
RESEARCH Open Access

A novel architecture for parallel multi-view
HEVC decoder on mobile device
Wei Liu, Jiao Li and Yong B. Cho*

Abstract

The multi-view HEVC (MV-HEVC) extension was finalized in July of 2014 by the Moving Picture Experts Group and
the Video Coding Experts Group. Recently, multi-view videos based on stereo representations are becoming widely
popular. Also, a variety of multimedia contents are now available for mobile devices. A real-time multi-view video
decoder is therefore needed. In mobile devices, a real-time decoding multi-view video is difficult because of the
increasing number of views, spatial resolutions, and limited speed of the processors on mobile platforms. In this
paper, we propose a novel architecture for a real-time decoder in mobile devices. The proposed MV-HEVC decoder uses
parallel-optimized multi-view video decoding with multi-threading, using advanced reduced instruction set computer
machine (ARM) Cortex multi-core processors. Moreover, it is optimized in single instruction multiple data for an ARM
platform. The proposed multi-core decoding architectures enable multi-threading with minimum processing overhead.
Experimental results show that the proposed multi-view video coding increased the speed by around 2.4–4.8 times in
the ARM platform compared to MV-HEVC.

Keywords: MV-HEVC, Multi-threaded, Multi-core, Real-time, SIMD, Mobile, ARM NEON

1 Introduction
With the rapid development of the mobile Internet,
mobile platforms for video technologies are becoming
increasingly popular. For this reason, the resolution of
the mobile platform screen has been improving. 720p
and 1080p screens have become the mainstream screen
resolutions. The High Efficiency Video Coding (HEVC)
compression scheme can improve the compression effi-
ciency of 1080P video content by about 50% compared
with H.264 [1]. HEVC is a video compression standard
and is considered the successor of the H.264/MPEG-4,
Advanced Video Coding International Telecommunica-
tion Union Telecommunication Standardization Sector
(AVC ITU-T) standard. The first edition of the HEVC
video compression standard in April 13, 2013, was
accepted by the International Telecommunication Union
(ITU-T), the official standard [2–4]. Figure 1 depicts a
hybrid video encoder that can create a block diagram
that complies with the HEVC standard data stream.
Intraprediction involving the spatial domain pixel

correlation of an image generally uses adjacent pixel de-
coding block elements as reference data and obtains the
pixels of the current block unit value by interpolating.
Although the HEVC intraprediction is similar to H.264,
HEVC can predict up to 33 directional modes. Inter-
frame prediction includes motion estimation and motion
compensation. Although the motion estimation principle
is the same as that of the H.264 standard, HEVC
includes advanced motion vector prediction (AMVP)
and merge mode [2]. AMVP uses data from the refer-
ence picture and can also use data from adjacent predic-
tion blocks. The merge mode allows for the motion
vectors (MVs) to be inherited from neighboring predic-
tion blocks. The motion vector (Vector-MV Motion) in
interframe prediction is produced by motion estimation,
which is used to represent the offset of the corresponding
block regions of the current prediction unit (PU) relative
to the reference image. HEVC have the combined coding
mode and improves the compression ratio with the same
MV merging in the time domain. Unlike H.264, HEVC
also contains improved skip mode and direct mode [2]. In
terms of entropy coding, HEVC abandoned the H.264
context-based adaptive-variable length coding (CAVLC)
but retained the more efficient Context-based Adaptive-

* Correspondence: ybcho@konkuk.ac.kr
Department of Electronics, Information and Communication Engineering,
Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South
Korea

EURASIP Journal on Image
and Video Processing

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24
DOI 10.1186/s13640-017-0174-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-017-0174-5&domain=pdf
http://orcid.org/0000-0002-8443-9373
mailto:ybcho@konkuk.ac.kr
http://creativecommons.org/licenses/by/4.0/

binary Arithmetic Coding (CABAC) method, in addition
to optimizing the speed and compression rate as well as
the context of the storage [5]. With regard to the de-
blocking filter, HEVC and H.264 are similar, but HEVC
uses an 8 × 8 sampling grid, which is more suitable for
parallel operation [6]. Parallel processing architecture is
one of the advantages of HEVC. HEVC provides three
parallel processing tools: Slice, Tile, and WPP, which are
conducive to the realization of coding development from
single core to parallel multi-core. HEVC has become the
mainstream of video coding. The second approved version
of the HEVC/H.265 standard contains a multi-view exten-
sion profile [7], making a video multi-view possible on
mobile terminals. In multi-view, a video can be
watched from multiple angles. That is, the audience is

no longer subject to a camera-specific point of view,
and it is now possible to watch a video from any pre-
ferred angle. Compared with the traditional single-
channel video, the multi-view video has a wealth of
information in the form of stereo imaging and incor-
porates freedom of video data from the perspective of
the scene as shown in Fig. 2. The Joint Collaborative
Team on 3D Video Coding Extension Development
(JCT-3V) was established to work on multi-view and
3D video coding extensions for HEVC and other
video coding standards. The multi-view extension of
HEVC (MV-HEVC) enables encoding/decoding of 3D and
multi-view video [4, 8]. However, the MV-HEVC (HTM
15.0), which is coded for x86/x64 Linux/Windows, is cross
compiled for ARM Linux OS. Given a resolution of

Fig. 1 Hybrid video encoder for HEVC. In the Section 1

Fig. 2 Multi-view video sequence of balloon. In the Section 1

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 2 of 18

Fig. 3 Example of multi-view prediction structure. View S0 represents the basic views and pictures in a non-basic view that can be predicted from a
dependent (base view) picture at the same time. Pictures denoted by “I” use only intra-picture prediction, pictures denoted by “P” refer to uni-predictive
inter-picture prediction, and pictures denoted by “B1”, “B2”, “B3”, and “b” refer to bi-predictive inter-picture prediction [4]. In the Section 1.1

Fig. 4 Illustration of motion prediction between views, where the motion vector of view 1 is inferred from the motion vector of view 0 using
corresponding blocks at time 1 based on the NBDV disparity between those blocks. In the Section 1.1

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 3 of 18

1024 × 768, the size can become too large for the ARM
platform. With such a resolution, the decoding speed can-
not meet the requirements of real-time applications. In
this paper, we propose and demonstrate the use of multi-
core processing to improve the decoding rate. We imple-
ment multi-core processing with multi-threading, which
uses pthread (POSIX Threads) [9]. pthread is the POSIX
standard. The standard defines a set of APIs for creating
and manipulating threads. In the UNIX operating system
(Linux, Mac OS X, UNIX, etc.), pthread is used as the
operating system thread. When using multiple threads to

implement multi-view video coding, it was found that
MV-HEVC benefits from inter-view predictions but it is
technically difficult to implement multi-view video coding.
Another option is to use simulcast, which has no inter-
view predictions but can be implemented with multi-
threading. However, it has a lower bitrate than MV-HEVC
[10]. Therefore, it is inefficient for compressing multi-view
video sequences. In this paper, we redesign the codec
method for multi-threading with ARM. Using multi-
threading, the results of the decode rates have been im-
proved by almost four times compared to the quad-core
with single core when decoding an 8-view multi-view
video. ARM NEON is an extended structure for a 128-bit
single instruction multiple data (SIMD) (instruction mul-
tiple, single data, single instruction, multiple data) archi-
tecture. ARM Ubuntu from version 9.04 supports ARM
NEON [11, 12]. SIMD is a single instruction multiple
data stream, capable of copying multiple operands
and packing them into a set of instruction sets in a
large register. When we use a SIMD type of CPU, the
instruction decoding process for several parts of the
memory involves one-time access to all the opera-
tions. This feature makes SIMD particularly suitable
for data-intensive operations such as multimedia

Fig. 5 Diagram of a symmetric multiprocessing system. In the Section 2

Fig. 6 Operation of big.LITTLE Cluster Switching Mode. In the Section 2

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 4 of 18

applications [13]. In this paper, we show how to build
a codec model for multi-threading. We also compare
different performances under different CPU platforms.
We further test the use of the SIMD structure to im-
prove the speed of the specific situation. Our plat-
form comparison is based on quad-core ARM Cortex-
A15 and ARM dual core Cortex-A9. We also use
ARM Ubuntu OS to test MV-HEVC sequences in 8,
6, and 4 views. The paper is organized as follows.
Section 2 presents implementation environment with
multi-core and new methods for MV-HEVC. Section 3
presents data-level parallelisms for MV-HEVC, and
Section 4 shows the performance and numerical ana-
lysis of the proposed methods. Finally, Section 5 con-
cludes the whole work.

1.1 Overview MV-HEVC
Multi-view video coding can allow users to freely choose
to watch a video from different views. The simplest
structure for a multi-view video is multi-view-HEVC
(MV-HEVC), which is an HEVC extension. MV-HEVC
uses the same design principles as multi-view video cod-
ing (MVC), which is an extension of AVC [14, 15]. With
the MV-HEVC design, MV-HEVC adopts the reference
picture lists (RPL) construction to modify the inter-view
prediction, such that pictures from other views at the
same time instances can be used for prediction. This
means that any disparity shifts between the views is
compensated for in the prediction process [4]. The
MVC has two types of inter-view prediction approaches
[16, 17]. The first inter-view prediction model predicts
the structure as shown in Fig. 1. In this model, the
inter-view prediction is enabled by HEVC’s flexible
reference image management function. During predic-
tion processing, the other view from the decoded pic-
ture is inserted into the reference picture, which lists
the construction of the current view as shown in
Fig. 3. Therefore, the reference picture that lists the
construction that includes the current view for the
temporal reference pictures can be used to predict
the current picture while showing neighboring views
simultaneously. With block-level coding modules, it is
possible to use the correlation between the view mo-
tion and residual data. Scene objects projected in dif-
ferent views have similar characteristics of motion
and texture as shown in Fig. 4. Therefore, the

Table 1 Comparison between cluster switching mode and HMP
mode

Cluster switching HMP mode

Configuration One cluster is
activated at a time

All cores work
independently

Kernel impact Minimum modification
in Linux kernel

Linux Scheduler
and CPU driver
should be modified

Max performance Sum of performance
of all the big cores

Sum of performance
of all the big and
LITTLE cores

Switching/Migration Switch by CPU
frequency framework

Migrated by scheduler

Fig. 7 Operation of BIG/LITTLE HMP Mode. In the Section 2

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 5 of 18

identification and use of this correlation will lead to a
significant reduction of bit rate [4]. Similar to inter-
view motion prediction, MV-HEVC uses advanced re-
sidual prediction (advanced residual Perdition, ARP),
employing the residual code to predict the residual of
the current block and transferring the difference be-
tween the two as a coding option. In multi-view
video, there is a strong correlation between the differ-
ent locations of the camera and the video of the same
scene. Therefore, during the encoding process, the
view images use the coding for the reference image
motion estimation. With this method, only the high-
level syntax elements need to be modified. The video
images for the other views are added to the current
reference list of the current coding image. This is the
disparity compensation prediction (DCP) process.
Also, in the multi-view video, the camera captures

the same scene from different viewpoints. As the
camera captures the same scene without calibration
of the color transfer or lighting effect, the prediction
may not be allowed due to lighting effects. Illumin-
ation compensation (IC) is used to solve this problem.
IC is only used for the inter-view prediction, to com-
pensate the brightness and chroma of the block to
match the light of the current viewpoint and improve
the prediction accuracy [2]. The other type of coding
model is known as simulcast coding, where each
frame is predicted only from frames of the same view.
Simulcast has a simple prediction model in which
there is no inter-prediction between each view. There-
fore, with simulcast, all stream data can encode/de-
code independent of each other, and no additional
processing is needed in a separate thread overhead.
Consequently, each multi-view data can be encoded

Fig. 8 Stereo stream (N = 8) in two independent sub-streams. In the Section 2

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 6 of 18

Fig. 9 Stereo stream (N = 8) in four independent sub-streams. In the Section 2

Fig. 10 Stereo stream (N = 4) in two independent sub-streams. In the Section 2

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 7 of 18

and decoded separately by codecs with the HEVC
standard. Although simulcast is simple, previous re-
sults show [18] that the method is inefficient com-
pared to MV-HEVC. On the other hand, the full
prediction scheme for the MV-HEVC structure is dif-
ficult to achieve with multi-threading. For the HEVC
parallel processing architecture, researchers have put
forward a lot of parallel recommendations and im-
provement methods, involving a higher degree of par-
allelism encoding and decoding algorithm to improve
the coding speed. Examples include implementation
of WPP parallel encoding and decoding based on
slice-level parallel coding and cross-frame parallel
coding based on WPP. These methods can improve
the encoding and decoding speed, but the results are

not great on the multi-thread utilization. We rede-
signed the encode/decode model, making it possible to
use more efficient codecs in a multi-core platform.

2 Proposed method for MV-HEVC
In order to improve the decompression rate, we
implement multi-core with multi-threaded processing.
The proposed solution for multi-threaded processing
is to decompose the input N view MV-HEVC stream
to the M-independent sub-stream (one sub-stream
implies one thread). Consequently, the new coding
structure is a redesigned structure for encoding
and decoding, in accordance with the MV-HEVC
standard.

Fig. 11 Block diagram of the multi-threaded MV-HEVC. In the Section 2

Fig. 12 ARM NEON architecture. In the Section 3

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 8 of 18

2.1 Multi-core platform for propose method
We used the symmetric multiprocessing platform (SMP)
shown in Fig. 5. This is the architecture used for ARM
multi-core processing on the Linux system. The SMP
architecture is a simple architecture for two or more
identical processors that are connected via a shared
memory. Each processor has equal access to the memory
(the same access latency as the memory space). Typic-
ally, each processor has an associated private high-speed
memory called a cache to accelerate the main memory
data access and reduce the system bus traffic [19]. The
mobile processor improves the performance by increas-
ing the clock frequency. This method has a problem
with increasing the power consumption and the subse-
quent increase of the clock frequency of the processor to
build the multi-core architecture. Providing improved
power efficiency while achieving higher performance,
big.LITTLE architecture was introduced by ARM. In
BIG/ITTLE architecture, the BIG and LITTLE cores
have different characteristics. The BIG core provides
higher performance, while the LITTLE core provides
better power efficiency. The BIG core provides higher
performance, but consumes more power, while the LIT-
TLE core provides more power but has lower perform-
ance. The two cores have different modes of operation,
including switching operation mode and HMP mode
cluster. In cluster switching mode, the big cluster con-
sists of identical big CPU cores such as Cortex-A15. The
LITTLE cluster consists of identical LITTLE CPU cores
such as Cortex-A7. All tasks are assigned to one cluster,
and the other cluster is deactivated (Fig. 6) [6, 20] When
the task load reaches a predefined workload threshold,
all the tasks are switched to the core of the next cluster,
while the previous cluster is disabled. HMP BIG/LITTLE
mode is the most complex and flexible method for BIG/

Fig. 13 Load TU block and IDCT coefficient into NEON register. In the Section 3

Fig. 14 Use VZUP instructions to rearrange the data. In the Section 3

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 9 of 18

Fig. 15 The method of matrix partition. In the Section 3

Fig. 16 Change the first 4 × 4 matrix and third 4 × 4 matrix. In the Section 3

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 10 of 18

LITTLE architecture. In this mode, activation and de-
activation are performed independently of each cluster,
so that each CPU core can be independently activated or
deactivated (Fig. 7) [20–22].
As described in Table 1, HMP solutions provide the

highest flexibility and efficiency, performance, and power
consumption. Compare Fig. 7 with Fig. 6 for example.
Four big cores are activated in the cluster-switching
mode in Fig. 6, while two big and two LITTLE cores are
activated in the HMP mode with the same task charac-
teristics as illustrated in Fig. 7. Therefore, the HMP
model is the most energy-efficient and powerful solution
for mobile CPUs [20–22]. We used the HMP mode SoC
to implement our design in the big core (Cortex-A15)
running a multi-thread MV-HEVC application and in
the LITTLE core (Cortex-A7) running the operating
system. This avoids the downside of the operating
system taking up CPU resources. With the multi-
threading API, we use the portable operating system
interface thread, which can take full advantage of
SMP [9], to optimize multi-threaded MV-HEVC. The
POSIX thread provides the thread mechanism and
shared memory. When a program is invoked that cre-
ates a number of threads, each thread provides its
own stack (local variables and status). To support
multi-threaded access to the shared memory, a

coordination mechanism is needed. POSIX provides
the mutex function to create a critical region by a
thread with exclusive access to an object (a piece of
memory) Fig. 5.

2.2 New multi-thread algorithm for MV-HEVC
We describe a new architecture for decoding MV-HEVC
with N views on a target platform with M cores and

Fig. 17 Cortex-A15 Performance relative to Cortex-A9. In the Section 4

Table 2 Cortex-A9 and Cortex-A15 comparison

Cortex-A9 Cortex-A15

Instruction set ARMv7 ARMv7 (virtual
40b PA)

Core Config. 1, 2, 4 2, 4, 8 (4 × 2)

Speed per core
(DMIPS/MHz)

2.5 3.5 to 4.01

L1 cache (KB) 32 + 32 32 + 32

L2 cache (MB) 1 Up to 4

Data Bus (bit) 32 32

SIMD Engine ARM NEON
(64 bit)

ARM NEON
(128 bit)

Decoder width 2 3

Pipeline depth 8–11 15/17–25

FPU VFPv3 VFPv4

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 11 of 18

describe the implementation of a multi-threaded MV-
HEVC client based on this architecture. The proposed
solution for multi-threaded processing is to decompose the
input N view MV-HEVC stream to the M-independent
sub-stream. We proposed a solution with minimum
loss of coding efficiency and minimum processing
overhead, which refers to a combination of excess or
indirect computation time, memory, or bandwidth. In
a simulcast, all data streams can be coded independ-
ent of each other, with no processing overhead in
separate threads. However, this leads to a loss of effi-
ciency compared to the MV-HEVC. To address this
problem, we improved the structure based on the
MV-HEVC. For a multi-view video with 8 views, it is
possible to generate two independently decodable
sub-streams and zero to three videos can be viewed
using the full prediction scheme of the MV-HEVC
for coding insub-stream0. For four to seven views,
the full prediction scheme of the MV-HEVC is used
for coding in sub-stream1. However, between sub-
stream0 and sub-stream1, simple prediction is used
for the codec, so that each thread in the multi-view
video is a full MV-HEVC prediction. As each thread
is independent, there is no data sharing between
threads as shown in Fig. 8. Therefore, there is no
processing overhead. For the case of eight views run
in four threads, four independently decodable sub-streams
are required that can be generated by splitting each
sub-stream of two threads. This is performed by de-
fining the inter-view independencies between every
thread, whereby views 0 and 1 use the full prediction
scheme of the MV-HEVC as sub-stream0. The situ-
ation is the same for views 2–3, 4–5, and 6–7, which
are run separately in sub-stream1, sub-stream2, and

sub-stream3. Every sub-stream run in each thread is
shown in Fig. 9. The prediction of the four views
running in two threads is shown in Fig. 10. In order
to use this proposed method described above, the
coding method is conditional. In the case of eight
views, four threads are needed, while the four-view
multi-view video needs two threads. Multi-thread
MV-HEVC generates M-independent decoded sub-
streams that run in the MV-HEVC decoder in a sep-
arate thread from the received MV-HEVC stream.
The block diagram of the multi-threaded MV-HEVC
client is depicted in Fig. 11. The GOP processor re-
ceives NAL units for single GOP from the NAL buf-
fer. It then generates the sub-streams and signals the
threads for decoding. The results obtained by using
this approach increased parallelization and reduced
decoding time significantly. Thus, compared with
single-thread decoding of eight views in MV-HEVC,
our proposed two-thread method will reduce the de-
coding time consumed by about 50%. If four threads
are used, the decoding time consumed will be re-
duced to almost 25%.

3 Proposed SIMD optimized MV-HEVC
After using multi-core processing to improve the de-
coding speed, however, for the 1024 × 768 MV-HEVC,
real-time decoding is difficult. In this paper, we opti-
mized the multi-view video coding decoder using ARM
SIMD, commonly known as NEON [11, 12]. SIMD
architecture supports easy data parallelization during
computation. The design shown in Fig. 12 shows the
architecture of an ARM A15 co-processor that sup-
ports an SIMD instruction set. Cortex-Ax processors
support the NEON architecture. The NEON register

Table 3 MV-HEVC decoding rates with ARM Cortex-A9 and Cortex-A15 at 1024 × 768 resolution

One thread Two threads Four threads

Processor Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15

View num. 4 6 8 4 6 8 4 6 8 4 6 8 8 8

Balloon 4.32 3.33 – 11.41 8.28 8.58 6.61 – 22.29 17.16 – – –

Kendo 4.22 3.21 – 11.32 8.21 8.51 6.38 – 22.13 16.87 – – –

Newspaper 4.34 3.18 2.21 11.33 7.95 5.15 8.55 6.15 4.19 22.10 15.91 10.13 8.34 19.84

Table 4 MV-HEVC decoding rates with ARM Cortex-A9 and Cortex-A15 at 1920 × 1088 resolution

One thread Two threads Four threads

Processor Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15

View num. 4 8 4 8 4 8 4 8 8 8

PoznanHall2 3.38 1.45 6.21 3.28 6.54 2.88 11.98 5.41 5.72 10.51

PonznanStreet 3.41 1.44 6.29 3.32 6.74 2.97 12.07 5.58 5.79 10.88

Undo_Dancer 3.39 1.43 6.22 3.29 6.71 2.80 12.01 5.46 5.52 10.84

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 12 of 18

file consists of 32 64-bits-wide registers, which can
also be used as 16 128-bits registers. We apply the
fast implementation of the HEVC decoder over ARM
NEON processors.
The inverse transform method has always been a very

suitable SIMD accelerated kernel. In HEVC, it is also
true that the size of the HEVC block can be up to 32 ×
32; hence, the transformation is more complex than with
the previous standard. In the case of 4 × 4 IDCT, using
the following step to accelerate. The 4 × 4 IDCT formula
as follows

Y ¼ CT � Z � C

In the formula, Z is 4 × 4 TU block, C is the coeffi-
cient matrix of 4 × 4 IDCT, and Y is the final result of
4 × 4 IDCT. In the case of a 4 × 4 IDCT, we took the
following steps: (1) We loaded the TU block and
IDCT coefficient into the NEON register (Fig. 13). (2)
We used a butterfly structure to compute the TU data
and IDCT coefficients. (3) Because the data obtained
was not in the same register, we used the Vector Unzip
(VZUP) instructions to rearrange the data, as shown
in Fig. 14. (4) If the block size of the TU was larger
than 4 × 4, the matrix was divided, as shown in Fig. 15.

(5) After repeating the first three steps, a number of
4 × 4 matrices were obtained. If the transformation
of the TU block resulted in the 8 × 8 matrix as
shown in Fig. 16, we had to change the first and
third 4 × 4 matrices.

4 Experimental result and discussion
In order to ensure that we have an optimized MV-
HEVC decoder, we modified HTM-15.0, which is MV-

Fig. 18 Illustration of wavefront parallel processing. In the Section 4.2

Fig. 19 Illustration of slice. In the Section 4.2

Fig. 20 Illustration of Tile. In the Section 4.2

Fig. 21 Comparison of each thread decoding rate. In the Section 4.2

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 13 of 18

HEVC reference software. For both platforms, the GCC
4.8.1 compiler and the −O3 optimization level were
used. In SIMD optimization, we added the -mfpu = neon
compiler option. The execution time is measured out-
side of the program, using the time command. We test
the ARM Cortex-A9 and Cortext-A15 single, and the
dual and quad-core core. The frequencies of both pro-
cessors are 1.4 GHz for the Cortex-A9 and 2.1 GHz for
Cortex-A15. ARM architecture can achieve an effective
balance of high performance, low power, and small size
[23]. The instruction set for ARM Cortex-A9 and
Cortex-A15 architectures is ARMv7. As indicated in
Fig. 17, the performance of the Cortex-A9 and Cortex-
A15 cores differ by a factor of 1.5 ~ 2 times based on the
core integer [24, 25]. The differences between the
Cortex-A9 and Cortex-A15 can be seen in Table 2. We
tested four different multi-view views, including two,
four, six, and eight views. We also tested two resolutions:
1024 × 768 and 1920 × 1080 [19].

4.1 Performance optimized with multi-threaded
For the multi-threaded processing strategy introduced
above, threads decode the deepened thread number and

multi-view video views the number. Tables 3 and 4 present
the performance of the decoding frame rate in the ARM
Cortex-A9 and ARM Cortex-A15 processors. One thread
means that it is a default module while two threads and
four threads imply optimization with two threads and four
threads. We tested the 1024 × 768 and 1920 × 1088 multi-
videos. The balloon, Kendo, and Newspaper videos all have
a resolution of 1024 × 768 whereas the PoznanHall2, Poz-
nan Street, and Undo_Dancer videos have a resolution of
1920 × 1088. The balloon and Kendo test video sequences
are recorded on seven cameras so they have a maximum of
seven views, but the redesigned multi-threaded MV-HEVC
using four threads for decoding needs at least eight views
for the codec. Significant performance gains from the pro-
posed architectures are used in ARM multi-core platforms.
The decoding rate for all cases is improved almost linearly
with the number of threads. The results are shown in Chart
2, which indicates that the decoding performance is affected
by the number of views and the test sequence. Overall, the
decoder scales well with multi-threaded processes for both
1980 × 1088 and 1024 × 768. With two threads, the speed-
up is around 1.85 times, while with four threads, the speed-
up is around 3.85 times. We use Amdahl’s law found that
the theoretical speed-up is around four times; Gene
Amdahl, a computer architect and IBM fellow, developed
computer architectures [26]. Gene Amdahl is best known
for his method of predicting the maximum improvement
of a system when the system is partially improved [26]
using multiple processors. Amdahl’s law shows the most
commonly used calculation for the maximum theoretical
performance improvement. Where N is the number of
processors and F represents the portion of the system that
cannot be parallelized (the portion of the system that is se-
quential in nature) [26, 27]. Using the equation of
Amdahl’s law, the maximum performance of a parallel
processing system can be calculated because there are no
serial parts in our proposed method. Therefore, the F is
equal to 0, N is 4, and Speedup is 4, but as expected, the
experiment rate is slower than the theoretical rate. We
can identify this as the reason why the throughput of the
multi-core processors is not exactly linear with the num-
ber of cores and this creates an upper bound. Another rea-
son is that the amount of MV-HEVC data is too large for
the memory requirements, although the ARM processors

Fig. 22 Comparison of SIMD with SISD decoding rate. In the Section 4.2

Table 5 MV-HEVC decoding rates with SIMD optimized (ARM Cortex-A9and ARM Cortex-A15 at 1024 × 768 resolution)

One thread Two threads Four threads

Processor Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15

View num. 4 6 8 4 6 8 4 6 8 4 6 8 8 8

Balloon 5.51 4.11 – 13.71 10.63 – 10.67 7.89 – 26.82 20.63 – – –

Kendo 5.42 3.95 – 13.61 10.51 – 10.35 7.68 – 26.63 20.34 – – –

Newspaper 5.39 3.85 2.69 13.60 10.11 6.42 10.38 7.41 5.22 26.58 19.24 12.34 10.20 23.85

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 14 of 18

are known to be more memory limited. Although the
thread mutex lock is not used, synchronization and thread
creation have an overhead.

Speed up ¼ 1
F þ 1−Fð Þ=N

Amdahl’s law for processor parallelization

4.2 Discuss other multi-threaded
The authors [28] propose a method called WPP (wave-
front parallel processing), which uses parallel operations
to improve the coding performance. The WPP solution
is that splits the frame into CTU rows. As illustrated
in Fig. 18, the first row is processed in an ordinary
manner, and the second row can only be processed
after two CTUs have been processed in the first row.
The third row can only be processed after two CTUs
have been processed in the second row and so on.
The CABAC context at each CTU row is initialized
by the CABAC context state at the second CTU of
the previous CTU row [2]. The operation problem is
that multi-core utilization efficiency is low. When using
WPP, every row should wait for two CTUs encoding/de-
coding of the previous row for CABAC context
initialization; thereby, this delay propagates as number of
CTU rows executing simultaneously on cores grows. In
contrast, when increasing the number of cores, we
propose a method that has no such problem.

In addition, the authors [29] propose slice-level paral-
lel scheme. Slices are a sequence of CTUs that are proc-
essed in the order of a raster scan. A picture may be
split into one or several slices as shown in Fig. 19, so
that a picture is a collection of one or more slices
[30]. The problem with slice in parallel computing is
that the number of CTU on the thread is different.
Thus causes a thread which has most of the CTU to
code a long time.
The authors [31] propose a method called Tile, which

is advantageous for parallel decoding purpose when
compared to slices or WPPs. In the example shown in
Fig. 20, a picture is divided into four sub-pictures of
equal size. With tiles, the picture can be divided into
2 × 2 sub-pictures. All Tiles are independent of each
other and the threads are uniformly distributed but the
de-blocking filter, sample adaptive offset (SAO), adaptive
loop filter (ALF) can cross tile boundaries. Relatively
speaking, our proposed method in the parallel process-
ing includes the ALF and SAO.
Motion estimation is the most time-consuming step in

HEVC interframe coding. The authors [32] used multi-
core CPU and GPU platforms to achieve the coding of
parallel processing. The encoder is divided into six mod-
ules, and one of the most time-consuming motion esti-
mation module codec is processed by the GPU. Also,
the author [33] proposed motion estimation in parallel
processing with GPU implementation. All PU of the
CTU occurs first through GPU pre-processing. The MV

Table 6 MV-HEVC decoding rates with SIMD optimized (ARM Cortex-A9 and ARM Cortex-A15 at 1920 × 1088 resolution)

One thread Two threads Four threads

Processor Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15 Cortex-A9 Cortex-A15

View Num. 4 8 4 8 4 8 4 8 8 8

PoznanHall2 4.17 1.86 7.85 4.01 8.16 3.63 15.23 6.74 7.09 13.11

PonznanStreet 4.36 1.85 7.81 4.08 8.43 3.64 15.06 6.91 7.15 13.41

Undo_Dancer 4.29 1.81 7.72 4.03 8.40 3.51 15.01− 6.76 6.89 13.37

Fig. 23 Rate-distortion performance of MV-HEVC standard for balloon.
In the Section 4.3

Fig. 24 Rate-distortion performance of MV-HEVC standard for Kendo.
In the Section 4.3

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 15 of 18

and the corresponding value are obtained, then the opti-
mal MV is determined. This algorithm can not only per-
form parallel motion estimation for all PU in the same
CTU but also be processed simultaneously by different
CTU. Therefore, the speed increase is very significant as
shown in Figs. 21 and 22. The parallel scheme proposed
by the authors is based on the GPU co-design. Our pro-
posed method can also be carried out with acceleration
motion compensation and motion estimation with GPU,
because in our proposed method, each thread codec is
an independent MV-HEVC

4.3 Performance optimized with ARM NEON
With the SIMD acceleration, Tables 5 and 6 present the
result of decoding rates in ARM Cortex-A9 and Cortex-
A15 processors. Clearly, the performance gains from the
SIMD is 15fps in four views with two threads at 1920 ×
1088 resolution and around 26.5fps in four views with
two threads at 1024 × 768. Chart 3 shows that the opti-
mized SIMD can increase the decoding frame rate by
around 1.25 times that of SISD. Gene Amdahl, a com-
puter architect and IBM fellow, developed computer ar-
chitectures [26]. Gene Amdahl is best known for his
method of predicting the maximum improvement of a

system when the system is partially improved [26] using
multiple processors. Amdahl’s law shows the most com-
monly used calculation for the maximum theoretical
performance improvement.
Figures 23, 24, 25, 26, and 27 display the resulting

weighted PSNR (0.75 × Y-PSNR + 0.125 × U-PSNR +
0.125 × V-PSNR) for all the decoded videos with multi-
threaded and SIMD optimization in quantization param-
eter (QP) 45. The results indicate that at a similar
bitrate, with an increase of the number of threads,
the peak signal-to-noise ratio (PSNR) reduced slightly.
However, the human eye does not detect such a sub-
tle change; hence, the multi-threading and SIMD
optimization has minimal effect on image quality.

4.4 Discussion
Table 7 gives the individual evaluation results of the pro-
posed algorithm compared with the original MV-HTM
slice multi-threading. The Bjontegaard delta PSNR
(BDPSNR) [34] represents the average PSNR gain;
bitrate (BDBR) represents the improvement of total
bitrates for multi-view video coding. The results show
the proposed method relative to the MV-HTM 15.0 with
slice multi-threading, the average BDPSNR decreased by
0.063 BDBR, and the average decibel (dB) only increased
by 1.4%. The average decoding time decreased by
41.55%. In HEVC multi-threading methods, Tile is the
fastest, but we found that, although Tile could improve
the video decoding rate, it could not meet the real-time
decoding requirements. Table 8 shows a comparison

Fig. 25 Rate-distortion performance of MV-HEVC standard for
Newspaper. In the Section 4.3

Fig. 26 Rate-distortion performance of MV-HEVC standard for
Undo_dancer. In the Section 4.3

Fig. 27 Rate-distortion performance of MV-HEVC standard for
poznanHall. In the Section 4.3

Table 7 Comparison results of HTM

BDBR(%) BDPSNR(%) △T(%)

Blloon 2.19 −0.056 −43.08

Kendo 0.68 −0.033 −41.31

Newspaper 1.36 −0.024 −40.32

Undo_dancer 1.7 −0.025 −41.85

poznanHall 1.07 −0.077 −45.21

Average 1.4 −0.063 −41.96

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 16 of 18

throughput of our proposed method with Tile in ARM
Cortex-A15 with two and four threads. Result shows
that the proposed method can increase the decoding
frame rate by around 1.09 and 1.07 times that of Tiles
with two and four threads. The reason for the imple-
mentation in the ARM processor is compared to other
processors, ARM supports better scalability and port-
ability at the application level. In the scalability, the
proposed method can add GPU or FPGA as co-
processor to further accelerate, because of video cod-
ing have large number of matrix operations; therefore,
many optimizations can be implemented in GPU.
However, our proposed multi-threading method only
applies to mv-hevc or 3d-hevc not include HEVC or
other extension standards of HEVC.

5 Conclusions
In this paper, we proposed an optimized method for
MV-HEVC using multi-threading and SIMD instructions
implemented on ARM processors. Based on the results,
the proposed implementation of four threads and SIMD
instructions was found to be around 4.8 times faster
than that of the HEVC reference software, HTM 15.0.
Although tile and slice presents a parallel optimization
approach for MV-HEVC and actually result in good
processing speeds on X86/X64, it was found to be
slower on ARM processors. On the other hand, the
proposed optimization method of MV-HEVC showed
significant improvement in terms of processing speed
on ARM processor mobile platforms. With the pro-
motion of the next generation video coding standard,
MV-HEVC, and the increasing number of mobile ter-
minals, multi-view video can be watched in real time
at a resolution of 1024 × 768.

Acknowledgements
This work was supported by the Konkuk University in 2015.

Authors’ contributions
LW proposed the framework of this work, carried out the whole experiments,
and drafted the manuscript. YB C offered useful suggestions and helped
to modify the manuscript. LJ participated in its design and coordination
and helped to draft the manuscript. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Authors’ information
LW received M.S. degree from Konkuk University (2016) and a Bachelor’s in
Technology degree in Automation from Shenyang Ligong University, Shenyang,
China, in 2014. He is currently working toward a Ph.D. degree in Electronics
Engineering at Konkuk University in Seoul, South Korea. His research interests
include system-on-chip (SoC) design, image processing, multi-core processor
systems.
LJ received a Bachelor’s in Technology degree in Electronics Engineering
from Konkuk University, Seoul, South Korea, in 2015. She is currently working
toward a Master’s degree in Electronics Engineering at Konkuk University
in Seoul, South Korea. Her research interests include hardware-software
co-design of video processing, embedded software, System-on-Chip
(SoC) design, and design of multi-core processor systems.
YBC (M’86) received a B.Sc. degree from Kyongbuk University (1981), a M.Sc.
degree from the Univ. of S. Carolina (1988) and a Ph.D. degree from Case
Western Reserve University, OH, USA(1992). He is currently a professor in the
Department of Electronics Engineering at Konkuk University, Seoul, Korea. His
research interests include embedded system design, SoC design, networking
systems, application of image processing to mobile environments, and digital
communication system design for mobile and ad-hoc networks.

Received: 22 July 2016 Accepted: 28 February 2017

References
1. ITU-T rec, High Efficiency Video Coding, document Rec. ITU-T H.265 and ISO/IEC

23008-2, 2013
2. GJ Sullivan, JR Ohm, H Woo-Jin, T Wiegand, Overview of the High Efficiency

Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems
for Video Technology 22(12), 1649–1668 (2012)

3. ITU, H.265 : High efficiency video coding, 2015
4. GJ Sullivan, JM Boyce, C Ying, JR Ohm, CA Segall, A Vetro, Standarized

extensions of High Efficiency Video Coding (HEVC). IEEE Journal of Selected
Topics in Signal Processing. 7(6), 1001–1016 (2013)

5. Sze V, Budagavi M, High throughput CABAC entropy coding in HEVC, IEEE
Trans. Circuits Syst. Video Technol. 22(12). 1778–1791 (2012)

6. A Norkin, G Bjontegaard, A Fuldseth et al., HEVC deblocking filter. IEEE
Trans. Circuits and Syst. Video Technol. 22(12), 1746–1754 (2012)

7. K Tech, Y Wegner, M Chen, J Hannuksela, Boyce, MV-HEVC Draft Text 9, in
document JCT3V-I1002, Sapporo, JP, 2014

8. J Boyce, Y Chen, D Chen, MM Flynn, M Hannuksela, C Naccari, K Rosewarne,
J Sharman, GJ Sole, T Sullivan, G Suzuki, YK Tech, K Wang, Y Wegner, Ye
Edition Text of High Efficiency Video Coding (HEVC), Including Format Range
(RExt), Scalability (SHVC), and Multi-View (MV-HEVC) Extensions 2 Draft, in
document JCTVC-R1013, Sapporo. JP, 2014

9. Pthreads Tutorial. https://computing.llnl.gov/tutorials/pthreads/.
Accessed 15 Dec 2014.

10. M Domański, T Grajek, D Karwowski, J Konieczny, M Kurc, A Łuczak, R
Ratajczak, J Siast, O Stankiewicz, J Stankowski, K Wegner, Coding of
multiple video+depth using HEVC technology and reduced representations
of side views and depth maps (Picture Coding Symposium (PCS),
Krakow, 2012), pp. 5–8

11. ARM NEON. http://www.arm.com/products/processors/technologies/neon.php.
Accessed 19 Feb 2015.

12. Programmers model for NEON and VFP unit. http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.ddi0438i/CDECGBDJ.html.
Accessed 25 Oct 2015.

Table 8 Comparison results of the proposed method with Tiles (ARM Cortex-A15)

Two threads Four threads

Processor Tiles Propose method Tiles Propose method

View num. 4 6 8 4 6 8 8 8

Balloon 24.43 18.76 – 26.82 20.63 – – –

Kendo 24.13 18.56 – 26.63 20.34 – – –

Newspaper 24.08 18.52 12.01 26.58 19.24 12.34 22.17 23.85

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 17 of 18

https://computing.llnl.gov/tutorials/pthreads/
http://www.arm.com/products/processors/technologies/neon.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/CDECGBDJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/CDECGBDJ.html

13. M Domański, T Grajek, D Karwowski, K Klimaszewski, J Konieczny, M Kurc, A
uczak, R Ratajczak, J Siast, O Stankiewicz, J Stankowski, K Wegner, Multiview
HEVC – experimental results JCT-VC (MPEG/VCEG) Doc. JCTVC- G582, Geneva, 2011

14. Y Chen, Y-K Wang, K Ugur, M Hannuksela, J Lainema, M Gab-bouj, The
emerging MVC standard for 3D video services. EURASIP J. Adv. Signal
Process 2009, 1 (2009)

15. A Vetro, T Wiegand, GJ Sullivan, Overview of the Stereo and Multiview
Video Coding Extensions of the H.264/MPEG-4 AVC Standard. Proceedings
of the IEEE. 99(4), 626–642 (2011)

16. J Stankowski, M Domanski, O Stankiewicz, J Konieczny, J Siast, K Wegner,
Extensions of the HEVC technology for efficient multiview video coding,
image processing (ICIP). 19th IEEE International Conference on, Orlando F.
2012, 225–228 (2012)

17. K Ugur, H Liu, J Lainema, M Gabbouj, H Li, Parallel Encoding - Decoding
Operation for Multiview Video Coding with High Coding Efficiency, 3DTV
Conference, 2007, Kos Island, 2007, pp. 1–4

18. CG Gurler, A Aksay, GB Akar, AM Tekalp, Multi-threaded architectures and
benchmark tests for real-time multi-view video decoding, Multimedia and
Expo, 2009. ICME 2009 (IEEE International Conference on, New York,
2009), pp. 237–240

19. LJ Karam, I AlKamal, A Gatherer, GA Frantz, DV Anderson, BL Evans,
Trends in multicore DSP platforms. Signal Processing Magazine, IEEE.
26(6), 38–49 (2009)

20. big.LITTLE Technology Moves Towards Fully Heterogeneous Global Task
Scheduling, ARM. https://www.arm.com/files/pdf/big_LITTLE_technology_
moves_towards_fully_heterogeneous_Global_Task_Scheduling.pdf.

21. big.LITTLE Technology: The Future of Mobile, ARM. https://www.arm.com/
files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf.
Accessed 20 July 2015.

22. Hongsuk Chung, Munsik Kang, Hyun-Duk Cho, Heterogeneous Multi-
Processing Solution of Exynos 5 Octa with ARM® big.LITTLETM Technology,
SAMSUNG. https://www.arm.com/files/pdf/Heterogeneous_Multi_
Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.
pdf. Accessed 8 Nov 2015.

23. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R ed (ARM Holdings,
Cambridge, 2014), p. A1-28 - 1-35

24. Cortex-A15 Processor. http://www.arm.com/products/processors/cortex-a/
cortex-a15.php. Accessed 6 July 2015.

25. ARM Technical Reference Manual, The ARM Cortex-A9 Processors (ARM
Holdings, Cambridge, 2014)

26. GM Amdahl, Validity of the single-processor approach to achieving, large scale
computing capabilities, AFIPS Conference Proceedings, vol. 30 (Atlantic City, N.J.
Apr. 18-20) (AFIPS, Reston, 1967), pp. 483–485

27. M Tim Jones, Linux and symmetric multiprocessing (IBM, 2007), p. 14
28. C Gordon, F Henry, S Pateux, JCTVC-F274: Wavefront Parallel Processing for

HEVC Encoding and Decoding, Joint Collaborative Team on Video Coding
(JCTVC), 2011

29. K Misra, J Zhao, A Segall, JCTVC-C256: New results for entropy slices for highly
parallel coding, Joint Collaborative Team on Video Coding (JCTVC), 2010

30. W Hamidouche, M Raulet, O Deforges, 4K real-time and parallel software
video decoder for multilayer HEVC extensions. IEEE Transactions on Circuits
and Systems for Video Technology. 26(1), 169–180 (2016)

31. K Misra, A Segall, M Horowitz, S Xu, A Fuldseth, M Zhou, An overview
of tiles in HEVC. IEEE Journal of Selected Topics in Signal Processing
7(6), 969–977 (2013)

32. X Wang, L Song, M Chen et al., Paralleling variable block size motion
estimation of HEVC on CPU plus GPU platform, International Conference
on Multimedia and Expo Workshops (ICMEW), 2013

33. S Radicke, J Hahn, C Grecos et al., A highly-parallel approach on motion
estimation for high efficiency video coding (HEVC), International Conference on
Consumer Electronics (ICCE), 2014

34. G Bjøntegaard, Calculation of average PSNR differences between RD-curves,
ITU-T Q.6/SG16 VCEG 13th Meeting, Document VCEG-M33, Austin, USA, 2001

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Liu et al. EURASIP Journal on Image and Video Processing (2017) 2017:24 Page 18 of 18

https://www.arm.com/files/pdf/big_LITTLE_technology_moves_towards_fully_heterogeneous_Global_Task_Scheduling.pdf
https://www.arm.com/files/pdf/big_LITTLE_technology_moves_towards_fully_heterogeneous_Global_Task_Scheduling.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
https://www.arm.com/files/pdf/Heterogeneous_Multi_Processing_Solution_of_Exynos_5_Octa_with_ARM_bigLITTLE_Technology.pdf
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php

	Abstract
	Introduction
	Overview MV-HEVC

	Proposed method for MV-HEVC
	Multi-core platform for propose method
	New multi-thread algorithm for MV-HEVC

	Proposed SIMD optimized MV-HEVC
	Experimental result and discussion
	Performance optimized with multi-threaded
	Discuss other multi-threaded
	Performance optimized with ARM NEON
	Discussion

	Conclusions
	Acknowledgements
	Authors’ contributions
	Competing interests
	Authors’ information
	References

