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Abstract

Despite lots of effort being exerted in designing feature descriptors, it is still challenging to find generalized feature
descriptors, with acceptable discrimination ability, which are able to capture prominent features in various image
processing applications. To address this issue, we propose a computationally feasible discriminative ternary census
transform histogram (DTCTH) for image representation which uses dynamic thresholds to perceive the key properties
of a feature descriptor. The code produced by DTCTH is more stable against intensity fluctuation, and it mainly
captures the discriminative structural properties of an image by suppressing unnecessary background information.
Thus, DTCTH becomes more generalized to be used in different applications with reasonable accuracies. To validate
the generalizability of DTCTH, we have conducted rigorous experiments on five different applications considering nine
benchmark datasets. The experimental results demonstrate that DTCTH performs as high as 28.08% better than the
existing state-of-the-art feature descriptors such as GIST, SIFT, HOG, LBP, CLBP, OC-LBP, LGP, LTP, LAID, and CENTRIST.

Keywords: Discrimination ability, Event classification, Expression recognition, Image classification, Leaf classification,
Noise adaptive, Object recognition, Scene classification, Ternary pattern

1 Introduction
Image classification has recently gained importance
because of its numerous applications in different areas
of image processing and computer vision such as texture
classification [1–4], object tracking and recognition [5–9],
scene classification [5, 7, 10–12], face detection and recog-
nition [13–17], facial expression recognition [17–19], gen-
der classification [17, 20], content-based image retrieval
[21], and many others. These applications can be incorpo-
rated in video surveillance [22], human computer interac-
tion [23], video and image retrieval [24], biometrics [25],
and medical imaging [26–28].
Research works in this domain can be grouped into four

different categories namely low-level, mid-level, high-
level feature representations and classification strategies
[29]. Among these, low-level feature representation plays
a significant role since it is the building block for other
steps. Therefore, many feature descriptors have been
proposed for low-level feature representation. Among
these, gradient [10, 30–32] and local binary pattern (LBP)
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[5, 7, 33] basedmethods are widely explored and proved to
be successful in different applications. However, in most
of the cases, these descriptors solve a particular problem
and fail for general purpose image classification and/or
consume high computational cost. Tomitigate these prob-
lems, in this paper, we intend to develop a computationally
low-cost general purpose feature descriptor that can per-
form well in diversified applications. The major challenge
is that the real world applications are usually affected by
large intra-class and small inter-class variations due to
noise, illumination, photometric, scale, rotation, pose, and
appearance variations [7]. Therefore, it becomes crucial
to design a discriminative and robust feature descriptor
which will address these issues.
Scale invariant feature transform (SIFT), histogram of

oriented gradient (HOG), and GIST are the most com-
monly used gradient based low-level feature descrip-
tors for image classification [9, 10, 30–32, 34]. Several
extensions of SIFT such as speed up robust features
(SURF) [35], gradient location and orientation histogram
(GLOH) [36], and PCA-SIFT [37] have been introduced
for improving classification accuracy and/or reducing
computational complexity. Besides SIFT, HOG obtains
both the properties of SIFT and GLOH [31]. Recently, an

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0178-1&domain=pdf
mailto: bit0312@iit.du.ac.bd
http://creativecommons.org/licenses/by/4.0/


Rahman et al. EURASIP Journal on Image and Video Processing  (2017) 2017:30 Page 2 of 24

extension of HOG, namely histogram of second order gra-
dient (HSOG) has been proposed to capture curvature
information [9]. These descriptors usually use the first
derivatives of an image (i.e., gradient direction and mag-
nitude), which can capture local shape properties of the
objects.
Gradient-based methods, such as SIFT first generally

determines the salient points of an image and then cal-
culate the descriptor on those points. The identification
of salient points helps to capture the best discrimina-
tive foreground and discard the unnecessary background
information. However, the identification of salient points
is not directly incorporated to these descriptors. More-
over, in most of the cases, these methods do not con-
sider the impact of human visual perception. Further, the
gradient-based features often fail to distinguish between
two pixels with same gradients even though those gradi-
ents correspond to different local structures [38].
In addition to the gradient-based methods, LBP and

its extensions such as PRICoLBP [8], DDLBP [39], and
OC-LBP [40] have become prominent because of their
simplicity and better accuracy [41]. However, LBP-based
methods that use “0” threshold have several major draw-
backs such as,

1. Small changes in intensities due to noises in uniform
and near-uniform regions often lead to wrong LBP
codes. For example, in Fig. 1b, original intensity “154”
(see Fig. 1a) is changed to “158,” where LBP produces
two different patterns (i.e., “11101000” and
“11101100”) though these two textures are similar.

2. LBP-based techniques fail to differentiate between
the small and large differences in intensities, and
these also fail to separate the foreground and
background which degrades the discriminative
ability. For example, differences between the center
pixel (“170”) and all of its eight neighboring pixels in
Fig. 2a are small and in Fig. 2b are large except one
pixel (i.e., “171”), whereas LBP encodes these two
textures as same pattern (i.e., “11111111”) which is
not desired.

Fig. 1 Noise caused by local intensity fluctuation. a Original texture. b
Texture changed due to local intensity fluctuation

Fig. 2 Example of two different textures which are encoded as same
pattern by LBP, a small and b large differences

In LBP-based methods, all codes are calculated
considering the center pixel and hence it can be
considered as a background pixel in the local scope.
Thus, all of its neighbors similar to it should also be
considered as background pixels. Since the center
pixel is “170,” in Fig. 2b, the intensity “171” should be
considered as a background and all other seven
neighbors as foreground. However, LBP and most of
its variants fail to achieve such discrimination ability.

A similar method to LBP is census transform (CT) [4].
Recently, CENTRIST is proposed for scene classification
which uses CT of the image pixels [7]. However, due to the
use of static threshold, CENTRIST has similar drawbacks
like LBP. In order to address these issues (i.e., to extract
the prominent features from an image and to deal with
the presence of different levels of noises), few dynamic
threshold-based methods are introduced. Local Gradi-
ent Pattern (LGP) is one of those which can adapt with
local intensity fluctuations by considering mean of the
local neighboring differences as a threshold [16]. However,
LGP fails to differentiate between a positive and a nega-
tive change in the local neighborhoods due to providing
same binary code (i.e., “1”) in these two different direc-
tions. This problem can be solved by using ternary pattern
[2, 3] which creates three patterns instead of two. Among
the ternary pattern-based techniques, Local Ternary Pat-
tern (LTP) shows resistance to the noises up to a certain
level since it assumes that noises in an image usually
vary within a fixed threshold (“±5”) [2]. However, such
a fixed threshold will not work for different types of
images [3, 42].
To solve this issue, several dynamic threshold based

methods are proposed such as noise tolerant ternary pat-
tern (NTTP) and local adaptive image descriptor (LAID).
However, the adaptive noise band defined in NTTP is
application specific. Again in LAID, the median of the
local neighboring differences is used as a threshold to
generate the code. However, considering the median as a
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threshold for a general purpose texture description might
not be useful in many cases, because median cannot guar-
antee the proper separation of significant and insignificant
changes since it is determined as the midpoint of data.
Furthermore, despite the use of median as a threshold,
it may have similar drawbacks like LBP, i.e., there might
be a case when it will fail to adapt with intensity fluc-
tuation (e.g., produces two different codes “01100011”
and “01100111” for the texture in Fig. 1) and cannot dis-
criminate between small and large intensity changes (e.g.,
produces same code “01100110” for two different textures
in Fig. 2).
The incorporation of a non-zero threshold with LBP

and its variants usually helps to reduce the effect of noise,
suppress the background, and highlight the foreground.
The benefit of such a threshold can further be realized
by taking Weber’s constant [43] into account. As per the
Weber’s law, it is not possible for human to distinguish
the difference of intensities below the Weber’s constant
with naked eyes. Unfortunately, it is not easy to deter-
mine such a non-zero threshold that satisfies all of these
issues. Hence, the desirable properties of a better thresh-
old is that it will be able to (i) distinguish foreground
and background, (ii) adapt with noise and other light-
ing conditions, and (iii) consistent with human visual
perception.
In this paper, we introduce a new feature descrip-

tor namely discriminative ternary census transform his-
togram (DTCTH) for general purpose image description.
The threshold is determined for DTCTH in such a way
so that it holds all the desirable properties and can be
calculated in linear time. Further, a spatial pyramid rep-
resentation is used with DTCTH for capturing the global
structure of an image. The major contributions of this
paper are summarized as follows.

1. We propose a dynamic threshold to produce stable
code against intensity fluctuation.

2. The threshold can be calculated in linear time while
it preserves all the desirable properties as mentioned
above by utilizing only the center pixel. This
threshold also helps to separate foreground and
background of an image and complies with human
visual perception.

3. The proposed DTCTH captures highly
discriminative features by suppressing the fine
details. Besides, the ternary code is generated to
enhance the discrimination ability. We also
incorporate a spatial pyramid representation which
helps to boost the accuracy.

4. We show the generalizability of DTCTH in case of
five different applications such as object, scene,
event, leaf, and facial expression classification using
nine standard datasets.

The rest of the paper is organized as follows. Section 2
briefly discusses existing state of the art low-level fea-
ture descriptors. Section 3 describes the use of these
feature descriptors in different applications. The proposed
method is described in Section 4. Section 5 presents a
rigorous comparative experimental evaluation on five dif-
ferent applications. Section 6 concludes the paper with
future research scope.

2 Background
A large number of techniques such as GIST, SIFT,
HOG, LBP, CLBP, LGP, LTP, LAID, and CENTRIST
have been proposed for image classification. These tech-
niques capture texture patterns of an image. In this
section, a brief description on all of these techniques are
highlighted.

2.1 GIST
GIST descriptor is initially proposed in [10] where a low-
dimensional representation of the scene is developed. The
authors propose a set of perceptual dimensions (e.g., natu-
ralness, openness, roughness, expansion, ruggedness) that
represent the dominant spatial structure of a scene. The
image is divided into small grids (e.g., 4 × 4 pixels), for
which orientation histograms are extracted using 32 dif-
ferent Gabor filters at 4 scales and 8 orientations. Then
the feature values within each grid are averaged. The
final GIST descriptor is represented by combining the 16
averaged values of all scale and orientations, which results
in 16 × 32 = 512 dimensions.

2.2 Scale invariant feature transform (SIFT)
Lowe et al. propose SIFT descriptor which consists of
four major steps such as scale-space peak selection, key-
point localization, orientation assignment, and keypoint
descriptor [30]. Firstly, potential interest points are identi-
fied in image over scale and space. This is implemented by
constructing a Gaussian pyramid and searching for local
peaks in a series of difference-of-Gaussian (DoG) images.
Secondly, keypoints are localized to sub-pixel accurately
by eliminating inconsistencies. Thirdly, the dominant ori-
entations for each keypoint are identified based on the
local image patch. Finally, a local image descriptor is pro-
duced for each keypoint, using the image gradients in the
local neighborhood. In the representation of the descrip-
tor, gradient locations are quantized into small location
grids (e.g., 4 × 4 pixels), and the gradient directions are
quantized into several (e.g., 8) orientations. SIFT descrip-
tor is represented by combining histograms from all these
small location grids (e.g., 4 × 4 × 8 = 128 dimen-
sions). To obtain illumination invariance, the descriptor
is normalized by the square root of the sum of squared
components.
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2.3 Histogram of oriented gradient (HOG)
Dalal and Triggs introduce HOG descriptor which takes
weighted votes depending on the gradient L2-norm for
an orientated histogram channel [31]. HOG descriptor
consists of several steps. The image is divided into small
connected regions (e.g., 8 × 8 pixels) named as cells, and
a histogram of gradient orientations is computed (e.g.,
using 1D centered derivative mask [−1, 0,+1]) for the pix-
els within each cell. Each cell is quantized into angular
bins based on the gradient orientation. The pixels in each
cell are used as a weighted gradient to the correspond-
ing angular bin. The frequencies of histogram are also
normalized using L2-norm to adapt with the variation of
illumination. The final HOG descriptor is represented by
combining these histograms.

2.4 Local binary pattern (LBP)
Ojala et al. first explore original LBP operator which
thresholds n × n (e.g., 3 × 3) neighborhood of every pixel
of an image with the center pixel value and considers the
result as a binary number [1]. Each of the image pixel is
then labeled with the corresponding decimal value of that
binary number. The basic LBP is calculated using Eq. 1.

LBPn,r(xc, yc) =
∑

n−1
l=0 q( pl − pc)2l,

Where q(d) =
{
1, if d ≥ 0
0, otherwise

(1)

Here, n and r are the total number and the radius of
the neighboring pixels. (xc, yc) is the coordinate of the
center pixel c, pl, and pc are the intensities of the lth
neighboring and the center pixel (c) respectively. d is the
difference between the neighboring and the center pixel.
LBP codes can represent spatial micro-structures such as
edge, corner, and line-end. Figure 3 presents some of these
patterns.
LBP has 256 codes when eight neighbors are consid-

ered, which can be reduced to 59 codes by taking uniform
patterns. The uniform patterns are calculated by Eq. 2.

U(LBPn,r(xc, yc)) = |q(pn−1 − pc) − q(p0 − pc)|
+

∑
n−1
l=1 |q(pl − pc) − q(pl−1 − pc)|

(2)

Fig. 3 Example of micro-structures encoded by LBP-based methods

2.5 Completed local binary pattern (CLBP)
Guo et al. [44] propose CLBP which consists of three
components namely CLBP_S, CLBP_M, and CLBP_C.
CLBP_S considers only the sign value of the differences
between a pixel and its neighbors which is exactly same
as LBP. CLBP_M uses the magnitudes of the differences
between a pixel and its neighbors, and CLBP_C produces
code by comparing the center pixel’s intensity with the
average image intensity. CLBP_M is generated following
Eq. 3.

CLBP_Mn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)2l,

Where q(d) =
{
1, if d ≥ T
0, otherwise

(3)

Here, T is the mean of all |pl − pc| in the whole image.
The CLBP_C is coded as Eq. 4.

CLBP_C(xc, yc) = q(pc), q(d) =
{
1, if d ≥ TI
0, otherwise (4)

Here, TI is the average intensity of the whole image.
These three operators (i.e., CLBP_C, CLBP_S, and
CLBP_M) can be combined in twoways. The first way is to
build a joint 3D histogram (CLBP_S/M/C), and the second
one is to build a 2D joint histogram by combining CLBP_C
with either CLBP_S (i.e., CLBP_S/C) or CLBP_M (i.e.,
CLBP_M/C). Then this 2D histogram is converted into a
1D histogram. Finally, CLBP_M_S/C or CLBP_S_M/C can
be generated by concatenating CLBP_M with CLBP_S/C
or CLBP_S with CLBP_M/C.

2.6 Local gradient pattern (LGP)
LGP is proposed by Jun et al. [16] where n× n (e.g., 3× 3)
neighborhood of a pixel is considered, and the neighbor
having gradient greater than or equal to the average of gra-
dients of eight neighboring pixels, is set to a binary value
of “1”, otherwise is assigned a binary value of “0”, which is
defined by Eq. 5.

LGPn,r(xc, yc) =
∑

n−1
l=0 q(gl − gμ)2l,

Where q(d) =
{
1, if d ≥ 0
0, otherwise

(5)

Here, neighboring pixel and mean gradients are calcu-
lated as, gl = |pl − pc| and gμ = 1

n
∑ n−1

l=0 gl respectively
where pl and pc are the neighboring and the center pixel’s
intensities.

2.7 Local ternary pattern (LTP)
Inspired by LBP, Tan and Triggs [2] introduce LTP oper-
ator. The key difference from LBP is the use of three bits
to tackle intensity fluctuation instead of two bits in LBP.
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Thus, LTP produces a ternary code which is calculated
using Eq. 6.

LTPn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)3l,

Where q(d) =
⎧
⎨

⎩

+1, if d ≥ 5
−1, if d ≤ −5
0, otherwise

(6)

Here, (xc, yc) is the coordinate of the center pixel c. pc
and pl are the intensities of c and lth neighboring pixels
respectively. To reduce the size of the feature vector, a LTP
code is usually split into two binary codes (i.e., upper and
lower pattern) and these two types of codes are used for
building two histograms separately. Finally, these two his-
tograms are concatenated to represent the feature vector
of an image.

2.8 Local adaptive image descriptor (LAID)
LAID is a recently proposed variant of LTP which uses
a dynamic threshold to produce a ternary code. LAID
operator is defined by Eq. 7.

LAIDn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)3l,

Where q(d) =
⎧
⎨

⎩

+1, if d ≥ T
−1, if d ≤ −T
0, otherwise

(7)

Here, (xc, yc) is the coordinate of the center pixel c. pc
and pl are the intensities of c and lth neighboring pixels
respectively. T is a dynamic threshold which is deter-
mined by taking the median of |pl − pc|. Like LTP, a LAID
code is split into two binary codes to reduce the size of the
feature vector.

2.9 CENsus TRansform hISTogram (CENTRIST)
CENTRIST is a visual feature descriptor for scene and
object classification which performs a census transform
(CT) of an image and replaces the image with its CT values
[7]. CT is a non-parametric local transformation designed
for establishing relationships between local patches [4],
which is calculated like LBP. CENTRIST does not use
interpolation of corner pixels which is used in LBP. This
is the only difference between LBP and CT calculation.
The histogram of CT values has been computed to rep-
resent the visual descriptor. As CT only encodes the local
structures of an image, CENTRIST uses the overlapped
spatial pyramid to capture the global structures of an
image in large scale. Finally, histograms of all blocks are
concatenated to form the feature vector for classification.

3 Literature review
Till date, SIFT [30] is one of the most successful descrip-
tors in different image processing applications such as
scene and object classification. However, one of its major
drawbacks is computational cost. Tola et al. propose

DAISY descriptor which achieves computational gain by
convolving orientation maps using Gaussian kernel [45].
They have used circular regions instead of regular grids
where the radius is proportional to the standard devia-
tion of the Gaussian kernel. Comparing different types
of spatial pooling scheme, Brown et al. conclude that
DAISY style pooling shows better accuracy while keep-
ing lower computational cost [46]. Histogram of second
order gradient (HSOG) adopts DAISY pooling, which at
first computes a set of first order gradient maps (OGM),
then second order gradient is calculated over all OGMs
[9], resulted in the increase of both computational cost
and accuracy.
SIFT and its variants can capture salient features using

key-point descriptors [47], while HOG and its variants
use magnitude as weight to deteremine the significance
level of saliency in a particular direction. These processes
can differentiate background and foreground information
implicitly. However, in both cases, the computational cost
could have been reduced, if the basic descriptor itself
were able to identify the salient regions. Besides, most
of these methods do not consider human visual percep-
tion to distinguish between background and foreground
information. Moreover, a gradient-based method may fail
to differentiate two different textures having the same
gradient direction [38].
LBP and its variants [2, 13, 14, 17–20, 41] can cap-

ture local microstructures exploring different types of
thresholds. These methods are commonly used for differ-
ent applications such as face detection [15, 16], human
detection [38], object, scene, event [48], face [13, 14], gen-
der [20], and facial expression recognition [18, 49] for
their convincing accuracy and lower computational cost.
In most of the cases, an image is divided into several
blocks where LBP-like codes are calculated and then his-
togram of these codes are calculated for each of these
blocks. Finally, these histograms are concatenated to form
the final feature vector. A similar but effective variant of
this process is described in [18] where Shan et al. use
LBP for facial expression recognition adopting boosted
SVM. However, the basic LBP only uses sign informa-
tion. Recently, CLBP is proposed which combines the sign
and magnitude to extract more useful information [44]
because the combination of sign and magnitude compo-
nents can provide better clues, which are not evident if
only a single component is considered individually [21].
Zhu et al. [40] propose orthogonal combination of local
binary pattern (OC-LBP) which reduces the dimensional-
ity of the basic LBP from 2P to 4 × P. Due to considering
four orthogonal neighbors for each OC-LBP code, this
method fails to capture prominent textures even com-
pared to LBP. However, the classification performance is
boosted by incorporating bag of features with dictionary
learning which increases computational cost. A recent
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variant of LBP is local direction number pattern (LDN)
[50], which performs well in face and expression recogni-
tion. LDN encodes the structure of a local neighborhood
by analyzing its directional information. Consequently,
LDN computes the edge responses in the neighborhood in
eight different directions with a compass mask which also
introduce extra computational burden.
Recently, Ren et al. have proposed data-driven LBP

(DDLBP) for low-level image representation, which is for-
mulated as a point selection problem, that is solved by
maximal joint mutual information criterion [39]. This
problem is converted into a binary quadratic program-
ming problem and solved efficiently via the branch and
bound algorithm. Hussain et al. address that existing
local pattern descriptors using hand-specified coding lim-
its those to small spatial supports and coarse gray-level
comparisons and introduce local quantized pattern (LQP)
which uses lookup table-based vector quantization to
code larger or deeper patterns [51]. LQP inherits some of
the flexibility and power of visual-word representations,
without sacrificing the speed and simplicity of existing
local patterns.
Inspired by the LBP and its variants, several ternary

pattern-based methods such as LTP [2], NTTP [3], and
LAID [42] are also introduced. In NTTP [3], the authors
define an adaptive noise band to handle the influence
of noise and use two types of thresholds for two differ-
ent types of intensity regions. For low-intensity region, a
constant threshold “τ ” is used. However, defining the low-
intensity region is not trivial. Again, τ needs to be set
for a particular application and can vary from application
to application. Such a setup might work for a particular
application and thus it is necessary to find a proper thresh-
old that can be used in general. LAID [42] is a recently
explored local ternary pattern for texture classification
which uses median of the local neighboring differences as
a threshold. However, it may be affected by the non-linear
property of median. For example, the median of [0, 1, 1, 2,
3, 4, 17, 18] is 2 or 3, as a result small differences (e.g., 3, 4)
and large differences (e.g., 17, 18) will get the same code
which is not expected. Such a scenario (also the oppo-
site scenario [1, 2, 15, 16, 17, 17, 18, 19]) may commonly
occur in many applications and thus results in inconsis-
tent code. Hence, LAID may perform well for a particular
application but might not be applicable in general.
Different from LBP, Gabor wavelet feature [52, 53] is

one of the major approaches in terms of generality and
performance in facial expression recognition. Gu et al.
exploit Gabor feature for facial expression recognition
which extends the radial encoding strategy for Gabor fea-
tures based on retinotopic mapping that helps to obtain
salient local features for facial expression representation
[53]. Another feature descriptor using wavelet theory is
distinctive efficient robust features (DERF) which utilizes

exponential scale distribution, exponential grid structure,
and circularly symmetric function difference of Gaussian
as convolutional kernel [54]. DERF outperforms SIFT,
HOG, and DAISY. However, Gabor-based methods and
DERF are quite expensive in terms of computational cost.
On top of the basic features, there are few approaches

which are used for mid- or high-level image representa-
tion [55–58]. Among these, Li et al. propose a high-level
image representation named as object bank (OB) which
describes an image as a scale-invariant response map of
a large number of pre-trained generic object detectors
[55]. Deformable part-based model (DPM) is introduced
by Pandey and Lazebnik which uses latent SVM for classi-
fying object and scene categories [56]. Besides these, Yang
et al. propose spatial pyramid co-occurrence (SPCK++),
which calculates spatial co-occurrences of visual words
in a hierarchical spatial partitioning [57]. SPCK++ cap-
tures both the absolute and relative structure of an image
by combining local co-occurrences with global partition-
ing. Image-to-class (I2C) distance is first used in NBNN
[59] for image classification, which needs higher compu-
tational cost for nearest neighbor search in the testing
phase. Recently, Wang et al. improve the discrimination of
I2C distance especially for small number of local features
by learning per-class Mahalanobis metrics [58].
For high-level representation, sparse coding-based

approaches have shown better performance in image clas-
sification which usually adopt SIFT for low-level fea-
ture extraction. One of the first successful techniques is
ScSPM [60] which uses sparse coding instead of vector
quantization of SIFT descriptors. This technique adopts
spatial max pooling (MP) of ScSPM features in regular
SIFT grids for final feature representation. ScSPM per-
forms better than both linear SPM kernel (LSPM) on his-
tograms and traditional nonlinear SPM kernels with linear
SVM (LSVM) because the pooling of sparse codes quan-
tizes only the essential features which is linearly separable
by SVM. However, ScSPM solves L1-norm optimization
problem which is computationally expensive [61]. More-
over, it is non-consistent to encode similar descriptors
[61, 62]. Several modifications have been proposed for
these problems [61–63]. For instance, Wang et al. propose
a modification of ScSPM by considering locality con-
straints in linear coding (LLC) to project each descriptor
into its local-coordinate system where projected coordi-
nates are amalgamated by MP [62]. Moreover, ScSPM,
LLC, and most of the other sparse coding-based methods
suffer from a severe drawback, which is the quantization
of similar local features into different visual words [63]. To
mitigate this problem, Oliveira et al. introduce sparse spa-
tial coding (SSC) for image classification which combines
a sparse coding dictionary learning, a spatial constraint
coding, and an online classification stage [63]. The authors
represent the final feature vector by adopting MP in SSC
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features. Most of the sparse coding techniques [60, 62]
are adopted on local features independently which con-
sider the global similarity by constraint sparsity. However,
dense local features share some local contextual infor-
mation which is discarded by the existing sparse coding-
based techniques and become less reliable when adopting
spatial pooling [61]. To address this problem, a locality-
constrained and spatially regularized (LCSR) coding is
proposed by considering local spatial context of an image
into the usual coding strategies which preserves locality
constraints both in the feature space and spatial domain
of the image [61]. The information loss in the feature
quantization through pooling is still found, though several
coding methods are introduced to address this problem.
Wang et al. use linear distance coding (LDC) to alleviate
this problem, which is a complementary technique to the
traditional sparse coding schemes [64]. In their approach,
local features of an image are transformed into discrim-
inative distance vectors and then encodes these distance
vectors into sparse codes to capture the salient features of
the image.
Motivated by the sparse coding-based approaches, Gao

et al. propose kernel sparse representation for image
classification which performs sparse coding in a high-
dimensional feature space mapped by implicit mapping
function [65]. Afterwards, by combining these features
with SPM, the authors propose Kernel Sparse Represen-
tation Spatial Pyramid Matching (KSRSPM). Besides this
approach, Gao et al. [66] explore another sparse coding-
based approach (LScSPM) by considering the instable
sparse code produced by different sparse coding tech-
niques [60, 62]. The authors use Laplacian sparse cod-
ing framework to address this issue. To reduce the high
computational cost of dense kernel descriptors, efficient
match kernel (EMK) is introduced which maps local fea-
tures to a low-dimensional feature space and average the
resulting vectors to form a set-level feature [67].
Apart from sparse coding-based methods, several

approaches use soft-assignment coding [12, 68]. For
example, Gemert et al. [12] introduce soft-assignment of
codewords using kernel density estimation which assigns
local features to all the visual codewords [68]. Compar-
ing with other existing coding schemes, soft-assignment
coding is simple and has low computational cost. How-
ever, the major drawback is that it cannot produce com-
parable result with other coding schemes [68]. Liu et
al. address that the inferiority of soft-assignment coding
is because of its negligence to the underlying manifold
structure of local features and propose a localized soft-
assignment coding (LSA) [68]. They use mix-order max
pooling (MMP) instead of general MP which helps to
boost the performance.
Along with the aforementioned supervised learning

techniques, several unsupervised learning techniques are

also used in computer vision. For example, Bosch et al.
[34] introduce a semi-supervised learning (SP-pLSA) by
combining the unsupervised probabilistic latent seman-
tic analysis (pLSA) [69] and a discriminative classifier for
image classification. Here, pLSA is applied to the images
which are represented by the frequency of visual words
where color SIFT is used as a basic descriptor. Recently,
deep learning-based unsupervised technique of feature
learning is adopted that does not require manual inter-
vention. This approach has gained popularity because of
its better accuracy. Using multiple levels of representa-
tion and abstraction, it helps a machine to understand
about data (e.g., images, sound, and text) more accurately.
In deep learning frameworks, first, unsupervised feature
learning is performed on a large image dataset and then
the weights of the deep network is adjusted. Eventually, a
model is built that can later be used to solve a particular
problem which is known as fine tuning. Among the exist-
ing popular models, AlexNet [70], Places-CNN [71], and
VGG_S [72] are widely used because they cover diversi-
fied applications. Despite the gain of popularity of deep
learning, it is very computation intensive and requires
expensive hardware and large set of training data. Further-
more, a well-defined network structure is also required to
solve a particular set of problems which is challenging and
usually fix up empirically.
The mid- or high-level feature representation aims to

capture strong spatial layouts, encodes salient textures,
and makes those working with linear classifier [56, 60, 62].
To achieve the aforementioned properties, these methods
incorporate different steps such as generative part models
[59, 73], discriminative codebook learning [68, 74], sparse
coding [60, 62, 66], and/or spatial pooling [62]. The incor-
poration of these steps lead to increase in computational
cost. However, if it is possible to incorporate these issues
to the basic feature descriptor, it may reduce the huge
computational cost of the mid-/high-level representation.
Apart from these levels (low, mid, and high) of rep-

resentations, classifiers also play an important role in
classification accuracies, such as SVM with different ker-
nels (e.g., linear, polynomial and RBF kernel) are used
for classification in various applications [7, 17, 18, 50].
In general, although RBF kernel produces better results
in many applications, its computational cost is high. A
fast and effective classification is thus necessary which
can be achieved in two ways such as by selecting rele-
vant features where nonlinear relationship of features is
already incorporated and then use LSVM, or by intro-
ducing a low-cost nonlinear kernel of SVM. Maji et al.
[75] introduce a fast non-linear kernel of SVM namely
histogram intersection kernel which achieves better clas-
sification accuracy in many applications [76]. Zhang et
al. propose a hybrid classification technique (SVM-KNN)
which selects features using k nearest neighbors [77] and
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classify using DAGSVM [78] classifier. SVM-KNNhas low
computational cost and performs well when the test image
is similar to one of the training images. However, this tech-
nique fails to generalize much beyond the labeled images
because of calculating image-to-image distance. Recently,
to perform fast and better classification, Jianxin Wu [79]
introduces PmSVM, which solves a dual SVM formulation
using a coordinate descent approach. PmSVM approxi-
mates the gradient using polynomial regression instead of
the kernel function and feature mapping.
From the above discussion, it can be seen that most

of the existing techniques attempt to capture the salient
textures that are stable against different lighting condi-
tions, noises, intensity fluctuations which help to clearly
represent necessary foreground information. For this pur-
pose, these approaches either include preprocessing such
as keypoint identification before generating descriptor
or postprocessing such as different costly high-level rep-
resentations. However, the computational cost of these
approaches can be reduced if it is possible to identify the
prominent features using only the basic low-level descrip-
tors. Therefore, it is desirable to come up with a mecha-
nism that can identify prominent features in a low-level
descriptor.

4 Proposedmethod
In this paper, we propose a new feature descriptor named
as discriminative ternary census transform histogram
(DTCTH) for image representation which holds most of
the key properties of a feature descriptor. The overall
process of the construction of descriptor is described in
the following subsections.

4.1 Desired properties
A feature descriptor for image classification should have
the following essential properties.

1. Discrimination ability: A feature descriptor should
have higher discrimination ability. If it has the
capability to encode only the class-specific
information by suppressing the unnecessary
background, it will perform well in image
classification. Figure 4 presents several images with
corresponding Sobel images from different object,
scene, and expression classes. All of these images
contain respective class-specific information which is
clearly visualized from their Sobel images. This
class-specific information needs to be encoded for
better image classification. Therefore, our goal is to
encode only this class-specific information by
discarding the unnecessary background details.

2. Illumination invariance: A good feature descriptor
should be able to adapt with illumination changes
because illumination of same image can vary due to

different reasons. Among the existing low-level
feature descriptors, CENTRIST-based methods have
this property and if we follow the basic CENTRIST
structure, our proposed descriptor will have the same
property.

3. Generalizability: It is expected that a descriptor has
reasonable accuracy for different types of
applications. This can be achieved when a descriptor
is capable to encode class-specific features and
suppress unnecessary background information for
the respective applications. We will design our
descriptor such a way that it will have this property.

4. Incorporation of visual perception: In general, a
person cannot distinguish a change in an image if the
change is below the Weber’s constant [43]. So, it is
reasonable to conclude that the changes below this
constant is not necessary to capture. Thus, a
descriptor should have the capability to capture only
those changes that is important for human vision.

5. Stable code: Producing stable code (i.e., same code)
against intensity fluctuation is another essential
property for a feature descriptor. It is obvious that
intensity of an image might be changed for several
reasons. Let δ = pl – pc, where pc is the intensity of a
target pixel c and pl is the intensity of its lth
neighbor. If the difference of intensities | δ |, of the
two pixel is large, those two pixels should be
considered differently and vice versa. Hence, the
range of δ has to be set in such a way so that the two
pixels get the same or different codes in two different
situations. At this point, we define two terms certain
and uncertain state for a code (C) using Eq. 8.

C =
{
certain state, if | δ |≥ T
uncertain state, otherwise (8)

Here, T is a threshold that might be static or
dynamic. Defining certain and uncertain states have
several advantageous properties. For example, in this
case, we can achieve discriminative and stable code
because of considering the certain and uncertain
states separately. Apart from that, we can get three
groups (G) of codes using Eq. 9. Group one (g1) and
group three (g3) belong to certain state, while group
two (g2) remains in uncertain state.

G =
⎧
⎨

⎩

g1, if δ ≥ T
g2, if − T < δ < T
g3, if δ ≤ −T

(9)

Again T should be dynamic because a static threshold
might fail in case of different types of images.
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Fig. 4 Sample images with corresponding Sobel images from different categories of object, scene, and expression (first row original images and
second row Sobel images). a Object classes. b Leaf and expression classes. c Scene classes

4.2 Discriminative ternary census transform histogram
(DTCTH)

The overall process of DTCTH calculation is shown in
Fig. 5. For producing different codes for certain and
uncertain changes of intensities in an image, we con-
sider ternary coding scheme, namely discriminative cen-
sus transform (DCT) which is calculated using Eq. 10.

DCTn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)3l,

Where q(d) =
⎧
⎨

⎩

+1, if d ≥ T
−1, if d ≤ −T
0, otherwise

(10)

Here, T is a dynamic threshold, n and r are the total
number of neighbors and the radius of the neighboring
pixels respectively, and (xc, yc) is the coordinate of the
center pixel. pc and pl are the intensities of the center
pixel c and lth neighboring pixel. For simplicity and com-
putational efficiency, the ternary pattern is divided into
two census transformed images namely upper (DCT_UP)
and lower (DCT_LP) pattern which are calculated using
Eqs. 11 and 12. Figure 6 shows a pictorial example of DCT
calculation. Afterwards, two separate histograms such as

H_DCTUP and H_DCTLP of these two binary patterns
are calculated using Eqs. 13 and 14. The final feature
vector is represented by concatenating these histograms.

DCT_UPn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)2l,

Where q(d) =
{
1, if d ≥ T
0, otherwise

(11)

DCT_LPn,r(xc, yc) =
∑

n−1
l=0 q(pl − pc)2l,

Where q(d) =
{
1, if d ≤ −T
0, otherwise

(12)

H_DCTUPk =
∑

h−1
i=0

∑
w−1
j=0 δkDCT_UPn,r(i,j),

Where δkp =
{
1, if p = k
0, otherwise

(13)

H_DCTLPk =
∑

h−1
i=0

∑
w−1
j=0 δkDCT_LPn,r(i,j),

Where δkp =
{
1, if p = k
0, otherwise

(14)

Here,DCT_UPn,r(i, j) andDCT_LPn,r(i, j) are the upper
and lower DCT codes of coordinate (i, j). k is the kth bin
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Fig. 5 Overall process of DTCTH calculation. a Input image. b DTCTH codes in overlapping SPM. c Final feature histogram

of the histogram. h and w are the height and width of the
image block. Kronecker delta δkp is a piecewise function
of p and k. As DCT encodes only local micro-structures
of spatial location, spatial pyramid representation (SPM)
which is used in CENTRIST, is adopted to capture the
global structures of an image.

4.3 Determining the value of T
During the calculation of DTCTH, for every pixel of an
image, we have eight different values that are obtained
by calculating the differences (| δ |) from its neighbors.
We want to partition these values into two groups using
a threshold such that the variance is maximized between
the groups and is minimized within the group. The pur-
pose of this partitioning is that the group with lower
values can be considered as background where the group
with higher values as foreground, in the local scope. A
solution of this partitioning problem can be found using

Jenks natural breaks optimization method [80, 81]. How-
ever, such an optimization is very time consuming as we
have to apply the method for each pixel of an image to
generate the respective code. Furthermore, Jenks natu-
ral breaks optimization is not designed to comply with
Weber’s constant though the combination of these two is
expected to increase the accuracy. Under these circum-
stances, after exhaustive empirical analysis (on 109 sam-
ples), we set the value of T to the square root of the center
pixel in a local ternary pattern. We have found that such
a choice of T brings about the closest possible similarity
which is around 84.90%, to the aforementioned optimiza-
tion problem considering Weber’s constant. Thus, we can
conclude that taking the square root of the center pixel is
a very close approximation of the desired threshold with
much low computational cost.
For validating the value of T, we have performed rig-

orous experiment on four different applications with

Fig. 6 An example of DCT calculation (T = 3)



Rahman et al. EURASIP Journal on Image and Video Processing  (2017) 2017:30 Page 11 of 24

four datasets using different values of T. The dataset
includes Caltech-101 [73] (102 classes and 9,145 images)
for object classification, UIUC Sport Event [33] (8 classes
and 1586 images) for event classification, OT scene [10]
(8 classes and 2688 images) for scene classification, and
Cohn Kanade [82] (6 classes and 960 images) for expres-
sion recognition. We consider both the fixed and dynamic
thresholds to determine the value of T. From the experi-
ments, we observe that the accuracy is decreased for the
values greater than 20, and hence, we consider the val-
ues up to 25, both in fixed and dynamic cases. The mean
and median of the differences among the neighboring
pixels and the center pixel, SQRT, and cube root of the
center pixel are also considered. Figure 7a shows the
accuracy of different fixed thresholds and square root
threshold, and Fig. 7b illustrates the accuracy of different
dynamic thresholds, as mentioned earlier. From Fig. 7, it
is found that T is defined as SQRT of center pixel and
performs best for all applications. Using McNemar’s test,
we observe that the proposed SQRT threshold resulted in
significantly fewer mis-classifications than other thresh-
olds (maximum P value, P = 0.001 and minimum P value,
P = 3.83932E − 28).

4.4 Properties of DTCTH
DTCTH encodes micro-structures such as line, edge, and
corners which are stable against intensity fluctuation and
monotonic illumination variation. Some of these proper-
ties are described in the following.
DTCTH captures more relevant part of an image that

are necessary for recognizing an object/scene. To under-
stand this, let us consider Fig. 4 which includes examples
from three different applications. Now, if we only have the
Sobel images where all fine details are suppressed and only
the class-specific information is retained then it will help

a classifier to achieve better accuracy. Likewise, if we ana-
lyze the images in Fig. 8, we can easily find that DTCTH
suppresses most of the background information keeping
the necessary details compared to the others. As the pro-
posed technique have this property, it is more generalized
compared to other descriptors.
DTCTH features are more robust to noise, and it pro-

duces stable code by adapting the intensity fluctuations
in local neighborhood. For example, CENTRIST and LBP
fail to produce the same code in case of intensity fluctua-
tion (see Fig. 1), whereas DTCTH is successful in this case
(i.e., “00000000”). Furthermore, we add white Gaussian
noise to the original images as shown in Fig. 9 to test
the robustness to noise of DTCTH. Now, if we compare
the coded images with or without noises for DTCTH
and CENTRIST, we can easily find that DTCTH is more
robust to noise and thus can capture the face specific
feature by eliminating the details.
Besides these, for certain intensity changes in positive

and negative directions, DTCTH produces two different
codes for these two directions which is desired because
from this type of representation, we can get more detailed
information about the local micro-structure of an image.
For example, in Fig. 10, DTCTH produces three different
codes for aforementioned three groups of codes following
Eq. 9 such as uncertain state (i.e., 0 for 71 and 69), intensity
changes in positive direction (i.e., 1 for 80, 81 and 79), and
negative direction (i.e., −1 for 61, 60, and 60) in certain
regions by considering 70 as the center pixel.
To understand the effect of human visual perception

in case of DTCTH, we require a reference value to mea-
sure the change in intensity. Since DTCTH uses the center
pixel for calculating code, we use the same reference point
for measuring Weber’s constant. For example, in Fig. 10,
the Weber’s constant for the neighboring pixels 71 and 69

a b

Fig. 7 Demonstration of object recognition, scene classification, event classification, and expression recognition accuracy using different thresholds.
a Accuracy of different constant thresholds. b Accuracy of different dynamic thresholds (i.e., percentage of the center pixel as threshold). All the
results are generated considering ternary pattern in CENTRIST framework. Noteworthy, L (threshold used in LGP [16]),M (median threshold used in
LAID [42]), S (SQRT of center pixel), and C (cube root of center pixel)
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Fig. 8 Coded image by DTCTH, LTP, and CENTRIST for corresponding images in Fig. 4. a Object classes. b Leaf and expression classes. c Scene classes
(first row—DTCTH-coded image, second row—LTP-coded image, and third row—CENTRIST-coded image)

with the center pixel 70 is 0.01, which is below theWeber’s
constant for human visual perception [43]. Hence, these
two neighbors are coded as “0.” Similarly, 79 and 61 have
the Weber’s constant of 0.13; hence, these two pixels are
coded as “1” and “-1” due to the changes in two different
directions which is expected. From Fig. 11, it is under-
standable that the smooth regions (e.g., cheek area) are
coded similarly and the codes for +ve and −ve directions
contain complementary information (e.g., eyebrow and
mouth regions).

5 Experimental evaluation
In this section, we evaluate the performance of DTCTHby
comparing with the other state-of-the-art methods over
nine datasets that belong to five different applications

such as object, scene, event, leaf, and facial expression
classification. Application wise descriptions of the experi-
ments are discussed in the following.
Table 1 presents the overview of these nine datasets

along with the number of training and testing samples
used in the experiments, which is also described in the
respective datasets. For the experiments, all images are
resized to at most 300× 300 pixels. Except the expression
recognition, the dataset is split into five random parti-
tions and experiments are performed five times. That is,
we have performed fivefold cross validation and report
the average accuracies in the respective tables. In case of
expression recognition, the experiments are run ten times
with person independent splits by following the standard
protocol, and the average accuracies are reported in the
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Fig. 9 Noise resistance of CENTRIST vs. DTCTH. a Image without noise.
b Noisy image (middle one is CENTRIST-coded image, right one is
DTCTH-coded image)

tables. The datasets description, followed by the proper
comparison with state-of-the-art methods, are described
in details in the following subsections. In this paper, we
also provide results of some of the deep learning-based
techniques for completeness, though these techniques are
not directly comparable to DTCTH.
For implementing DTCTH, few parameters are related

to the basic descriptor (DTCTH) and its classifier (SVM).
The major parameters for DTCTH are its radius (r) and
its number of neighbors (n). From the literature, we have
found that the best accuracies (with reasonable feature
vector length) are produced using r = 1 or r = 2 and

Fig. 10 Illustrative example of the certain and uncertain regions in an
image

n = 8 in most of the applications [13]. For SVM, dif-
ferent types of kernels such as linear, RBF, polynomial,
sigmoid, and histogram intersection (HI) can be used.
For first four kernels, we use LibSVM package1. To find
out how DTCTH behaves with these parameters, we use
three datasets namely Caltech 101, UIUC Sports Event,
and Scene 15. The results with these parameters’ settings
for these datasets are summarized in Table 2 which shows
that DTCTH works well in most of the cases when n = 8
neighbors at radius r = 2 is considered with HI kernel.
In this work, we mainly adopt the CENTRIST frame-

work2, keeping all the parameters same as described in
CENTRIST [7]. Thus, for fair comparison, we consider
eight neighbors at radius one from the center pixel-like
CENTRIST in all the experiments, although considera-
tion of other parameter setting may produce better result.
Following CENTRIST, we also avoid corner points inter-
polation and remove two DCT bins (i.e., 0 and 255)
while calculating DCT histograms. Afterwards, we take
the square root of DTCTH histogram and perform L1
normalization of those descriptors. For classification, we
use SVM classifier with linear kernel (c = 2−5, g =
2−7) [83] and histogram intersection (HI) kernel [75]. We
use the aforementioned parameter settings unless other-
wise stated. To reflect a brief description of a particular
method, we mainly consider the following representa-
tion for Tables 3–11. Firstly, we give the basic descriptor
name followed by mid-/high-level representation in the
parentheses, then the classifier name and publication year.

5.1 Object classification
We have considered two well-known and most chal-
lenging object datasets named as Caltech-101 [73] and
Caltech-256 [11] to evaluate the object recognition per-
formance of the proposed descriptor. These two datasets
are described below followed by the obtained results from
the experiments.

5.1.1 Caltech-101
Caltech-101 contains 9144 images of 101 categories and
an additional background category, making a total num-
ber of 102 categories, with significant variance in shape
[73]. The number of images per category varies from 31
to 800. As suggested by the original dataset [73] and many
other researchers [5–7, 60], we have partitioned the whole
dataset into 5, 10, 15, 20, 25, and 30 training images per
class and rest for testing to measure the performance
unless otherwise stated.
To compute DTCTH code, it only compares its pixel

values with a specific value (square root of the center
pixel) and performs better than SIFT, DAISY, and HSOG
techniques. DTCTH achieves 78.56% accurate object clas-
sification rate by considering only the low-level feature
representation, which demonstrates the improvement of
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Fig. 11 DTCTH-coded image. a Input image. b Upper code. c Lower code

performance over existing state-of-the-art methods such
as SSC [63], ScSPM [60], LSPM [60], LLC [62], LCSR [61],
and LDC [64], even though most of these methods use
different high-level representations. A recent state-of-the-
art method namely Gaussian of local descriptors (GOLD)
[85] that achieves 80.92% accuracy using 30 training and
only 50 testing samples. It uses dense color SIFT as a basic
descriptor and focuses on high-level representation. The
result is comparable when we use DTCTH with r = 2.
However, the computational cost of this method is much
higher compared to us. Colored SIFT (CSIFT) [86] is
another recent state-of-the-art low-level descriptor that
also uses LLC as a high-level representation. However,
this method produces inferior result (69.18%) compared
to DTCTH.
Apart from the aforementioned techniques, other well-

known descriptors such as GIST [10], CENTRIST [7], LTP
[2], and LGP [16] are used in different applications and
compared with DTCTH. For the sake of fair comparison,
the results of CENTRIST, LTP, and LGP are generated
using same parameter settings that we have used. The
result of GIST descriptor is generated using the stan-
dard setup, which is 32 Gabor filters in 4 scales and 8

orientations. All of these low-level feature descriptors pro-
duce inferior results in comparison with DTCTH (see
Table 3). It is observed from this table that PmSVM [79]
performs (72.18%) slightly better than DTCTH (71.84%)
considering 15 training images. It is noteworthy that they
have used different classifier than ours and considered
only 20 sample images for testing.

5.1.2 Caltech-256
Caltech-256 is a very challenging dataset which contains
30,607 images of 256 categories and an additional clutter
category [11]. Each class has at least 80 images which show
higher variability in object size, location, and pose than
that in Caltech-101. We have evaluated our algorithm in
different settings such as considering 15, 30, 45, and 60
training images per class and using the rest as test data
unless otherwise stated.
Table 4 presents the experimental results of DTCTH as

well as existing state-of-the-art methods in the literature
on Caltech-256 dataset which shows that the proposed
DTCTH performs better compared to other basic fea-
ture descriptors including GIST [10], CENTRIST [7], LTP
[2], and LGP [16]. Besides Borji et al. [88] perform a

Table 1 Different benchmark datasets with proper training samples

Applications Object classification Event classification Scene classification Leaf classification Facial expression classification

Databases Caltech-256 Caltech-101 UIUC sports event OT scene Scene 15 Indoor 67 Swedish leaf Cohn Kanade (CK) CK+

Classes 257 102 8 8 15 67 15 6/7 7

Total samples 30,608 9145 1586 2688 4485 5620 1125 960/1280 981

Training images/class 60 30 70 100 100 80 25 Person independent
Test images/class Rest Rest 60 Rest Rest 20 Rest 10-fold cross-validation
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Table 2 Effect of different SVM and DTCTH parameters on UIUC
Sports Event, Caltech 101, and Scene 15 datasets

Techniques UIUC sports event Caltech 101 Scene 15

Linear kernel

DTCTH8,1 85.16±0.96 72.26±1.67 82.66±0.50

DTCTH8,2 84.73±1.01 76.08±0.41 82.87±0.49

Polynomial kernel

DTCTH8,1 83.69±0.97 68.64±0.53 80.92±0.12

DTCTH8,2 84.02±1.15 73.21±0.58 82.62±0.56

RBF kernel

DTCTH8,1 75.74±1.54 58.72±1.16 72.95±0.62

DTCTH8,2 75.83±1.17 63.96±1.36 73.73±0.65

Sigmoid kernel

DTCTH8,1 67.95±1.94 52.59±1.41 68.16±1.88

DTCTH8,2 70.47±1.58 56.88±1.31 69.59±1.08

Histogram intersection kernel

DTCTH8,1 88.18±0.84 78.56±0.91 83.63±0.21

DTCTH8,2 87.75±0.57 80.36±0.24 83.92±0.43

Here, we consider 70 training and 60 test images for UIUC Sports Event, 30 training
and remaining test images for Caltech 101, and 100 training and remaining test
images for Scene 15

comparative evaluation of different existing techniques
such as SIFT [88], HOG [88], HOG pyramid [88], LBP
[88], and LBP pyramid [88] on this dataset, all of which
produce inferior results compared to DTCTH. More-
over, DTCTH achieves more than 11 and 17% accuracy
improvements over CENTRIST and GIST respectively by
considering HI kernel.
Furthermore, DTCTH performs better than differ-

ent sparse and soft-assignment coding-based approaches
including ScSPM [60], KSRSPM [65], LScSPM [66], EMK
[67], LSA [68], SSC [63], and LDC [64] except LLC [62].
This LLC shows slightly better result (47.68%) compared
to DTCTH (45.61%) with the cost of high-level represen-
tation. It is noteworthy that such high-level representation
is computationally expensive. In contrast, the proposed
DTCTH achieves comparable accuracy with much lower
computation. A recent state-of-the-art low-level descrip-
tor is reversal invariant descriptor enhancement (RIDE)
[89] which improves the performance of basic SIFT using
a high-level representation that uses improved fisher vec-
tor (IFV) [90]. This IFV helps to boost up of the perfor-
mance and achieves 60.25% accuracy.

5.2 Scene classification
We have implemented DTCTH for both indoor and out-
door scene classification. For this purpose, three datasets
such as MIT Indoor 67 [91] for indoor, OT scene [10] for
outdoor, and Scene 15 [5] for both indoor and outdoor

scene classification are used. The description of these
three datasets are discussed below followed by the experi-
mental results.
MIT Indoor 67. This dataset holds 15,620 images of

67 indoor scene categories [91]. There are at least 100
images in each category. We randomly choose 80 images
from each category for training and remaining images for
testing the system.
OT scene. Oliva and Torralba at first used OT scene

dataset for scene classification [10]. It consists of 2688
images from 8 scene classes. In the experiments, 100
images are randomly selected to train the system and the
other images are used for testing purpose.
Scene 15. Scene 15 dataset contains 4485 images of 15

scene categories [5]. Each category has between 200 and
400 images. We randomly select 100 images from each
category as training data and use the remaining images as
test data.
In general, indoor scene classification is comparatively

challenging than outdoor scene classification because
indoor scenes contain large inter-class similarity. There-
fore, the performance of all the methods are generally
lower for indoor scene (e.g., MIT Indoor 67) compared
to the outdoor scene (e.g., OT scene) datasets. Several
state-of-the-art low-level feature descriptors such as PRI-
CoLBP [8], CENTRIST [7], GIST [10], SIFT [30], HOG
[31], HSOG [9], CS-LBP [87], LTP [2], and LGP [16] are
explored for both indoor and outdoor scene classifica-
tion. Recently, CENTRIST has been extended to multiple
channels (mCENTRIST) [6], which shows better result
(44.60%) in indoor scene classification than CENTRIST
(35.12%). They have also showed that multi-channel GIST
(mGIST) andmulti-channel SIFT (mSIFT) perform better
than original GIST and SIFT respectively. DTCTHobtains
better accuracy than all of these approaches in all the
datasets (see Tables 5, 6 and 7).
Besides these basic features, there are other methods

such as NBNN [59], PmSVM [79], pLSA [69], SP-pLSA
[34], Bag-of-Phrase (BoP) [95], and DAISY [45] which are
also used for scene classification. To this end, DTCTH
achieves better results in the respective datasets thanmost
of these approaches. In few cases, such as SP-pLSA shows
slightly better results (83.7%) considering color SIFT for
Scene 15 dataset compared to DTCTH (83.63%). How-
ever, DTCTH achieves higher accuracy (89.18%) com-
pared to SP-pLSA (87.80%) in OT scene dataset. BoP
uses histogram mining with discriminative learning tech-
nique and achieves 86.78% accuracy in Scene 15 dataset.
RIDE achieves 64.93% accuracy onMIT Indoor 67 dataset
by adopting IFV which is computationally expensive as
described earlier [89]. In OT scene dataset, DTCTH
achieves the highest correct classification rate (89.18%). In
this dataset, comparing with GIST which is designed for
scene classification, DTCTH increases the performance
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Table 3 Object classification rate (%) in Caltech-101

Techniques 5 10 15 20 25 30

Places-CNN, 2014 [71] – – – – – 65.18

ImageNet-CNN, 2014 [71] – – – – – 87.22

Hybride-CNN, 2014 [71] – – – – – 84.79

Dense color SIFT (SP-pLSA) SVM, 2008 [34] – – 59.80 (50)* - - 67.70 (50)*

SIFT (ML + CORR) KNN, 2008 [84] – – 61.00 – – 69.60

SIFT (ML + PMK) KNN, 2008 [84] – – 52.20 – – 62.10

Dense SIFT (KC) SVM with HI, 2008 [12] – – – – - 64.14 (50)*

Dense SIFT (LSPM + MP) LSVM, 2009 [60] – – 53.23 – – 58.81

Dense SIFT (ScSPM + MP) LSVM, 2009 [60] – – 67.00 – – 73.20

Dense SIFT (LLC + MP) LSVM, 2010 [62] 51.15 59.77 65.43 67.74 70.16 73.44

Dense SIFT (LSA + MMP) LSVM, 2011 [68] – – – – – 74.21

Dense SIFT (LDC + LLC/LSA + MP) LSVM,

2013 [64] – – – – – 74.47

Dense SIFT (LCSR + MP) LSVM, 2012 [61] – – – – – 73.23

Dense color SIFT (GOLD) LSVM, 2015 [85] – – 73.39 – – 80.92

(at most 50)* (at most 50)*

Dense SIFT (SSC + MP) OCL, 2012 [63] 55.64 65.52 69.98 73.99 75.49 77.59

HSOG (LLC + MP) SVM, 2014 [9] – – 60.46 (15)* – – 67.97 (15)*

CSIFT (LLC + MP) LSVM, 2015 [86] 46.48 56.97 62.09 65.45 68.17 69.18

Dense SIFT (BoF) SVM, 2004 [9, 30] – – 62.48 (15)* – – 69.89 (15)*

CS − LBP2,8,0.01 (BoF) SVM, 2009 [9, 87] - - 58.50 (15)* – – 66.86 (15)*

DAISY (BoF) SVM, 2010 [9, 45] - - 58.63 (15)* – – 67.01 (15)*

SIFT (SPM) SVM, 2006 [5] – – 56.40 (50)* – – 64.60

Dense SIFT (SPM) SVM, 2007 [11] 44.20 54.50 59.00 63.30 65.80 67.60

Dense SIFT + NBNN, 2008 [59] – – 65.00 (20)* – – 70.40

Geometric blur + SVM-KNN, 2006 [77] 46.60 55.80 59.05 62.00 – 66.23

Dense SIFT (BoF) PmSVM-χ2, 2012 [79] – – 72.08 (20)* – – –

Dense SIFT (BoF) PmSVM-HI, 2012 [79] – – 72.18 (20)* – – –

LGP (SPM) LSVM, 2013 39.86 50.11 57.84 60.03 62.96 66.52

OC-LBP (BoF) LSVM, 2013 47.10 56.34 62.43 64.70 67.63 70.87

LAID (SPM) LSVM, 2013 39.03 48.35 54.11 57.83 60.84 63.87

CLBP_S/M/C (SPM) LSVM, 2010 32.06 40.03 45.59 49.40 52.56 55.35

LTP (SPM) LSVM, 2010 41.04 51.23 59.69 61.17 64.57 67.85

GIST + LSVM, 2001 40.16 47.87 52.5 56.25 58.88 61.70

CENTRIST (SPM) LSVM, 2011 39.46 49.72 55.84 59.47 62.25 65.23

Proposed (DTCTH + LSVM) 46.98 57.00 63.66 65.83 68.69 72.26

Proposed (DTCTH + HI) 56.74 65.97 71.84 74.80 76.85 78.56

*Different number of test images used for the experiment rather than standard settings

over 18 and 20% by considering linear and HI kernel
respectively. DTCTH provides 83.63% accuracy in Scene
15 dataset which also demonstrates 2 and 28% improve-
ments over CENTRIST and GIST respectively. Further-
more, DTCTH outperforms object bank, DPM, SPCK++,
and NBNN in the respective datasets.

Considering high-level image representation, sparse
and soft-assignment coding-based approaches are well-
known. Among these approaches, ScSPM [60], LLC [62],
SSC [63], LSA [68], LCSR [61] and LDC [64] have
gained popularity for scene classification. Most of these
approaches use two steps for feature representation such
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Table 5 Scene classification rate (%) in MIT Indoor 67

Techniques Accuracy

CNN-SVM, 2014 [92] 58.4

Places-CNN, 2014 [71] 68.24

ImageNet-CNN, 2014 [71] 56.79

Hybride-CNN, 2014 [71] 70.80

Dense SIFT (LSA + MMP) LSVM,

2011 [68] 44.19

dense SIFT (LLC + MP) LSVM,

2010 [62] 43.78

dense SIFT (LDC + LLC/LSA + MP)

LSVM, 2013 [64] 46.69

Dense SIFT (SSC + MP) OCL, 2012 [63] 44.35

Object Bank + LSVM, 2010 [55] 37.60

Dense SIFT (BoF) SVM with HI,

2014 [93] 45.86

DPM, 2011 [56] 30.40

CENTRIST (BoF) PmSVM-HI, 2012 [79] 47.15

CENTRIST (BoF) PmSVM-χ2, 2012 [79] 46.20

PRICoLBP + SVM with χ2, 2014 [8] 43.4

HOG, 2005 [56] 22.8

SPM, 2006 [8], 34.4

MM-scene, 2010 [94] 28.00

mCENTRIST (SPM) LSVM, 2014 [6] 44.6±1.2

mSIFT (SPM) LSVM, 2014 [6] 39.7±1.6

mGIST (SPM) LSVM, 2014 [6] 31.5±1.6

LGP (SPM) LSVM, 2013 34.24±1.12

OC-LBP (BoF) LSVM, 2013 36.99±2.34

LAID (SPM) LSVM, 2013 32.78±1.47

CLBP_S/M/C (SPM) LSVM, 2010 30.45±1.70

LTP (SPM) LSVM, 2010 35.87±1.23

GIST + LSVM, 2001 26.5±1.41

CENTRIST (SPM) LSVM, 2011 35.12±0.99

Proposed (DTCTH + LSVM) 43.33±0.72

Proposed (DTCTH + HI) 46.22±1.02

as feature encoding and pooling (e.g., average, max)
steps. Boureau et al. [96] perform a comparative exper-
imental analysis which shows that sparse coding with
MP achieves better result than other combinations in
Scene 15. Among all of these approaches, only LDC [64]
achieves slightly better classification accuracy (46.69%)
than DTCTH (46.22%) in MIT indoor 67, but this method
produces inferior results compared to DTCTH inCaltech-
101 (4.09% inferior), Caltech-256 (7.36% inferior), and
Scene 15 (1.13% inferior) datasets.

Table 6 Scene classification rate (%) in OT scene

Techniques Accuracy

Dense color SIFT (pLSA) KNN, 2006 [69] 86.65

Dense color SIFT (pLSA) SVM, 2008 [34] 82.50

Dense color SIFT (SP-pLSA) SVM,

2008 [34] 87.80

HSOG (LLC + MP) SVM, 2014 [9] 86.30 *

dense SIFT (BoF) SVM, 2004 [9, 30] 84.10 *

HOG (BoF) SVM, 2005 [9, 31] 82.40 *

DAISY (BoF) SVM, 2010 [9, 45] 85.70 *

CS − LBP2,8,0.01 (BoF) SVM, 2009 [9, 87] 83.40 *

Dense color SIFT (SPM) SVM, 2008 [34] 87.10

LGP (SPM) LSVM, 2013 84.52

OC-LBP (BoF) LSVM, 2013 84.67

LAID (SPM) LSVM, 2013 84.25

CLBP_S/M/C (SPM) LSVM, 2010 79.34

LTP (SPM) LSVM, 2010 85.60

GIST + LSVM, 2001 69.03

CENTRIST (SPM) LSVM, 2011 84.01

Proposed (DTCTH + LSVM) 87.88±0.51

Proposed (DTCTH + HI) 89.18±0.81

*Half of the images for training and another half for testing

5.3 Event classification
The description of the dataset followed by experimental
results are discussed in the following.
UIUC Sports Event. This dataset consists of 1579 images

of 8 sports event categories [33]. The number of images in
each class ranges from 137 to 250. We have followed the
experimental settings described in [77] which is, randomly
selecting 70 images as the training and other 60 for testing.
DTCTH (88.18%) outperforms all the low-level descrip-

tors (as described before) even mCENTRIST [6] (86.50%)
that uses color information for this dataset (see Table 8).
It also shows better result compared to many high-level
representation (see Table 8) with few exceptions such as
BoP (91.74%) that uses saliency map and mining strategy
to boost-up its performance [95].

5.4 Leaf classification
For leaf classification, we use Swedish leaf dataset [97].
The dataset description followed by experimental results
are discussed in the following.
Swedish leaf. This dataset consists of 15 species of leaves

with 75 images per species [97]. The dataset has two prop-
erties such as the leaf images are manually aligned well
and in a good shape. Following the standard protocol dis-
cussed in [8], 25 randomly selected images from each
species are used for training and the rest for testing.
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Table 7 Scene classification rate (%) in Scene 15

Techniques Accuracy

Places-CNN [71] 90.19

ImageNet-CNN [71] 84.23

Hybride-CNN [71] 91.59

SIFT (SPM + pLSA) SVM, 2006 [5] 81.40 ± 0.50

Dense color SIFT (pLSA) SVM, 2008 [34] 72.70

Dense color SIFT (SP-pLSA) SVM, 2008 [34] 83.70

Dense SIFT (KC) SVM with HI, 2008 [12] 77.10

Dense SIFT (LSPM + MP) LSVM,

2009 [60] 65.32 ± 1.02

Dense SIFT (ScSPM + MP) LSVM,

2009 [60] 80.28 ± 0.93

Dense SIFT (Sparse Code) LSVM,

2010 [96] 84.10 ± 0.50

Dense SIFT (LLC + MP) LSVM,

2010 [62, 64] 79.81 ± 0.35

Dense SIFT (LSA + MMP) LSVM,

2011 [68] 82.70 ± 0.39

SIFT (BOVW + SPCK++) SVM,

2011 [57] 82.51 ± 0.43

Dense SIFT (LDC + LLC/LSA + MP)

LSVM, 2013 [64] 82.50 ± 0.47

Dense SIFT (LCSR + MP) LSVM,

2012 [61] 82.67 ± 0.51

Object bank + LSVM, 2010 [55] 80.90

Dense SIFT + I2CDML, 2010 [58] 77.00 ± 0.60

Dense SIFT (SPM) I2CDML, 2010 [58] 81.20 ± 0.52

Dense SIFT + NBNN, 2008 [58, 59] 72.30 ± 0.93

PRICoLBP + SVM with χ2, 2014 [8] 82.04

Dense SIFT (BoF) SVM with HI,

2014 [93] 82.06

LGP (SPM) LSVM, 2013 78.22 ± 0.56

OC-LBP (BoF) LSVM, 2013 77.22 ± 0.40

LAID (SPM) LSVM, 2013 81.18 ± 0.60

CLBP_S/M/C (SPM) LSVM, 2010 76.47 ± 0.15

LTP (SPM) LSVM, 2010 80.25 ± 0.31

GIST + LSVM, 2001 55.55 ± 0.67

CENTRIST (SPM) LSVM, 2011 81.45 ± 0.23

Proposed (DTCTH + LSVM) 82.66 ± 0.50

Proposed (DTCTH + HI) 83.63 ± 0.21

Table 9 presents the experimental results of DTCTH
as well as the existing techniques in literature on this
dataset, which shows that DTCTH achieves 99.52% accu-
racy. Several techniques are used in this dataset for

Table 8 Event classification rate (%) in UIUC Sports Event

Techniques Accuracy

Places-CNN, 2014 [71] 94.12

ImageNet-CNN, 2014 [71] 94.42

Hybride-CNN, 2014 [71] 94.22

Dense SIFT (KSRSPM) LSVM, 2010 [65] 84.92 ± 0.78

Dense SIFT (ScSPM + MP) LSVM,

2009 [60] 82.74 ± 1.46

Dense SIFT (LSA + MMP) LSVM,

2011 [68] 82.29 ± 1.84

Dense SIFT (LLC + MP) LSVM,

2010 [62] 81.41 ± 1.84

Dense SIFT (LCSR + MP) LSVM,

2012 [61] 87.23 ± 1.14

Dense SIFT + I2CDML, 2010 [58] 78.5 ± 1.63

Dense SIFT (SPM) I2CDML, 2010 [58] 79.7 ± 1.83

Dense SIFT + NBNN, 2008 [58, 59] 67.6 ± 1.1

Dense SIFT (BoF) SVM with HI,

2014 [30, 93] 85.12

LQP + SVM with RBF, 2012 [39, 51] 78.9

DDLBP + Max Relevance +

SVM with RBF, 2014 [39] 83.5

DDLBP + mRMR + SVM with RBF,

2014 [39] 83.5

DDLBP + MJMI + SVM with RBF,

2014 [39] 84.0

mGIST (SPM) LSVM, 2014 [6] 76.2 ± 1.9

mSIFT (SPM) LSVM, 2014 [6] 84.2 ± 0.7

mCENTRIST (SPM) LSVM, 2014 [6] 86.5 ± 0.6

LGP (SPM) LSVM, 2013 78.42 ± 0.94

OC-LBP (BoF) LSVM, 2013 81.15 ± 2.18

LAID (SPM) LSVM, 2013 78.50 ± 0.65

CLBP_S/M/C (SPM) LSVM, 2010 78.88 ± 0.92

LTP (SPM) LSVM, 2010 82.43 ± 1.17

GIST + LSVM, 2001 69.95 ± 0.98

CENTRIST (SPM) LSVM, 2011 79.50 ± 0.95

Proposed (DTCTH + LSVM) 85.16 ± 0.96

Proposed (DTCTH + HI) 88.18 ± 0.84

shape and leaf classification. DTCTH outperforms all of
these approaches by considering gray-scale image as input
which is provided in Table 9.

5.5 Facial expression recognition
We also evaluate the performance of DTCTH in expres-
sion recognition. Most of the facial expression recognition
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Table 9 Leaf classification rate (%) in Swedish leaf

Techniques Accuracy Input

Soderkvist, 2001 [97] 82.40 Contour

SC + DP, 2007 [98] 88.12 Contour

IDSC + DP, 2007 [98] 94.13 Contour

SPTC + DP, 2007 [98] 95.33 Gray-scale

Shape-Tree, 2007 [99] 96.28 Contour

CENTRIST, 2011 [7, 8] 90.61 Contour

SLPA, 2013 [100] 96.33 Gray-scale

PRICoLBP + SVM

with χ2, 2014 [8] 99.38 Gray-scale

LGP (SPM) LSVM, 2013 98.08 Gray-scale

OC-LBP (BoF) LSVM,

2013 99.36 Gray-scale

LAID (SPM) LSVM,

2013 99.33 Gray-scale

CLBP_S/M/C (SPM) LSVM,

2010 98.53 Gray-scale

LTP (SPM) LSVM, 2010 98.20 Gray-scale

GIST + LSVM, 2001 96.08 Gray-scale

CENTRIST (SPM) LSVM,

2011 97.44 Gray-scale

Proposed (DTCTH + LSVM) 99.49 Gray-scale

Proposed (DTCTH + HI) 99.52 Gray-scale

systems attempt to recognize a set of expressions like
anger, disgust, fear, joy, sadness, and surprise. This 6-class
expression set can also be extended to a 7-class expression
set including a neutral expression. In this work, our aim
is to recognize both 6-class and 7-class expressions. For
this purpose, we have performed experiments on Cohn
Kanade (CK) [82] and CK+ [103] datasets, where person
independent 10-fold cross-validation testing is consid-
ered. More specifically, the whole dataset is divided into
ten person independent groups of roughly equal number
of subjects. Nine groups are used to train the classifier, and
the remaining group is used as the test data. The datasets
description along with experimental results are discussed
in the following.
CK and CK+ Dataset. The CK dataset consists of 100

university students who were between 18 and 30 years
old at the time of their inclusion. Among them, 65% are
female. In the experimental setup, 320 image sequences
are selected from 96 subjects, each of which is labeled as
one of the six basic expressions. For 6-class expression
recognition, the three most expressive image frames are
taken from each sequence that results in 960 expression
images. In order to build the neutral expression set, the
first frame (i.e., neutral expression) from all 320 sequences

Table 10 Expression recognition rate (%) in CK

Techniques
CK

6-class expression 7-class expression

Ranzato et al. [101] – 90.10

LBP, 2006 [13] 92.60 ± 2.90 88.90 ± 3.50

LBP + Template Matching,

2009 [18] 84.50 ± 5.20 79.10 ± 4.60

Geometric feature + TAN,

2003 [102] – 73.20

LBP + SVM, 2009 [18] 91.50 ± 3.10 88.10 ± 3.80

Boosted-LBP, 2009 [18] 89.80 ± 4.70 85.00 ± 4.50

Boosted-LBP + SVM,

2009 [18] 95.00 ± 3.20 91.10 ± 4.00

Gabor + SVM, 2003 [52] – 84.80

Gabor, 2009 [18] 89.40 ± 3.00 86.60 ± 4.10

LDN + LSVM, 2013 [50] 98.40 ± 1.40 92.30 ± 3.00

LGP (SPM) LSVM, 2013 93.36 ± 3.76 88.97 ± 4.18

OC-LBP (BoF) LSVM, 2013 84.84 ± 5.29 78.17 ± 5.50

LAID (SPM) LSVM, 2013 89.13 ± 5.41 84.21 ± 4.73

CLBP_S/M/C (SPM) LSVM,

2010 85.44 ± 4.92 78.59 ± 5.78

LTP (SPM) LSVM, 2010 91.18 ± 8.68 88.79 ± 2.31

CENTRIST (SPM) LSVM,

2011 89.84 ± 7.90 86.69 ± 2.04

Proposed (DTCTH + LSVM) 98.98 ± 1.29 92.75 ± 5.43

Proposed (DTCTH + HI) 97.76 ± 2.43 93.89 ± 2.63

Table 11 7-class expression recognition rate (%) in CK+

Techniques Accuracy

AUDN, 2013 [104] 92.05

SPTS, 2006 [69] 50.40

CAPP, 2006 [69] 66.70

SPTS + CAPP, 2006 [69] 83.30

LDN + LSVM, 2013 [50] 89.30

NABP + Adaboost, 2015 [17] 92.17

LBP + Adaboost, 2006 [17] 88.67

LTP + Adaboost, 2010 [17] 89.65

LGP + Adaboost, 2013 [17] 83.10

HOG + Adaboost, 2005 [17] 89.69

OC-LBP + BoF + LSVM, 2013 84.20 ± 4.90

LAID (SPM) LSVM, 2013 92.76

CLBP_S/M/C (SPM) LSVM, 2010 87.47

CENTRIST (SPM) LSVM, 2011 88.70 ± 4.37

Proposed (DTCTH + LSVM) 93.99 ± 5.83

Proposed (DTCTH + HI) 93.82 ± 5.52
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Table 12 Confusion matrix of DTCTH in case of 6-class
expression recognition on CK

Anger Disgust Fear Sadness Happy Surprise

Anger 99.22 0.0 0.78 0.0 0.0 0.0

Disgust 0.0 100.0 0.0 0.0 0.0 0.0

Fear 0.0 0.0 97.22 0.0 2.78 0.0

Sadness 0.83 0.0 0.0 98.33 0.0 0.83

Happy 0.43 0.0 0.85 0.0 98.72 0.0

Surprise 0.0 0.0 0.0 0.0 0.0 100.0

are selected to make the 7-class expression dataset (1280
images). Furthermore, the extended CK (CK+) is used,
which includes 593 sequences for seven basic expressions
including happiness, sadness, surprise, anger, disgust, fear,
and contempt. In the experiments, we select the most
expressive three image frames from 327 sequences of 118
subjects.
DTCTH achieves better performance (98.98%) with

lower computational cost on CK dataset than LBP [13],
boosted LBP [18], NABP [17], LGP [16], LTP [2], HOG
[31], LDN [50], and CENTRIST [7] which are presented in
Tables 10 and 11. DTCTH also achieves better accuracies
than computationally costly Gabor features [52] (89.40%)
on this dataset.
Table 12 demonstrates the confusion matrix of 6 differ-

ent expressions in CK dataset. From this matrix, it can be
seen that DTCTH performs better in all the basic expres-
sions. Anger, sadness, and fear show comparatively lower
performance than other expressions which is generally
happened in expression recognition in CK dataset (see
Table 13). However, other existing approaches provide
inferior results in these expressions than DTCTH.
Table 11 presents the results on CK+ dataset which

shows that DTCTH (93.99%) outperforms existing state-
of-the-art approaches such as LDN, NABP, LTP, LBP,
LGP, HOG, and CENTRIST. It is noteworthy to men-
tion here that DTCTH outperforms even deep learning
based methods described in [101] and [104] on both CK
and CK+ datasets. Besides this, Table 14 demonstrates

Table 13 Confusion matrix of DTCTH in case of 7-class
expression recognition on CK

Anger Disgust Fear Sadness Happy Neutral Surprise

Anger 86.67 0.0 1.90 1.9 0.0 9.52 0.0

Disgust 0.77 95.38 0.0 0.0 0.0 3.85 0.0

Fear 0.56 0.0 95.0 0.0 0.56 3.89 0.0

Sadness 1.67 0.0 0.0 93.9 0.0 3.89 0.56

Happy 0.42 0.0 0.0 0.0 99.2 0.42 0.0

Neutral 2.71 0.21 1.67 0.21 0.63 94.58 0.0

Surprise 0.0 0.0 0.0 0.0 0.0 0.0 100

Table 14 Confusion matrix of DTCTH in case of 7-class
expression recognition on CK+

Anger Contempt Disgust Fear Sadness Happy Surprise

Anger 96.3 2.22 0.74 0.0 0.74 0.0 0.0

Contempt 9.26 87.04 0.0 0.0 0.0 0.0 0.0

Disgust 0.56 0.0 99.44 0.0 0.0 0.0 0.0

Fear 0.0 0.0 1.33 90.67 0.0 8.0 0.0

Sadness 11.9 1.19 0.0 0.0 85.7 0.0 1.19

Happy 0.0 0.0 0.0 0.97 0.0 99.03 0.0

Surprise 0.0 0.0 0.40 0.0 0.0 0.0 99.6

the confusion matrix of seven different expressions in
CK+ dataset. From this matrix, it can be concluded that
DTCTH achieves better accuracy in challenging expres-
sions such as contempt, sadness, fear, and anger, though
most of the existing techniques provide poor performance
in these expressions.

6 Conclusions
In this paper, a low-level feature representation tech-
nique namely discriminative ternary census transform
histogram (DTCTH) is proposed where we have shown
the requirements of a low-level descriptor and intro-
duced a way to achieve those. Rigorous experiments on
five different applications including nine different datasets
demonstrate that DTCTH has more discrimination ability
than other existing state-of-the-art low-level descriptors.
Our approach outperforms other methods that include
several high-level representations for different applica-
tions. This is because DTCTH has the ability to capture
the prominent features that are stable in the presence of
noise and different lighting conditions.
For calculating the threshold of DTCTH, we describe

a way that combines Jenks’ and Weber’s law. We also
provide a low-cost approximation that we have found
empirically. Further research can be carried out on this
issue to obtain a better approximation. Moreover, the
incorporation of color information and high-level feature
representation like sparse coding and pooling might fur-
ther boost the performance of this descriptor which will
be addressed in the future.
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