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Abstract

Video stabilization smooths camera motion estimates in a way that should adapt to different types of intentional
motion. Corrective motion (the difference between smoothed and original motions) should be constrained so that
black borders do not intrude into the (cropped) stabilized frames. Although offline smoothing can use all of the
frames, online (real-time) smoothing can only use a small number of previous frames. In this paper, we propose an
online motion smoothing method based on linear estimation applied to a constant-velocity model. We use estimate
projection to ensure that the smoothed motion satisfies black-border constraints, which are modeled exactly by linear
inequalities for general 2D motion models. We then combine the estimate projection with multiple-model estimation,
which can adaptively smooth the camera motion in a probabilistic way. Experimental results show how the proposed
algorithm can better smooth the camera motion and stabilize videos in real time.

Keywords: Video stabilization, Kalman filter, Multi-model estimation, Active sets method

1 Introduction
Video data has increased dramatically in recent years due
to the prevalence of hand-held cameras. Such videos,
however, are usually shakier compared to videos shot
by tripod-mounted cameras or cameras with mechanical
stabilizers. Digital video stabilization seeks to remove
the unwanted frame-to-frame jitter and generate visually
stable and pleasant videos. In general, digital video
stabilization consists of three major steps, namely motion
estimation, motion smoothing, and frame synthesis. This
paper focuses on the second step.
Given the estimated camera motion for each frame,

motion smoothing aims at designing a new smooth
camera motion path. Most existing works address motion
smoothing as an offline processing after the entire video
sequence has been recorded. However, real-time video
stabilization is necessary for applications such as video
conferencing and broadcasting. Besides, for consumers
who want to record videos, real-time stabilization can
greatly improve the user experience with the stabilized
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videos displayed in real-time on the viewfinders. Real-
time video stabilization is also able to reduce the memory
requirements with frames stabilized before compres-
sion. In real-time video stabilization, camera motion is
required to be smoothed in a causal way. This is more
difficult than offline motion smoothing because we are
missing information of how camera motion changes
afterward.
Due to the cameramotion change frommotion smooth-

ing, some areas in the synthesized frame will be unde-
fined. This is known as black-border problem. In practice,
we have to crop the resulting video frames and enlarge
them if necessary. Still, in motion smoothing, we have
to constrain the change of camera motion in order to
guarantee that no black borders intrude into the stabilized
video frames. How to take such constraint into 5 optimally
is a challenging problem, especially for online motion
smoothing.
While taking videos, people sometimes move cameras

on purpose to get the best viewpoint of the scene that is
being recorded. This is known as intentional motion and
should be kept bymotion smoothing. The changing rate of
camera intentional motion may vary, and a fixed motion
smoothing strategy may not work well. For instance,
aggressive motion smoothing can effectively reduce the
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jitter if the camera motion is supposed to be still, but may
lose track of the intentional motion if it is changing fast.
Moreover, aggressive motion smoothing for fast changing
intentional motion will lead larger areas to be undefined
in the stabilized video. As a result, the motion smoothing
algorithm should be adaptive accordingly.
In this paper, we propose an online motion smoothing

method. Our method is motivated by Kalman-filtering-
based motion smoothing with a constant-velocity model.
We use Bayesian multiple-model estimation to achieve
adaptive smoothing. The black-border constraints are
exactly modeled as linear inequalities for almost every 2D
motion model. We change the multiple-model estimation
algorithm by taking the constraints into account. The state
vector estimates are projected onto the constraint set in a
probabilistic way.
This paper is organized as follows: Section 2 reviews

previous motion smoothing algorithms and related esti-
mation background. Section 3 shows how online motion
smoothing can be formulated as a linear estimation prob-
lem with constant-velocity model that can be solved
by Kalman filtering. Section 4.1 formulates the black-
border constraints as linear inequalities for most of the
2D camera motion models, and shows how estimate
projection can be used to solve the constrained estima-
tion problem. Section 4.2 presents the proposed adaptive
motion smoothing using multiple-model estimation and
how to modify it with estimate projection. Section 5
shows how motion smoothing is improved using the pro-
posed algorithm of multiple motion models. Section 6
concludes the paper.

2 Background and related work
This paper focuses on motion smoothing. Motion estima-
tion, as the other essential step in video stabilization, can
be implemented by sparse feature tracking [1] or block
matching [2, 3].
Most existing motion smoothing algorithms are offline

smoothing. Gaussian window filtering was used to
smooth the entire camera motion path in [4, 5] under
2D translational and affine model, respectively. Another
kind of algorithms smooth the camera motion via min-
imizing a certain objective function that represents the
smoothness of the camera motion trajectory. An advan-
tage of such objective-minimizing methods is that the
black-border constraints can be naturally added to the
problem and solved by constrained optimization. In [6],
the authors defined the objective function as the L2 norm
of the second order difference of camera motion under
2D Euclidean model. The black-border constraint was
approximately modeled by an interval constraint on the
motion parameters. Similar modeling was also used in
[7], but the variables were assumed to be integer-valued
and the problem was solved via dynamic programming.

In [8], the objective function was a mixture of the first-,
second-, and third order difference of camera motion
measured by L1 norm. The motion model was 2D
similarity motion, and the black-border constraint was
modeled precisely as linear inequalities. As a result, the
constrained motion smoothing could be solved efficiently
by linear programming. Black-border constrained was
also taken into consideration for window-filtering-based
methods. In [9], the authors proposed a dual pass motion
smoothing method which could find an optimal cropping
size with as large as possible.
In [10], IIR filtering was proposed for online motion

smoothing based on 2D translational motion model.
Kalman filtering was first used for online smoothing
in [11]. The intentional motion parameters (under 2D
translational motion model) were modeled by a constant-
velocity linear system so Kalman filtering could be used
to optimally estimate them. The same Kalman-filtering
motion smoothing framework was extended to 2D affine
motion model in [12], leading to a better performance.
The same algorithm was widely used in the later video
stabilization works, such as [1, 13]. These algorithms
used fixed parameters in stabilizing the entire video
sequence, which is not ideal since the magnitude of
unintentional camera motion (jitter) may vary. Adaptive
algorithms were proposed for online motion smooth-
ing to resolve this problem. In [14], a fuzzy system
was used to tune the parameters in an IIR motion fil-
ter. A similar fuzzy system was also proposed in [15]
to improve the Kalman-filtering-based method. Another
adaptive Kalman-filteringmethod was proposed in [16] by
detecting the zero-crossing numbers of motion parame-
ters. In our paper, we adaptively estimate the intentional
camera motion using dynamic multiple-model estima-
tion, which is a generalization of single-mode Kalman
filtering [17]. Interacting multiple-model (IMM) algo-
rithm [18] has been widely used to solve such prob-
lem due to its excellent performance and relatively low
computational requirements [19]. Compared to previous
adaptive Kalman-filtering-based motion smoothing algo-
rithms, the proposed dynamic multiple-model estimation
is able to choose the proper parameters optimally from a
probabilistic viewpoint. We modified the existing uncon-
strained IMM algorithm with estimation projection so
that we can successfully smooth the camera motion in an
adaptive way while guaranteeing no black borders.
The black-border constraints were rarely considered in

online motion smoothing. In [20], the authors proposed
to use constrained Kalman filtering for 2D translational
motion model. Because of the simplicity of the motion
model, interval constraints could be used and the con-
strained estimate could be obtained in one step. For more
complicated motion models, interval constraints are not
able to model the black-border constraints accurately.



Jia and Evans EURASIP Journal on Image and Video Processing  (2017) 2017:25 Page 3 of 13

While [21] still used interval constraints to approxi-
mately solve the black-border problem for more com-
plicated motion models, in this paper, we use an exact
linear inequality modeling of the constraints without any
approximation for complicated motion models like simi-
larity motion and affine motion. We solve the constrained
estimation by estimate projection as proposed in [22].
For a more comprehensive survey of constrained Kalman-
filtering algorithms, please see [23].

3 Kalman filter-basedmotion smoothing
A Kalman filter is an optimal maximum a posteriori
(MAP) estimator for linear dynamic systems with Gaus-
sian process and measurement noise. Without loss of
generality, we assume that there is no control input to the
system. The system can be represented as

{
xk = Fkxk−1 + wk
zk = Hkxk + vk

, (1)

where xk is the hidden state vector at time k and zk is
the observation (or measurement) at time k. Fk is the
state transition model which is applied to the previous
state xk−1. Hk is the observation model which maps the
true state space into the observed space. wk ∼ N (0;Qk)
and vk ∼ N (0;Rk) model the normal distributed process
noise and observation noise. A Kalman filter recursively
estimates the Gaussian posterior probability p(xk|z1:k) by
tracking its mean x̂k and covariance Pk . The Kalman-
filtering algorithm can be summarized as Algorithm 1.

Algorithm 1 Kalman filtering
1: Input: x̂k−1,Pk−1
2: Output: x̂k ,Pk
3: Predict:
4: x̂k|k−1 = Fk x̂k−1
5: Pk|k−1 = FkPk−1FTk + Qk
6: Update:
7: yk = zk − Hk x̂k|k−1 (innovation)
8: Sk = HkPk|k−1HT

k + Rk
(innovation covariance)

9: Kk = Pk|k−1HT
k S

−1
k (Kalman gain)

10: x̂k = x̂k|k−1 + Kkyk
11: Pk = (I − KkHk)Pk|k−1
12: end

Kalman filtering with a constant-velocity (CV) system
model has been widely used in tracking maneuvering tar-
gets. Assuming one dimension of the target location to
be tracked is xk , the CV model uses a state vector xk =

[ xk , vk]T consisting of both xk and the velocity in this
dimension vk . The dynamic model is specified as

Fk =
[
1 T
0 1 ,

]
wk ∼ N

(
0; σ 2

p

[
T4

4
T3

2
T3

2 T2

])
, (2)

where T is the sampling interval. In this model, the veloc-
ity is assumed to be almost constant except for a possible
acceleration (maneuvering) with distribution N (0; σ 2

p ).
Usually, we have a noisy measurement of the location of
the target, so the measurement model can be specified as

Hk = [
1 0

]
, vk ∼ N

(
0; σ 2

m
)
. (3)

The aforementioned single-dimensional CV model can
be easily generalized to a multi-dimensional CV model.
The Kalman filter estimate of the target locations from
the CV model usually appears much smoother com-
pared to the original noisy location measurements due to
the constant-velocity assumption in the dynamic model.
Therefore, this model has been successfully used in causal
smoothing of time series such as the camera motion.
Given a reference frame, the camera motion of the

entire video sequence can be represented as a sequence
of motion parameters dependent on the choice of motion
model. For instance, a 2D affine model depicts the relative
transformation between two frames as[

x′
y′

]
= A

[
x
y

]
+ b, (4)

where [x, y]T and [x′, y′]T are the locations of any pair of
matched pixels in the two frames. Therefore, the camera
motion of each frame k can be represented by a 2 × 2
matrix Ak and a 2 × 1 vector bk . In general, the camera
motion of the video can be parameterized as a sequence of
motion vectors {θk}. This sequence can then be smoothed
via the CV-model-based Kalman filtering by setting the
state vector as [ θk , θ̇k]T, where θ̇k is the discrete changing
rate (velocity) of the camera motion.

4 The proposedmethods
The aforementioned constant-velocity Kalman-filtering
algorithm effectively smooths the camera motion
sequences for online video stabilization. However, it is
not constrained to avoid black borders in the stabilized
frames. In addition, when the intentional camera motion
changes at different rates, a single constant-velocity
model is not able to accurately track it. We propose
an online motion smoothing algorithm that resolves
both problems. Black-border constraints are modeled as
linear inequalities and solved by estimation projection.
Interactive multiple-model estimation is used to adap-
tively smooth camera motion that cannot be achieved by
single-mode Kalman filtering.
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4.1 Constraints onmotion smoothing and constrained
Kalman filtering

The smoothed camera motion generates a correction
motion for each frame. In the last step of video stabiliza-
tion, the new frames are synthesized by image warping
using the correction motion. The synthesized frames may
contain black borders since not every pixel in the syn-
thesized frame is visible in the original frame due to the
change of camera motion. As discussed in Section 2, a
secure way to this problem is to crop the synthesized
frames into a smaller size so that there are no black bor-
ders in the stabilized video. Therefore, in smoothing the
camera motion sequence, we need to guarantee that every
pixel in the cropped stabilized frames is visible in the
original frames. This is a hard constraint that has to be
considered in the camera motion smoothing algorithm.
For almost all kinds of 2D motion models, the con-

straints on the camera motion parameters for each frame
can be expressed as a set of linear inequality constraints.
Thus, the system we are facing becomes

{
xk = Fkxk−1 + wk
zk = Hkxk + vk

s.t.�kxk ≤ βk . (5)

The state constraints have to be taken into account in
Kalman filtering. We tackle this problem with an effi-
cient method known as estimate projection. The idea is to
project the unconstrained state estimate x̂k of the Kalman
filter onto the constraint set. The constrained estimate can
be written as

x̃k = argminx(x − x̂k)TW(x − x̂k), s.t.�kx ≤ βk , (6)

where W is a positive-definite weighting matrix. Usually,
W is chosen as the inverse of the unconstrained covari-
ance matrix estimate P−1

k . In this way, the solution x̃k
maximizes the probability density function (pdf) of the
original unconstrained estimate subject to the state con-
straints. Note that (6) is a linear-inequality-constrained
convex quadratic programming (QP) problem. We solve
it using the active set method. The active set method
searches the constraints that are active at the optimal
solution to the problem. For each trial of active con-
straints, the problem is simplified to a linear-equality-
constrained quadratic programming problem, which can
be solved analytically in one step using Lagrange mul-
tiplier method. Details of active set method for convex
QP are shown in [24].
In the next subsections, we show the modeling of the

visibility constraint as a set of linear inequality constraints
for three different camera motion models:

4.1.1 Affinemotion
Under affine motion, a pixel [ x, y]T in frame k can be
transformed to location[

x′
y′

]
=

[
a0k a1k
a2k a3k

] [
x
y

]
+

[
b0k
b1k

]
(7)

in the reference frame using six parameters. We assume
that the smoothed camera motion for frame k is âik , i =
0 · · · 3 and b̂ik , i = 0, 1. Then, given the four corners of the
cropping rectangle [ cix, ciy]T , i = 1 · · · 4, the constraints on
the smoothed camera motion can be represented as

[
0
0

]
≤

[
a0k a1k
a2k a3k

]−1 ([
â0k â1k
â2k â3k

] [
cix
ciy

]
+

[
b̂0k
b̂1k

])

−
[
a0k a1k
a2k a3k

]−1 [
b0k
b1k

]
≤

[
w
h

]
, (8)

where w and h are the width and height of the original
frame. This is a set of linear inequality constraints on the
smoothed motion parameters.

4.1.2 Similaritymotion
The similarity motion model is similar to the affine
motion model except that a2k is forced to be equivalent to
−a1k , and a3k is forced to be equivalent to a0k . So, there are
four motion parameters for each frame instead of six in
the affine motion model.

4.1.3 Translationmotion
The translation model only depicts the 2D translation
motion of pixels on the image plane, so it forces the matrix[
a0k a1k
a2k a3k

]
to be identified and only leaves translational

parameters b0k and b1k .
The constraints on the smoothed camera motion can be

represented as{
0 ≤ cix + b̂0k − b0k ≤ w
0 ≤ ciy + b̂1k − b1k ≤ h

, (9)

which can be further simplified to an interval constraint.

4.2 Adaptive smoothing with multiple-model estimate
4.2.1 Adaptivemotion smoothing
Motion smoothing using CVmodel highly depends on the
assumption of the acceleration variance (σp in (2)). Small
value of σp allows little change in velocity, which results
in a smoother trajectory. On the opposite, large value of
σp gives higher degree of flexibility in velocity change and
leads to a trajectory closer to the original one (given as the
noisy measurement).
In video stabilization, small σp does not necessarily lead

to a good result. If there is a significant intentional cam-
era motion change in the video, small σp may have a long
delay time or even fail in tracking the intentional camera
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motion. Moreover, the smoothed camera motion gener-
ated by Kalman filtering with smaller σp tends to deviate
farther from the original camera motion, and thus trig-
gers estimate projection in Section 4.1 more frequently.
As shown in Section 4.1, the constraints on motion
parameters θ̂k are determined by the original (unsmooth)
motion parameters θk , and therefore differ across dif-
ferent frames. Frequent estimate projection may add the
unwanted camera shake back and reduce the smoothness
of the Kalman-filtering output.
Therefore, it is desirable to adaptively change the value

of σp according to the original camera motion. For the
frames which the intentional camera motion is still, we
would better use small value of σp to effectively elimi-
nate camera shake (measurement noise in (1)). For the
frames which the intentional camera motion changes fast,
a larger value of σp can provide the flexibility in tracking
the camera motion change and avoid estimate projection
for satisfying the black-border constraint.
We solve this problem via dynamic multi-model state

estimate. We use M different CV system models {j, j =
1 · · ·M} that only differ in the value of σp. The model is
assumed to jump between models as a Markov chain:

p(mk+1 = j|mk = i) = pij. (10)

If the model is static, we can implement M Kalman fil-
ters in parallel with each corresponding to a model. At
each stage, likelihood of each model p(mk|z1:k) is com-
puted first and the state estimate is computed as a Bayes-
optimal combination of the the individual estimates. If the
model is dynamic as in our case, the optimal multi-model
filter has to keep track of all of the model history, which
grows exponentially with increasing stages (frames). In
practice, only model history in the last stage is kept and
the model histories in older stages are combined. This
idea leads to the IMM (interacting multiple-model) algo-
rithm, which has good performance and relatively low
computational complexity.

4.2.2 IMMalgorithm
An unconstrained IMM estimator consists of three main
steps: (1) mixing/interacting of the mode-conditioned
estimates in previous stage, (2) mode-conditioned state
estimation, and (3) mode probability computation.
Figure 1 illustrates how IMM algorithm is implemented.
At each stage, we keep the Gaussian approximations of
each mode-conditioned estimate p(xk|mk = j, z1:k) with
mean x̂jk and covariance Pj

k . The mode probabilities μ
j
k =

p(mk = j|z1:k) are also kept.
In the mixing step, we obtain p(xk−1|mk = j, z1:k−1)

according to
M∑
i=1

p(xk−1|mk−1 = i, z1:k−1)λ
ij
k−1, (11)

Fig. 1 Unconstrained IMM algorithm

where λ
ij
k−1 = p(mk−1 = i|mk = j, z1:k−1). λ

ij
k−1 can be

computed by Bayes rule using the mode transition proba-
bility and themode distribution in the previous stageμk−1
as

λ
ij
k−1 = p(mk−1 = i,mk = j|z1:k−1)∑M

i=1 p(mk−1 = i,mk = j|z1:k−1)

= μi
k−1pij∑M

i=1 μi
k−1pij

. (12)

Note that (11) is a mixture of Gaussian distribution. The
IMM algorithm approximates it by a Gaussian distribu-
tion with mean x̄jk−1 and covariance P̄j

k−1.
Each pair of x̄jk−1, P̄

j
k−1 is then fed into a Kalman fil-

ter to get p(xk|mk = j, z1:k) (represented by mean x̂jk and
covariance P̂j

k).
The mode probabilities are updated according to

μ
j
k ∝ p(mk = j, zk|z1:k−1)

= p(mk = j|z1:k−1)p(zk|mk = j, z1:k−1)

=
( M∑

i=1
μi
k−1pij

)
p(zk|mk = j, z1:k−1), (13)

where p(zk|mk = j, z1:k−1) is equivalent to the probabil-
ity of the innovation vector yjk with respect to a Gaussian
distributionN (0; Sjk) (see line 8 and 9 in Algorithm 1).
The final estimate at each stage is a linear combination

of all Kalman filter outputs using the mode probabilities.
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4.2.3 Constrained IMMalgorithm
In this subsection, the black-border constraints in
Section 4.1 is applied to the multi-model estimation. We
have shown that the constraints can be modeled as a set
of linear inequality constraints. In single-model Kalman
filtering, error projection method can be applied on the
unconstrained Kalman filter estimate to meet the con-
straints. The output of the IMM algorithm consists of the
outputs of several Kalman filters, as well as their combina-
tion using the mode probabilities. Therefore, we can also
apply error projection (6) on the unconstrained estimate
of each Kalman filter. Their linear combination automat-
ically satisfies the constraints due to the linearity of the
constraints.
Such modification can guarantee the constraints being

satisfied. However, the influence of the constraints on
the computation of mode probabilities is not taken into
account. Error projection was proposed after both predict
and update steps have been implemented. Therefore, the
innovation vectors are not modified and the mode proba-
bility computation remains unchanged. Tomake themode
probabilities to better reflect the influence of the black-
border constraints, we propose to insert an additional
error projection step between the predict and update
steps in each Kalman filters in the IMM algorithm. The
input (innovation vectors) to mode probability computa-
tion step is a modified version after error projection. Note,
however, the update step in each Kalman filter still use
the unchanged predicted state vector because there will
be another error projection step after update.
The modified Kalman filter for constrained IMM

algorithm is illustrated by Fig. 2 and summarized in
Algorithm 2.

Fig. 2Modified Kalman filter in constrained IMM algorithm

Algorithm 2Modified Kalman filter in constrained IMM
algorithm (same for any j = 1 · · ·M)

1: Input: x̄jk−1,P
j
k−1

2: Output: x̃jk ,P
j
k , ỹ

j
k , S

j
k

3: Predict:
4: x̂jk|k−1 = Fk x̄

j
k−1

5: Pj
k|k−1 = FjkP

j
k−1F

j
k
T + Qj

k
6: 1st Error projection:
7: x̃jk|k−1 = argminx(x−x̂jk|k−1)

TPj
k|k−1

−1
(x−x̂jk|k−1),

s.t.�kx ≤ βk
8: ỹjk = zk − Hj

k x̃
j
k|k−1 (modified innovation)

9: Update:
10: yjk = zk − Hj

k x̂
j
k|k−1 (innovation)

11: Sjk = Hj
kP

j
k|k−1H

jT
k + Rj

k (innovation covariance)

12: Kj
k = Pj

k|k−1H
jT
k S

j−1

k (Kalman gain)
13: x̂jk = x̂jk|k−1 + Kj

ky
j
k

14: Pj
k =

(
I − Kj

kH
j
k

)
Pj
k|k−1

15: 2nd Error projection:
16: x̃jk = argminx(x − x̂jk)

TPj
k
−1

(x − x̂jk),
s.t.�kx ≤ βk

17: end

5 Experimental results and discussion
5.1 2D translational motion
We first test the proposed algorithm under a 2D trans-
lational motion model. As we see in Section 4.1.3, the
black-border constraints can be modeled as independent
interval constraints on the two parameters of camera
motion (displacements in x and y axes). As a result,
the two motion parameters can be smoothed separately,
whichmakes visual and numerical comparison of different
algorithms easier.

5.1.1 Synthetic motion
Figure 3 shows a synthetic path of image displacement for
a video with 600 frames and the smoothed result using
the proposed algorithm. The intentional motion has con-
stant velocity except for the abrupt changes at frames 200
and 400. The unsteady (original) motion is synthesized by
adding Gaussian random noise to the intentional motion.
We constrain the motion smoothing so that the correc-
tion translation on each direction is less than 60 pixels.
In the multiple-model estimation, we use two modes with
σ 2
p T2 = 0.0001 and σ 2

p T2 = 0.1 (pixels2). The sampling
interval T is 33.3 ms, which corresponds to 30 fps. The
mode transition probability is set as p11 = 0.99, p12 =
0.01, p21 = 0.25, and p22 = 0.75. Such setting has a bias
towards constant-velocity motion compared to maneu-
vering, since the change of velocity is usually transient.
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Table 1 Numerical comparison between different motion
smoothing algorithms for the synthetic camera motion

Mean square jitter Mean square acceleration

Unsmoothed 314.00 2217.43

Small σp 11.58 21.79

Large σp 19.24 28.09

Proposed 3.93 10.80

In Fig. 4, we compare the proposed constrained IMM
with single-model constrained Kalman filters. We also
show the constraint boundaries by cyan curves. We can
find that the result of constrained IMM is closer to the
result of Kalman filter with large σp but clearly smoother
(better observed after zooming in). The result of Kalman
filter with small σp appears smoother when the velocity
of the intentional motion does not change, as expected.
However, when there is an abrupt change in the velocity,
it takes longer to adapt to the correct velocity estima-
tion. This leads to more jitters after frame 200 and frame
400 because the Kalman filter estimates before estimation
projection hits the constraint boundaries more often.
Figure 5 shows how the mode probabilities change in

the multiple-model estimation. Sudden changes of pixel
displacement velocity clearly corresponds to the increase
in probability of mode σ 2

p T2 = 0.1 and decrease in
probability of mode σ 2

p T2 = 0.0001.
In numerical comparison, we use two performance met-

rics. The first is the mean square of jitter in the result.
The jitter is obtained by passing the result through a high
pass filter with cutoff frequency as 1 Hz (sampling fre-
quency is 30 Hz). This metric was proposed in [25]. In
[25], another metric was proposed with the mean square
of jitter to measure the low-frequency divergence between
the smoothed motion and the intentional motion. In this
paper, the black-border constraints naturally restrict such
divergence to a very small value. So, we only use the mean
square of jitter because it reflects the smoothness of the
camera motion.

The other smoothness metric we measure is the mean
square of the motion acceleration. Motion acceleration
is the second order difference of the motion parame-
ter sequence. This metric is widely used as the objective
function to minimize many offline video stabilization
algorithms [6, 8].
Table 1 shows the numerical comparison between

single-model constrained Kalman filtering and con-
strained IMM. From Table 1, we can see that for both
smoothness metrics, the constrained IMM outperforms
the single-mode constrained Kalman filters.

5.1.2 Real videos
We also tested the proposed algorithm on two real videos.
Both videos are captured by a walking person on urban
streets. Figure 6 shows two example frames extracted
from the videos. The original frame size is 720 × 480. In
our experiments, we use a 540 × 360 cropping size for
the stabilized video. The choice of σp and mode transition
matrix are the same as in the synthetic simulation.
Figures 7 and 8 show the smoothed horizontal motion

of video 1 and video 2 using single-model constrained
Kalman filters and the proposed constrained IMM fil-
ter. Similar to the synthetic simulation, the proposed
IMM filter performs well no matter the velocity of the
intentional motion stays almost constant or changes
abruptly.
The smoothed vertical motions of two test videos are

shown in Figs. 9 and 10, respectively. Vertical translations
of videos are more unstable because the photographer is
walking. Also, the intentional motion of vertical trans-
lation does not have very large changes in its velocity
because the urban street is even. Therefore, constrained
Kalman filter with smaller σp seems to perform better,
especially for video 2.
Numerical comparisons in Tables 2 and 3 show that

the proposed algorithm can smooth the entire video
sequences better except for the vertical motion of
video 2.

Fig. 6 Examples of frames extracted from the test sequences
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Fig. 7 Video 1 horizontal motion: comparison between single-model constrained Kalman filtering and constrained IMM. Cyan curves are constraint
boundaries
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Fig. 8 Video 2 horizontal motion: comparison between single-model constrained Kalman filtering and constrained IMM. Cyan curves are constraint
boundaries
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Fig. 9 Video 1 vertical motion: comparison between single-model constrained Kalman filtering and constrained IMM. Cyan curves are constraint
boundaries
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Fig. 10 Video 2 vertical motion: comparison between single-model constrained Kalman filtering and constrained IMM. Cyan curves are constraint
boundaries

5.2 2D affine motion
2D affine motion can model the pixel displacements
more accurately than 2D translational motion. There-
fore, motion smoothing under 2D affine motion model
can generate more stable videos than 2D translational
motion. For 2D affine motion model, the black-border
constraints can be exactly modeled by linear inequali-
ties as in (8). Such constraints can be efficiently han-
dled by the proposed estimation projection steps in the
IMM estimation framework. Multiple-model filtering is
only used to smooth motion parameters b0 and b1 to
reduce the necessary number of modes. The parameters
a0 · · · a3 are still smoothed by single-mode Kalman fil-
tering. Similar to 2D translational motion smoothing, we
use two modes (σ 2

p T2 = 0.0001 and σ 2
p T2 = 0.1) for

each of b0 and b1. Since for 2D affine motion model the
motion parameters cannot be smoothed independently,

Table 2 Numerical comparison between different motion
smoothing algorithms for video 1

Horizontal motion

Mean square jitter Mean square acceleration

Unsmoothed 189.83 93.79

Small σp 28.52 31.42

Large σp 33.58 16.36

Proposed 15.56 10.9

Vertical motion

Unsmoothed 301.74 52.05

Small σp 50.07 5.89

Large σp 64.64 1.97

Proposed 36.92 1.74

we have four modes in total in the constrained IMM
filtering.
We compare the motion smoothing results visually by

showing the feature trajectories in the stabilized videos.
Specifically, we detect Harris corner points in a cer-
tain frame and track them for 20 frames. The feature
trajectories are plotted as black curves on top of the
starting frame (the frames themselves are plotted using
alpha channel 0.5 (more transparent) to make the curves
clearer). For a stabilized video, the trajectories should
look smooth. Figure 11 shows a comparison between
the stabilization results using the proposed 2D trans-
lational motion smoothing and the proposed 2D affine
motion smoothing. Note that we detect and track the
feature points independently in the three videos so the
location and number of the feature points can be differ-
ent. It is clear that affine motion smoothing can better

Table 3 Numerical comparison between different motion
smoothing algorithms for video 2

Horizontal motion

Mean square jitter Mean square acceleration

Unsmoothed 256.46 76.82

Small σp 122.86 32.44

Large σp 113.54 15.77

Proposed 93.59 11.47

Vertical motion

Unsmoothed 155.67 35.66

Small σp 1.43 0.61

Large σp 44.17 1.35

Proposed 9.40 0.74
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Fig. 11 Stabilization comparison for video1. Features are tracked from frame 256 to frame 275. The feature tracks are plotted as black curves on
frame 256. a Original video. b Proposed translational smoothing. c Proposed affine smoothing

Fig. 12 Stabilization comparison for video 2. Features are tracked from frame 16 to frame 35. The feature tracks are plotted as black curves on frame
16. a Original video. b Proposed translational smoothing. c Proposed affine smoothing

Fig. 13 Stabilization comparison for video 1. Features are tracked from frame 420 to frame 439. The feature tracks are plotted as black curves on
frame 420. a Constrained KF with small σp . b Constrained KF with large σp . c Constrained IMM filter
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Fig. 14 Stabilization comparison for video 1. Features are tracked from frame 700 to frame 719. The feature tracks are plotted as black curves on
frame 700. a Constrained KF with small σp . b Constrained KF with large σp . c Constrained IMM filter

stabilize the original video under the same black-border
constraints. Figure 12 shows a similar comparison for
video 2. As a result, it is necessary to stabilize the videos
using affine motion model if we want to get more stable
results.
We next compare the stabilized results using the

constrained IMM filter against single-mode constrained
Kalman filters, all using 2D affine motion model. As
shown in Figs. 13 and 14, in the cases where the velocity
of the intentional camera motion changes slowly, con-
strained Kalman filter with small σp tends to generate
the most stable results. However, when there is abrupt
velocity change in the intentional motion, the constrained
Kalman filter with small σp can result in annoying back
and forth pixel movements because the motion esti-
mate hits the constraints easily. The proposed constrained
multiple-model filter is able to generate more balanced
results, which is consistent with our observation and anal-
ysis in Section 5.1.

6 Conclusions
In this paper, we propose an online motion smoothing
method for video stabilization based on the existing
constant-velocity Kalman-filtering method. The black-
border constraints are modeled as linear inequalities
for different 2D motion models and are combined with
the Kalman-filtering framework in a probabilistic way.
Estimate projection is used to project the estimates on
to the constraint set after the update step in Kalman
filtering. To adaptively smooth the camera motion with
different kinds of intentional motion, we propose to use
multiple-model estimation with different process noise
variance instead of single-mode Kalman filtering. To
make the mode probability computation more accurate
under the affect of black-border constraints, the multiple-
model estimation is modified by adding another estimate
projection step after the propagation step for each
sub-filter. Experimental results show that the proposed
constrained multiple-model estimation is able to

adaptively smooth camera motion and guarantee that
all of the pixels in stabilized frames are defined in the
original frames.
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