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Abstract

The proliferation of mobile devices is producing a new wave of mobile visual search applications that enable users to
sense their surroundings with smart phones. As the particular challenges of mobile visual search, achieving high
recognition bitrate becomes the consistent target of existed related works. In this paper, we explore to holistically
exploit the deep learning-based hashing methods for more robust and instant mobile visual search. Firstly, we present
a comprehensive survey of the existed deep learning based hashing methods, which showcases their remarkable
power of automatic learning highly robust and compact binary code representation for visual search. Furthermore, in
order to implement the deep learning hashing on computation and memory constrained mobile device, we
investigate the deep learning optimization works to accelerate the computation and reduce the model size. Finally,
we demonstrate a case study of deep learning hashing based mobile visual search system. The evaluations show that
the proposed system can significantly improve 70% accuracy in MAP than traditional methods, and only needs less
than one second computation time on the ordinary mobile phone. Finally, with the comprehensive study, we discuss
the open issues and future research directions of deep learning hashing for mobile visual search.
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1 Review
1.1 Introduction
The proliferation of increasingly capable mobile devices
opens up exciting possibilities for massive mobile appli-
cations. Among them, mobile visual search, which can
utilize mobile device to sense and understand what the
users are watching at any time from any place, plays a key
role in these applications. First of all, the always-on broad-
band connection makes users always online. In addition,
the abundant sensors can accurately supply sufficient and
effective information for mobile perception. More impor-
tant, the increased computational ability of mobile device
can instantly process the sensed information and fetch the
related feedback. Therefore, we can conveniently sense
where we are [1], what we are watching [2–4] or what
happened with our surrounding [5, 6] with mobile visual
search immediately.
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However, compared with traditional visual search appli-
cations, mobile visual search faces the following unique
challenges [7]. (1) Large visual variance of query—the
visual query is naturally disturbed by varying visual qual-
ities in the complex capture conditions, which needs
robust visual signatures that can handle such signifi-
cant variance in mobile visual search. (2) Stringent mem-
ory and computation constraints—as the cheaper CPU,
GPU and memory of mobile devices, signatures with
large memory costs or heavy computation cannot be
utilized on mobile clients. (3) Network bandwidth limi-
tations—as the unreliable and low bandwidth, signatures
are expected to be as compact as possible to reduce net-
work transmission latency. (4) Instant search experience—
because mobile users care more about their experience,
the visual search process is expected to be instant and
progressive.
To solve the unique challenges of mobile visual search,

the most existed searches focus on how to achieve high
recognition bitrate, which considers the recognition per-
formance with respect to the amount of data transmission
between mobile devices and servers [8]. High recognition
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bitrate leads to faster response time, lower network usage
rate, and battery consumption, which are all important
factors for real mobile visual search applications. Accord-
ing to the transferred query types, the existed works could
be classified into four categories : transfer scaled-down
images [9], transfer moderate features [10–12], transfer
compressed features [13, 14], and transfer feature sig-
nature produced by hashing [15, 16]. Among them, as
the high robust, lower transmission costs, less memory
requirement, and cheaper computation, the hashing based
feature compression method attracts the most attention.
For example, He et al. [15] and Tseng et al. [17] propose
to utilize the visual hashing bits to compact the raw visual
descriptors, which contains two stages. Firstly, in the off-
line stage they learn the hash function from the large
scale image database to maximally maintain the discrim-
inative characteristic of raw features. Then in the online
stage, the raw visual features are compressed into compact
hash bits by the learned hash function to reduce the fea-
ture scale. However, as the existed hash-basedmethods all
focus on how to compress the existed handcrafted features
into binary codes, their performance is limited by the uti-
lized features and the information loss in the compression
process.
Recently, as the ability of automatic feature repre-

sentation learning from large scale image dataset, deep
learning methods are widely employed for content based
image retrieval [18–21]. These studies achieved com-
petitive results compared with the traditional methods.
Consequently, how to take advantage of deep neural net-
work to automatically learn the binary hash codes attracts
massive researchers’ attention. The primal works directly
add a hidden hash layer into the well-trained deep neu-
ral network to map the learned feature representation
into binary code. Although they achieve great improve-
ment compared with the traditional hashing methods,
the separation of feature and hash function learning can-
not sufficiently exploit the power of deep neural network
to learn effective binary code representation. Therefore,
more researchers try to jointly learn the feature repre-
sentation and hashing function to holistically exploit the
power of feature learning in deep neural network, such as
supervised deep learning hashing [22–25], unsupervised
deep learning hashing [26], and triplet/pairwise similar-
ities based deep learning hashing [27–29]. According to
the evaluations, they all achieve better performance than
the above separate methods.
Although the deep learning hashing methods show

remarkable power in image and video retrieval, few of
them have been applied to the mobile visual search. The
main reasons are that the cheap hardware of mobile
devices cannot meet the high computation and memory
requirement of deep learning. On one side, the multi-
ple convolutional layers in the network require massive

computation resources, such as GPU cards with thou-
sands CUDA cores. Moreover, the millions of parameters
in the full connected layers need large space in storage
and memory. As a result, more and more researchers
try to accelerate the convolutional operation [30–33]
and compress the parameters in full layers [34–38]
to make the deep learning efficiently work on mobile
devices. These optimizations make it is possible to run
deep learning hashing methods for the mobile visual
search [39, 40].
In this paper, we comprehensively investigate the pos-

sibility of exploiting the deep learning hashing for mobile
visual search. First of all, we survey the existed four cate-
gories of mobile visual search methods to show that hash-
ing based methods play significant roles to achieve the
high recognition bitrat as their strong determinativeness,
high compressed codes, easily transmitted and indexed.
Then, we study the existed works of the deep learning
hashing, and demonstrate their advantages for mobile
visual search. We classify the existed works into three
categories, analyze their network structure and training
strategy. In addition, we also compare their performance
on the CIFAR-10 dataset. Moreover, to solve the chal-
lenges of running deep learning hashing on the mobile
device, we summarize and analyze the existed deep learn-
ing acceleration technologies in two categories: compu-
tation acceleration and model reduction. In particular, as
shown in Fig. 1, we design a deep learning hashing based
mobile location recognition system, which achieves 72%
MAP improvements in accuracy, and needs less than one
second computation on a common mobile device. The
case study sufficiently demonstrates our hypotheses and
conclusions. Finally, we discuss the emerging topics of
deep learning hashing-based mobile visual search in the
future.
The rest of the paper is organized as follows. Section 1.2

reviews mobile visual search work. Section 1.3 surveys the
deep learning hashing methods. Section 1.4 introduces
the newest deep learning optimization schemes. Section 2
demonstrates a case study and evaluations. Section 3 gives
future research directions, followed by the conclusions in
Section 4.

1.2 Traditional mobile visual search methods
Recently, as the basic function for numerous mobile appli-
cations, mobile visual search attracts massive researchers’
attention [41]. As described in Section 1.1, the existed
mobile visual search works mostly focused on how to
achieve high recognition bitrate [8], which could be clas-
sified into four categories according to their transferred
query types: transfer scaled-down or compressed images
[9, 42, 43], transfer moderate features [10–12], transfer
compressed features [13, 14, 44, 45], and transfer feature
signature produced by hashing [15, 16, 46–48].
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Fig. 1 The framework of deep learning hashing-based mobile visual search

1.2.1 Transfer scaled-down or compressed images
Early mobile visual search systems (e.g., Google Goggles)
always try to send the compressed query image to the
server, and apply the feature extraction and search on the
server side [9]. For instance, Yue et al. propose a cloud-
based image coding method to compress the images, and
reconstruct them from a large-scale image database via
the descriptions on the server side [42]. Moreover, Tan
et al. propose a query image resize method that can
preserve the robust local features in the image [43]. How-
ever, these methods which neglect the increasing com-
puting capacity of mobile clients are limited by the low
and unreliable bandwidth of network [49, 50]. Therefore,
more works prefer to directly extract moderate features
on the mobile device and transfer the features instead
of images.

1.2.2 Transfer-moderate features
The moderate features-based methods always utilize the
popular visual features applied in desktop visual search,
such as speeded-up robust features (SURF) [51] and
bag-of-words (BoW) [52]. In addition, the special extrac-
tion or transmission improvement is implemented on
mobile device to speed up the visual search. For instance,
Yang et al. propose to accelerate SURF extraction on
the mobile device by content-aware tiling and gradient
moment based orientation operator [10]. The content-
aware tiling divides the image into tiles. Then, the feature
detection is performed on each tile individually to reduce
memory traffic. The heterogeneous tile size can be auto-
matically selected by the gradient moment based orienta-
tion operator. Besides, Chandrasekhar et al. [12] and Xia
et al. [11] propose that they can significantly reduce the
data size transmitted over the network to decrease the
retrieval latency with the progressive transmission of local
features.

1.2.3 Transfer-compressed features
In order to further decrease the transferred feature scale,
many recent methods try to compress the extracted mod-
erate features on the mobile device. For instance, the
Compressed Histogram of Gradients [13] encodes the raw
features with an entropy-based coding method on the
mobile client, and approximately decodes the compressed
features on the server. Similarly, Ji et al. [14] take advan-
tage of rich contextual cues to compress the raw BoW
on the client with a multiple-channel coding scheme.
Moreover, Chen et al. [44] develop a compact and dis-
criminative global signature to characterize each image.
The global signature employs an optimized local feature
count derived from a statistical analysis of the retrieval
performance. Finally, Bianco et al. investigate the use of
different detectors and color descriptors in the compact
descriptors for visual search framework, and demonstrate
the advantages of using color descriptors on six bench-
mark datasets [45].

1.2.4 Transfer feature signature produced by hashing
Different from feature compressing, He et al. [15] and
Tseng et al. [17] have suggested to utilize the visual hash-
ing bits to present raw visual descriptors. This kind of
method includes the (1) offline hashing function learning
and (2) online binary code extraction stages. Compared to
transfer the compressed features, without decoding, the
hash bits can be directly searched and indexed on the
server. Therefore, this kind of methods has lower trans-
mission costs, cheaper memory and computation than
others. Moreover, Zhou et al. [48] propose a codebook-
free algorithm for large-scale mobile visual search, which
firstly employs a novel scalable cascaded hashing scheme
to ensure the recall rate of local feature matching, and
enhances the matching precision by an efficient verifi-
cation with the binary signatures of these local features.
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In addition, Zhu et al. [46] propose a topic hypergraph
hashing for mobile image retrieval, which learns hash-
ing codes with high order semantic correlation preserv-
ing, and simultaneously leverages the associated textual
modality to enrich semantics of hashing codes. Besides,
to mitigate the information loss from binary codes, based
on the hashed binary codes transmitted to the server,
Kuo et al. [47] propose a de-hashing process that recon-
structs the BoW by leveraging the computing power of
remote servers. In addition, Liu et al. [7] also tries to fur-
ther decrease the transmission size of binary code with
progressive transmission strategy.
From the above works, we can find that more and more

researchers try to transfer feature signatures produced
by hashing in mobile visual search, because of its good
balance among computation and memory requirements,
training efficiency, quantization complexity, and search
performance. However, the exited hash basedmethods for
mobile visual search all try to compress the exited classi-
cal handcrafted features into binary code. None of them
try to automatically learn the effective binary code fea-
ture with deep neural network from the large scale image
dataset. There are two main reasons: (1) lack of effective
deep learning hashing method; and (2) high computa-
tional complexity of deep neural network. Next, we will
survey the existed methods that try to solve the two main
problems.

1.3 Deep learning hashing
1.3.1 Background
Hashing, a widely-studied solution to approximate near-
est neighbor search, aims to transform the data item
to a low-dimensional representation, or equivalently a
short code consisting of a sequence of bits, called hash
code [53]. Hashing methods have been intensively stud-
ied and widely used in many different fields, including
computer graphics, computational geometry, telecommu-
nication, computer vision, especially for mobile visual
search. The existed hashing methods can be divided
into two categories: data-independent method and data-
dependent method (i.e., learning to hash method). The
goal of learning to hash is to learn data-dependent and
task-specific hash functions that yield compact binary
codes to achieve good search accuracy, where sophisti-
cated machine learning tools and algorithms have been
adapted to the procedure of hash function design [54, 55].
The existed learning to hash methods can be divided
into eight categories: (1) unsupervised hashing, (2) super-
vised hashing, (3) ranking-based hashing, (4) multi-modal
hashing, (5) online hashing, (6) quantization for hash-
ing, (7) distributed hashing, and (8) deep learning hash-
ing. We classified these methods into eight categories to
emphasize some important categories, such as deep learn-
ing hashing and quantization for hashing. Actually the

classification boundaries are not strict with each other.
Traditional image search systems based on learning to
hash mainly involve two steps: Firstly, the system extracts
a vector of hand-crafted descriptors such as HoG, SIFT,
SURF, etc. Next, the hashing function learning is posed
as either a pointwise or a pairwise optimization problem
to preserve the pointwise or pairwise label information in
the learned Hamming space [27, 56–58]. However, as the
above two steps are mostly studied as two independent
problems, the learned feature representation may not be
tailored to the objective of hashing function learning.
Because it demonstrated as an effective image content

understand and tackle scheme, deep learning technology
[59, 60], also known as deep neural networks, attracts
growing interests in the fields of image and video search.
Deep learning is a biologically-inspired variant of multi-
layer perception, which supplies an end-to-end frame-
work for feature extracting and classifier training on large
scale dataset [61–63]. Furthermore, features extracted by
deep learning model show extraordinary performance
over overwhelming majorities of existing hand-crafted
features [64–66]. Therefore, many researches try to pro-
pose an end-to-end deep learning hashing framework to
automatically learn effective binary code representations
for images [67]. As shown in Table 1, the existed deep
learning hashing methods can be divided into three cat-
egories: (1) supervised deep learning hash with single
network; (2) unsupervised deep learning hash with sin-
gle network; and (3) pairwise/triple similarity based deep
learning hash with parallel network. The image search
results on the CIFAR-10 dataset of different deep learning
hashing methods are shown in Table 2 for comparation.
The accuracy in terms of MAP with different hash bits
length, which are all collected from their papers.

1.3.2 Learning feature and hashing function separately
The early works on deep learning hashing continue the
traditional hashing strategy. First of all, these works train
the deep neural network on large scale image datasets
to learn the effective features for image search. Then a
hidden hash layer is added to learn the hashing func-
tion which maps the learned features into binary code.
For example, Lin et al. [68] propose an effective deep
learning framework to generate binary hash codes for
images with labels, which consists of two main compo-
nents. The first step is the supervised pre-training of a
convolutional neural network on the ImageNet to learn
rich mid-level image representations. Then, they add a
latent layer to the network and have neurons in this layer
learn hashes-like representations while fine-tuning it on
the target domain dataset. In addition, Liong et al. propose
to learn the hash layer under three constraints: (1) the loss
between the original feature descriptor and the learned
binary vector is minimized, (2) the binary codes distribute
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Table 1 Characteristics of recent deep learning hashing methods

ID Method Category Network Layer Feature+hashing

1 Deep learning of binary hash [68] Supervised Single 8 Separate

2 Deep hashing for compact binary codes [69] Unsupervised/supervised Single 3 Separate

3 Unsupervised deep neural networks hashing [23] Unsupervised Single 16 Separate

4 Supervised deep hashing [22] Supervised Single 5 Together

5 Semantics-preserving deep hashing [23] Supervised Single 8 Together

6 Deep semantic ranking hashing [24] Supervised Single 8 Together

7 Binary deep neural network hashing [26] Unsupervised/supervised Single 5 Together

8 Bit-scalable deep hashing [27] Triplet Parallel 10 Together

9 One-stage deep hashing [28] Triplet Parallel 10 Together

10 Deep pairwise-supervised hashing [29] Pairwise Parallel 8 Together

11 Deep hashing network [72] Pairwise Parallel 8 Together

12 Deep semantic-preserving and ranking-based hashing [73] Triplet Parallel 19 Together

evenly on each bit, and (3) different bits are as indepen-
dent as possible. However, their neural network only has
three layers [69]. Moreover, besides the three constraints,
the unsupervised deep neural networks hashing also add
the rotation invariant into the learning of the binary
descriptors, which further improve the performance of
unsurprised deep learning hashing [70]. However, as the
above works treat feature learning and hashing function
learning as two separate stages, they also have the similar
problem as the traditional learning hashing method. That
is, the quality of produced hash codes heavily depends
on the quality of handcrafted features or learned deep
learning features, which weakens the feature learning abil-
ity of deep neural network and generates less effective
hash codes.

1.3.3 Learning feature andhashing function simultaneously
Aim to jointly learn the feature and hashing function
simultaneously, Xia et al. [22] propose a supervised deep
learning hashing to integrate image feature and hashing
value learning into a joint learning model. The model
firstly consists a stage of learning approximate hash codes
with given supervised information and then trains a deep
CNN that outputs continuous hash values. Such hash
values can be generated by activation functions like sig-
moid, hyperbolic tangent or softmax, and then quantized
into binary hash codes through appropriate thresholds.
As the power of CNNs, the joint model can simulta-
neously learn image features and hash values from raw
image pixels. However, the above work still requires sep-
arately learning approximate hash codes firstly to guide
the next subsequent learning of image representation and
finer hash values. Differently, [23] and [24] both pro-
pose end-to-end deep learning frameworks to learn the
hashing function with semantic information of images.
The supervised semantics-preserving deep hashing in [23]

constructs the hash functions as a latent layer between
image representations and classification outputs in CNN.
Then binary codes can be learned by the minimization
of an objective function defined over classification error,
with additional constraints on the learning objective to
make each hash bit carry as much information as possible.
Therefore, the learned binary code encourages seman-
tically similar images to have small Hamming distance.
Differently, the works in [24] utilize the multi-label images
to learn deep semantic ranking based hashing. Moreover,
Li et al. directly propose a binary deep neural network,
which designs one layer to directly output the binary code
instead of involving the sgn or step function in [22–24].
Besides, the authors also alternate and relax the optimiza-
tion object to solve the NP-hard problem of optimizing
the binary code with similarity preserving, independence,
and balance properties together.
As a kind of particular supervised hashing, similarity-

preserving hashing is also a widely utilized method for
large-scale image search tasks. In training, the input of
similarity-preserving hashing is in the form of triplets
or pairwise similar/dissimilar images. The binary codes
are learned to keep the original similarities of the input
tripltes/pairs. For example, Lai et al. [28] propose a “one-
stage” supervised deep hashing architecture that has three
parts: (1) shared stacked convolution layers to capture
the image representations, (2) divide-and-encode mod-
ules to divide intermediate image features and map them
into multiple hash codes, and (3) a triplet ranking loss
function which is designed to keep triple relationship on
images. Similarly using triple images, Zhang et al. propose
a supervised learning framework to generate compact
and bit-scalable hashing codes directly from raw images
[70]. Besides the similarity-preserving, each bit of the
hashing codes is unequally weighted so that the hashing
framework can manipulate the code lengths by truncating
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Table 2 Image search results on the CIFAR-10 dataset for different deep learning hashing methods

ID Method 12/16-bits 32-bits 48-bits 64-bits

1 Deep learning of binary hash [68] 89.30% 89.72% 89.73% -

2 Deep hashing for compact binary codes [69] 46.75% 51.01% - 52.50%

3 Unsupervised deep neural networks hashing [23] 19.43% 24.86% - 27.73%

4 Supervised deep hashing [22] 46.5% 52.1% 53.2% -

5 Semantics-preserving deep hashing [23] - - 89.97% -

6 Binary deep neural network hashing [26] 67.32% 69.62% - -

7 Bit-scalable deep hashing [27] 55.2% 55.8% 58.1% -

8 One-stage deep hashing [28] 61.46% 62.87% 63.05% 63.26%

9 Deep pairwise-supervised hashing [29] 71.3% 74.4% 75.7% -

10 Deep hashing network [72] 55.5% 60.3% 62.1% -

11 Deep semantic-preserving and ranking-based hashing [73] ≈ 78% ≈ 78% ≈ 77% -

The accuracy in terms of MAP with different hash bits length, which are collected from their papers

the insignificant bits. Moreover, Li et al. propose a deep
pairwise-supervised hashing to firstly perform simul-
taneous feature learning and hash-code learning for
applications with pairwise labels [71]. Compared with
[28, 70], the main difference of the deep pairwise-
supervised hashing is that the triplet ranking loss is
replaced by the pairwise ranking loss, which is similar to
Siamese Neural Network. In addition, Zhu et al. extend
the original pairwise rank loss to the pairwise cross-
entropy loss and a pairwise quantization loss together
[72]. Besides, Yao et al. present a novel deep semantic-
preserving and ranking-based hashing architecture, which
jointly learns projections from image representations to
hash codes and classification [73].

1.3.4 Discussion
In conclusion, although many state-of-the-art deep learn-
ing hashing methods have been proposed to demonstrate
the power of binary code features learning in deep neu-
ral networks, few of them have been implemented in the
mobile visual search. The main reasons can be concluded
as follows:

• As introduce in Section 1.1, due to the complex
capture conditions, the query image is naturally noisy
with varying visual qualities, such as flashing, occupy,
rotation, blur, affine transformation, etc. Therefore,
except the three hash code constraints in the learning
process, how to handle these specific noisy in the
mobile visual search is another big challenge for the
deep learning hashing-based mobile visual search.

• Undoubtedly, the deep neural networks have very
high computation requirement for the hardware,
such as GPU card and large memory. In particular,
the comprehensive and sufficient binary code feature
learning needs very deep neural network. Although
the training process can be solved on the cloud, the

feature extraction in the search process still gives big
challenges for the memory and computation limited
mobile devices. Therefore, how to accelerate the deep
learning hashing computation and compress the
model on the mobile device are very pressing
problems. Fortunately, some researches have tried to
transfer the deep learning technology into the mobile
device, which will be introduced in the next session.

1.4 Deep learning optimization onmobile devices
Although deep learning technology achieves great success
in a wide range of visual applications, its high computation
and large memory requirement also create big problems
for many applications such as mobile visual search. The
existed effective deep neural networks mainly deponed
on their deeper network architectures, which can only
be implemented on the server with GPU card and high
memory. Therefore, many existed works try to further
improve their efficiency, which can be divided into three
categories.

1.4.1 Speed up the convolutional layers
Speeding up the computation in the convolutional layer
is a common method to accelerate the deep neural net-
work [30–33, 74]. For example, Lebedev et al. propose
a two-step framework to speed up convolution layers
based on tensor decomposition and discriminative fine-
tuning [32]. The tensor decomposition uses non-linear
squares to compute a low-rank CP-decomposition to
decompose the full kernel tensor. Then the original con-
volutional layers are replaced by four convolutional lay-
ers with small kernels. After that, the new network will
be fine-tuned on the training dataset again. The evalua-
tions show that the new network achieves a 8.5× CPU
speedup of the whole network with only very little accu-
rate drop. Moreover, Zhang et al. try to accelerate the
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very deep convolutional networks with the nonlinear
asymmetric reconstruction, which achieves a 4× speedup
with merely a 0.3 percent increase of top-5 center-view
error [33].

1.4.2 Compress the parameters to reduce themodel size
As the millions of parameters in the deep learning model,
how to reduce the parameter number and compress the
model is another research topic to accelerate the deep
neural network [34–38]. For instance, Chen et al. use a
hash function to randomly group network connections
into hash buckets to make the connections in same hash
bucket share the same weight [34]. Moreover, Han et al.
use pruning, trained quantization and huffman coding to
compress the deep model [36]. Differently, Srinivas et al.
directly remove the similar and redundant neurons [37].
The deep pried convnet is an end-to-end trainable net-
work which tries to replace the fully connected layers of
the network with an Adaptive Fastfood transform [38].

1.4.3 Accelerate the network onmobile devices
The above works are still implemented on the servers. For
mobile devices, Wu et al. propose a Quantized CNN to
simultaneously speed-up the computation and reduce the
storage and memory of CNN models [39]. They employ
the approximate inner product computation to estimate
the response of both convolutional and fully-connected
layers. Then the estimation error is also considered in
the training process. According to their evaluations, the
Quantized CNN achieves 4× acceleration and 15× com-
pression for the common CNN network, with only less
than 1% drop in the top-5 classification accuracy. On
Huawei Mate 7 smartphone (i.e., 1.8GHz Kirin 925 CPU),
the practical running time, storage, and memory con-
sumption of optimized AlexNet is 0.95s, 12.60MB, and
74.65MB respectively. In addition, Rallapalli et al. [40]
try to accelerate very deep neural networks (i.e., YOLO
[75] with 27 layers) on mobile devices. Their strategy is a
range of memory optimizations which includes: (1) reduc-
ing useless variables in the network; (2) using managed
memory in the GPUs; (3) slitting the FC layer into sub-
parts, which are loaded and executed sequentially; and (4)
offloading the FC layer to the CPU while pipelining CPU
and GPU computation. Then implementation on NVIDIA
Jetson TK1 board shows that the optimized YOLO needs
0.262s with 2.2% accuracy loss.
From the existed works, we can find that speeding up

the convolutional layer and reducing the weights in full
layers are two common methods to accelerate the deep
neural network on the mobile devices. Although the net-
works continue to become deeper, we believe that with
the development of hardware on the mobile devices and
improvement of speed-up technologies, the deep learning
hashing can be commonly used on the mobile devices.

2 A case study: mobile visual search for location
recognition

Location recognition (i.e., logical localization) is one of
the most important applications for mobile visual search.
Different from the physical localization which gives the
location of users or devices, the location recognition is to
localize the objects captured by the mobile devices. For
example, when the traveller takes a photo of one building
in the city, the location recognition can instantly recognize
and tag the photos with the name and location of build-
ing [76]. Although GPS embedded with mobile device can
easily give the user/device location, how to localize the
building from crowd buildings is a great challenge. In the
past, mobile visual search was a main method to solve this
problem. Given the images of the captured objects, the
system will search the similar images which have location
labels in the dataset to determine its location. Different
from the existed mobile visual search scheme described in
section 2, we try to use the deep learning hashing to solve
the challenges of mobile visual search.
To evaluate the proposed method, we invited seven vol-

unteers to collect 8,062 images which contains 162 object
locations in and around our campus. As shown in Fig. 2,
the objects contains buildings, trees, statues, restaurant,
supermarket, library, dormitories, and so on. Then we
randomly select 6442 images as source images and 1620
images as query images. More details of the dataset can be
found in [77, 78].
In the implementation, as the highest accuracy and

open-source codes, we choose Deep Learning of Binary
Hash (DLBH) [68] and Supervised Semantics-Preserving
Deep Hashing (SSDH) [23] as our deep learning hash-
ing methods. We implement DLBH to learn deep learn-
ing hashing for mobile location recognition in two main
steps. Firstly, the AlexNet model provided by [68] is
fine-tuned on our source dataset with the label of 162
different objects. In this step, we can learn sufficient
mid-level image representations for location recognition.
Next, the latent hash layer is added to the AlexNet, and
learn hashes-like representations to minimize the loss
between the original feature descriptors and the learned
binary vectors. Different from DLBH, except the clas-
sification loss, SSDH also adds the constraints that: (1)
the binary codes distribute evenly on each bit, and (2)
different bits are as independent as possible. Moreover,
the feature and hashes-like representations are learned
together.
On the server, we build the HDIdx 1 proposed in [79] as

our search index. We use HDIdx as its index building pro-
cess corporates an adaptive bits partition algorithm into
the original multi-index hashing framework [80], which
can separate the highly correlated bits into different code
segments and greatly improve the search speed. In the
testing process, to accelerate the hashing methods on
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Fig. 2 The examples of the query and source images in the mobile location recognition dataset [77, 78]

the mobile device, we utilize the Quantized CNN 2 to
optimize the DLBH and SSDH on the Huawei Mate 7
smartphone with 3G RAM and 1.8GHz Kirin 925 CPU.
The framework of the system can be found in Fig. 1.
In the evaluation, we use MAP as the evaluation crite-

rion, which is computed as the Eq. 1

MAP = 1
|Q|

|Q|∑

j=1

1
mj

mj∑

k=1
Precision(Rjk), (1)

where Q is the query set, mj is the number of positive
images in each locations, Precision(Rjk) is the average pre-
cision at the position of returned kth positive images. To
evaluate the effectiveness of deep learning hashing, we
compared our methods with the visual hash bits (VHB)
[81] and space-saliency fingerprint selection based hash
codes (SSFS) [77], which are both state-of-the-art meth-
ods for mobile location recognition. The results can be
found in Table 3. From the results, we can find that the
accuracies of deep learning hashing method greatly out-
perform the traditional hashing methods, which demon-
strate the power of deep learning technology in binary
code learning. Furthermore, as the SSDH learns the fea-
ture representations and binary code simultaneously and
add more constrains for binary code learning, it achieves
higher performance than DLBH.

3 Open issues and future directions
In this paper, we just give a preliminarily practice for deep
learning hashing basedmobile visual search, several major
issues remain open to be solved in the future.

3.1 Improve the accuracy of deep learning hashing based
mobile visual search

As introduced in Section 1.1, mobile visual search is seri-
ously disturbed by the noise of captured images or videos,
such as flashing, occupy, rotation, blur, affine transforma-
tion, and so on. How to design robust features for more
accurate search is still a great challenge. However, the
existed deep learning hashingmethods for desktop images
search mainly focus on how to mine the discriminative
features for images having a similar labels, which neglect
these invariance properties. Therefore, in the future, the

Table 3 The MAP of different hashing methods for mobile visual
search based location recognition

Method
MAP

16-bits 32-bits 64-bits 128-bits

VHB [81] - - 19.36% -

SSFS [77] - - 20.22% -

DLBH+QCNN 59.80% 78.68% 87.15% 90.67%

SSDH+QCNN 78.26% 91.82% 92.43% 93.21%
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deep learning hashing method designed for mobile visual
search must handle these specific noise in the learning
process to further improve the accuracy, such as add the
transformation invariance in the loss function and so on.
In addition, large scale mobile visual search dataset is also
needed to learn effective features.

3.2 Explore the ability of unsupervised deep learning
hashing

As shown in Table 2, the performance of the unsupervised
deep learning hashing methods is significantly worse than
the supervised ones. However, in most of the case, it is
hard to label all the images/videos for large scale visual
search, which cannot use supervised hashing. Therefore,
how to design the unsupervised deep learning hashing
models to further improve the accuracy of unsupervised
hashing is another important research topic in the future.

3.3 Further accelerate the computation and reduce the
model size

Although many existed works have tried to optimize the
deep learning technology on the mobile device, it is far
from satisfactory. Until now, we can only run deep neu-
ral network with limited layers as the strong constraints
of computation and memory on mobile devices. More-
over, the computation time is still more than ten times
longer than on servers. In the future, more powerful hard-
ware, such as GPU card with more CUDA cores and large
graphic memories, are needed to be developed on the
mobile devices. Moreover, the specific speed and mem-
ory optimization methods for deep learning hashing on
mobile devices are also deserved more attentions.

3.4 Design the deep learning hashing for particular
mobile visual search applications

The existed deep learning hashing methods all focus on
extracting the binary codes from the images. In par-
ticular, there are diverse sensors on the mobile devices
to support multi-modality fusion based visual search
[82, 83]. Specifically, for location recognition, we can
leverage the information from GPS, digital compass,
accelerometer, and gyroscope to learn the multi-modality
based deep learning hashing. Moreover, for mobile video
search, we can holistically exploit the complementary
nature of audio and video signals in the deep learning
hashing. Therefore, more effective deep learning hash-
ing for particular mobile visual search applications with
multi-modality fusion will bemore attractive in the future.

4 Conclusions
In this paper, we comprehensively survey the exited deep
learning hashing technologies to demonstrate the neces-
sity and sufficiency of deep learning hashing based mobile
visual search. To achieve it, we analyze three different

kinds of deep learning hashing methods in detail, and
compare their performance on the CIFAR-10 dataset.
Moreover, to efficiently implement the networks, we
also discuss the deep learning optimization on mobile
devices. Most important, according to our knowledge, we
give one of the first attempts to design a deep learn-
ing hashing-based mobile visual search system for loca-
tion recognition to evaluate our conclusions. Finally, after
sufficient investigation, we give the emerging topics of
deep learning hashing based mobile visual search in
the future.

Endnotes
1 “HDIdx”, https://github.com/hdidx/hdidx.
2 “Quantized CNN”, https://github.com/yingxiaosan/

quantized-cnn.
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