eq. (16).

r(x,y) = Ym0 Y
P -(C) - ()

(14)

Z»xlyi
D (xy) = —=—— 15
De(x.y) = 3 (x-7,) (16)

where x,y are the feature vectors extracted from the net-
works and x; and y; are the i dimension of the vector.

The experiments in this paper are conducted on an
Intel Xeon E5 2.4GHZ machine with 32G RAM.

4.2 Face recognition on the AR database with noise

FLBP and NRLBPs have been demonstrated effectively
for face recognition under noise [18-20], and we have
also given some detailed descriptions of them in Section
2. Thus, the proposed network is compared with FLBP
and NRLBPs to evaluate the noise-resistant property. Be-
sides, we also compare the NR-Network with benchmark
networks to testify the effectiveness of the “multi-input”
structure. The AR database is injected with Gaussian
noise, uniform noise, and salt and pepper noise of four
different noise levels referring to [19, 20]. The experimen-
tal results on recognition rates are presented in Tables 3,
4, and 5. For the results obtained using the proposed NR-
Network, see row 7 in the tables and the results are
marked in bold. For the results obtained using the BN1
and BN2, see row 6 and row 5, respectively.

e Resistant to Gaussian noise: Normalize the images
in range of (0, 1) and then apply Gaussian noise
with zero mean and standard derivation of o. In

Table 4 The average recognition rates of different methods on the AR database injected with uniform noise

Algorithm Chi-square distance, p =

0.10 0.20 040 0.70 0.10
FLBP 0.7932 0.7574 0.6017 0.5055 0.7889
NRLBP 0.7999 0.7670 0.6244 05159 0.8018
NRLBP+ 0.8264 0.7747 0.6804 0.5465 0.8222
NRLBP++ 08313 0.7945 0.6936 0.5363 0.8226

Pearson correlation coefficient, p =

0.10 0.20 040 0.70 0.10
BN2 0.8489 0.8065 0.7172 0.6438 0.8391
BN1 0.8496 0.8375 0.7531 0.6997 0.8478
NR-Network  0.8687  0.8463  0.7974  0.7242  0.8643

Histogram intersection, p =

0.7623
0.7624
0.7843
0.7816

Euclidean distance, p =

0.8028
0.8342
0.8409

Modified G-statistics, p =

0.20 040 0.70 0.10 0.20 040 0.70
0.6080 0.5184 0.7801 0.7562 06198 04827
0.6205 0.5020 0.7991 0.7571 0.6282 04732
06731 0.5263 0.8201 0.7769 0.6849 0.5233
06812 0.5295 0.8291 0.7861 0.6889 0.5321

Cosine distance, p =

0.20 040 0.70 0.10 0.20 0.40 0.70
0.6990 0.6289 0.8462 0.8109 0.7205 0.6462
0.7421 0.7025 08515 0.8418 0.7565 0.7063
0.7884 0.7165 0.8795 0.8559 0.7985 0.7275

The bold indicates the best
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Table 5 The average recognition rates of different methods on the AR database injected with salt & pepper noise

Algorithm Chi-square distance, d = Histogram intersection, d = Modified G-statistics, d =

0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25
FLBP 0.6959 06236 04462 0.2794 0.6908 0.6051 04277 0.2669 0.6938 06103 04451 0.2753
NRLBP 0.7149 0.6743 0.5605 03127 0.6995 0.6526 0.5663 03075 0.7077 06774 05742 03142
NRLBP+ 0.7344 0.7014 06112 0.3943 0.7138 06978 0.6041 03822 0.7210 0.7059 0.6089 04075
NRLBP++ 0.7390 07122 06242 04148 0.7249 0.7088 06158 04043 0.7365 0.7154 06228 04297

Pearson correlation coefficient, d = Euclidean distance, d = Cosine distance, d =

0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25 0.05 0.10 0.15 0.25
BN2 0.8023 0.7615 0.7002 0.5928 08144 0.7502 0.6948 0.5965 08014 0.7793 0.7046 0.5943
BN1 08310 0.8012 0.7534 0.6443 0.8245 0.7993 0.7315 06178 0.8327 0.8089 0.7412 06332

NR-Network 0.8542 0.8327 0.7886 0.7013 0.8487 0.8214 0.7749 0.6932 0.8597 0.8412 0.7924 0.7107
The bold indicates the best

the experiments, ¢ is set to be 0.05, 0.10, 0.15, can also achieve acceptable recognition rates of 0.7062

and 0.20. The first row of Fig. 4 shows some for the Pearson correlation coefficient, 0.6924 for

samples of the noisy images. The average Euclidean distance, and 0.7096 for Cosine distance.

recognition rates on the AR database injected However, the recognition rates of the FLBP and

with Gaussian noise are given in Table 3 which NRLBPs are almost lower than 50% in this case.

shows the proposed NR-Network significantly

outperforms the FLBP and NRLBPs regardless of It is also clear that the performance of the BN1 is bet-

the distance measures. When the images are severely ~ ter than BN2. While the NR-Network outperforms both

distorted by noise, e.g., 0 = 0.20, the NR-Network of them under different noise levels using three distance
e 2

(e) p=0.10 ) p=0.20

(i) d=0.05 () d=0.10 (k) d=0.15 () d=0.25
Fig. 4 The sample images of AR database injected with different noise. a—d The first line of Fig. 4 indicates the samples injected with Gaussian

noise 0=0.05, 0.10, 0.15, 0.20. e-h The second line indicates the samples injected with uniform noise p =0.10, 0.20, 0.40, 0.70. i-l The third line
indicates the samples injected with salt and pepper noise d =0.05, 0.10, 0.15, 0.25.
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Table 6 The feature extraction time (Fea_time) of different methods on the AR database injected with Gaussian noise

FLBP NRLBP NRLBP+ NRLBP++ BN2 BN1 NR-Network
0=005 Fea_time () 0.6806 0.3988 0.7301 0. 7845 0.2694 02721 0.2743
0=0.10 Fea_time () 0.5990 0.2609 06365 0.6740 - - -
0=0.15 Fea_time (s) 0.5425 0.6832 1.2452 1.3580 - - -
0=0.20 Fea_time (s) 0.3553 0.2078 0.6405 0.6973 - - -
measures. This is because the fully connected layer of For a higher noise level, p = 0.7, the NR-Network
the NR-Network has more inputs from the lower layers can still obtain achievable results while the FLBP
and hence can extract a multi-level and more discrim- and NRLBPs nearly fail to work.
inative feature. e Resistant to salt and pepper noise: The images in the
AR database are also injected with salt and pepper
e Resistant to uniform noise: Uniform noise is another noise to test the performance of different methods.
common type of noise. As the same with adding Salt and pepper noise is composed by two noise
Gaussian noise, we conduct experiments on the AR components: salt noise and pepper noise. Salt noise
database injected with additive uniform noise in the is the bright spot and pepper noise is the darker
range of (-p/2, p/2). We set p=0.1, 0.2, 0.4, and 0.7, spot, which generally appear in the image at the
respectively. Some samples are shown in the second same time. The third row in Fig. 4 shows some
row of Fig. 4. It is clear that when the noise level is samples injected with salt and pepper noise with
high, it is barely difficult to recognize a subject by different noise density 4 = 0.05, 0.10, 0.15, and 0.25.
human. Table 4 summarizes the recognition rates on Table 5 lists the average recognition rates of
the AR database with uniform noise. Apparently, the different methods for face recognition under salt
proposed NR-Network is visibly better than the and pepper noise. From the table, we can see that,
FLBP and NRLBPs and better than BN1 and BN2. compared with the Gaussian noise and the uniform
1.0 1.0
208 08
] =
= ) =
.g 0.6 7 — Elﬁ-lNetwork .2 0.6 — gﬁ-lNetwork
= - = -
4 BN2 4 BN2
) o
804 — FLBP 8,04 — FLBP
= — NRLBP ] — NRLBP
£02 — NRLBP+ £02 — NRLBP+
— NRLBP++ — NRLBP++
% 02 04 _ 06 08 10 % 02 04 06 08 L0
false positive rate false positive rate
(a) 6=0.05 (b) 6=0.10
1.0 1.0
2os 208
« =
L] S
e NR-Network || @
> 0.6 > 0.6
:‘E — BN1 ‘E — gﬁ-lNetwork
@z BN2 @z -
S e
2,04 — FLBP 2,04 BN2
@ @ — FLBP
£ 0.2 — NRLBP £ — NRLBP
- U — NRLBP+ =0.2 —_ NRLBP+
— NRLBP++ — NRLBP++
%902 04 06 08 1.0 % 02 04 __06 08 10
false positive rate false positive rate
(c) 6=0.15 (d) 6=0.20
Fig. 5 The ROC curves on the AR database with Gaussian noise o= 0.05, 0.10, 0.15, 0.20. Black line the NR-Network method, red line the BN
method, yellow line the BN2 method, green line the FLBP method, blue line the NRLBP method, carmine line the NRLBP+ method, cyan line the
NRLBP-++ method
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noise, the recognition rates of the FLBP and
NRLBPs drops much sharply when the images are
injected with the salt and pepper noise. Especially,
when the noise level is higher than d = 0.15, the
recognition rates of the FLBP and NRLBPs are even
lover than 40%. However, it is observed from

Table 5 that our proposed method can still give
some significant recognition results even when the
face images are seriously polluted by this kind of
noise.

From the above Tables 3, 4, and 5, we can conclude
that the proposed NR-Network cares little about the
noise type and distance measures. Beyond that, the per-
formance of the NR-Network can still be acceptable in
some really bad noise conditions, which indicates that
the feature extracted from the “multi-input” structure is
more robust to noise. We also compare the feature ex-
traction time (Fea_time) per sample of the methods
compared in the experiment, and the results are shown
in Table 6. We also calculate the classification time of
different methods based on the nearest-neighbor classi-
fier with Euclidean distance: FLBP with 0.007079 s per
sample, NRLBPs with 0.005682 s per sample, and net-
works with 0.005043 s per sample. We can see from
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Table 6 that the feature extraction time of LBP-based al-
gorithms (FLBP and NRLBPs) varies along with the
noise level and it is also much higher than the proposed
networks. But the feature extraction time of the BNI,
BN2 and NR-Network is nearly constant.

Finally, we want to illustrate that the recognition rates
of FLBP and NRLBPs established in Tables 3 and 4 are
not as good as ref [19] and ref [20]. The reason is prob-
ably that there is no preprocessing process during our
experiments such as image cropping and rotation. Be-
sides, the subset of the AR database used in our experi-
ment includes 100 subjects, but the subset used in ref
[19] and ref [20] contains only 75 subjects.

4.3 ROC comparisons

For quantitative evaluation, we also present the ROC (re-
ceiver-operating Ccaracteristic) curves of all the algorithms
compared in our experiments. The test set from the AR
database includes 4050 face pairs, half of which is genuine
and the other half is impostor. Figures 5 and 6 show the
ROC curves in AR database injected with Gaussian and
Uniform noise. The results of images injected with the salt
and pepper noise are similar with the Gaussian noise; thus,
in this experiment we did not show the ROC curves in this
case. We find that the NR-Network can always achieve the

1.0
208
g
L 0.6 II;IE-INetwork
= —
'z BN2
(=
804 — FLBP
2 — NRLBP
£02 — NRLBP+
— NRLBP++

false positive rate

(a) p=0.10

1.0
208
[
i
2 0.6 NR-Network
g= — BN1
@ BN2
[=
804 _ FLBP
2 — NRLBP
502§ — NRLBP+

— NRLBP++

false positive rate
(c) p =040

true positive rate

%9 02 04 06 08 1.0

true positive rate

% 02 04 06 08 1.0

Fig. 6 The ROC curves on the AR database with uniform noise p =0.10, 0.20, 040, 0.70. Black line the NR-Network method, red line the BN1 method, yellow
line the BN2 method, green line the FLBP method, blue line the NRLBP method, carmine line the NRLBP+ method, cyan line the NRLBP++ method

1.0
0.8
0.6 NR-Network
— BN1
BN2
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Table 7 The average recognition rates of different methods on the CMU-PIE database for face recognition under varying

illumination
Algorithm FLBP NRLBP++ LG-face W-face G-face BN2 BN1 NR-Network
Recognition rate 0.5489 05744 0.8863 0.8898 0.9093 09122 0.9234 0.9378

The bold indicates the best

best results on ROC curves in all cases. Besides, the ROC
curves of the NR-Network vary slightly along with the noise
types and levels. In contrast, the performance of the FLBP,
NRLBPs would degrade quickly when the noise level im-
proves. According to the results presented in Figs. 5 and 6
for different networks, it is also clear that the NR-Network
with multi-input structure is superior to the benchmark
networks BN1 and BN2 with fewer inputs to the final fully
connected layer which demonstrates the effectiveness of
the proposed “multi-input” structure.

4.4 Face recognition under varying illumination
[lumination variation is another challenging task in face
recognition. In this section, we conduct an experiment
on the CMU-PIE database to further evaluate the per-
formance of the proposed “multi-input” structure for
face recognition under varying illumination. There are
68 subjects with 41,368 images captured under different
illumination, pose, and expression. In this experiment, we
choose the illumination subset (21 images per subject) to
test the methods, in which one image per subject is chosen
as the gallery each turn and the rest 20 images are used as
the query. Experimental results show that the LBP-based
methods (FLBP, NRLBPs) can get achievable results in glo-
bal illumination variation, while the recognition rates of
these methods drop sharply under local illumination vari-
ation. Thus, in this experiment, we also compare the pro-
posed networks with another several state-of-the-arts:
Gradient faces (G-face) [52], Weber-Face (W-face) [53],
and Local-Gravity-Face (LG-face). Table 7 shows the com-
parable recognition rates on the CMU-PIE database.

The similarity between extracted features of the gallery
set and the probe set is evaluated by the nearest-neighbor
classifier with the Euclidean distance measure. The results
of Table 7 demonstrate that the proposed network with the
multi-input structure can still get excellent results under
varying illumination and is superior to the other methods
with the highest averaged recognition rate (93.78%).

5 Conclusions

This paper has shown the performance of the deep
learning network to face recognition under noise. A new
architecture for noise-robust deep feature representation,
named NR-Network, is carefully designed to increase in-
ter-personal variations and reduce intra-personal varia-
tions at the same time. The main objective of our work
is to test the performance of the proposed multi-input
structure; thus, the designed NR-Network just consists

of three basic parts for simplicity. The recognition rate
with different noise types and ROC results validate that
the NR-Network is evidently effective than other well-
known noise-resistant face recognition algorithms.
With the hierarchical high-level and low-level feature
extraction mechanism, the presented network can still
work well even at the high noise level based on a single
face image. We also analyze the feature size of the ap-
proaches compared in our experiments. The final output
layer with just 256 hidden neurons of the NR-Network is
rather economic. One shall note that we refrain to directly
compare our tailored noise-resistant network against other
state-of-the-art deep learning models. The main reason is
that to the best of our knowledge, there is no specified net-
work designed to solve the problem of face recognition af-
fected by noise as addressed by our model. One possible
future work is to involve sparsity based models [54], match-
ing based methods [55], and error-correction based models
[56] to further improve cost effectiveness and robustness.
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