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Abstract

At present, dealing with the piracy and tampering of images has become a notable challenge, due to the presence of
smart mobile gadgets. In this paper, we propose a novel watermarking algorithm based on non-subsampled
contourlet transform (NSCT) for improving the security aspects of such images. Moreover, the fusion of feature
searching approach with watermarking methods has gained prominence in the current years. The scale-invariant
feature transform (SIFT) is a technique in computer vision for detecting and illustrating the local features in images.
Nevertheless, the SIFT algorithm can extract feature points with high invariance that are resilient to several issues like
rotation, compression, and scaling. Furthermore, the extracted feature points are embedded with watermark using
the NSCT approach. Subsequently, the tree split, voting, rotation searching, and morphology techniques are
employed for improving the robustness against the noise. The proposed watermarking algorithm offers superior
capability, better capture quality, and tampering resistance, when compared with existing watermarking approaches.
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1 Introduction
In the current scenario, digital watermarking approaches
have gained a lot of significance, due to the rapid
progress in technology. Additionally, exchange and shar-
ing of images have become easier and faster due to the
advent of smart phones and gadgets. Furthermore, this
technology has been considered as a vital approach for
safeguarding the copyright and intellectual property of
images from severe privacy and security issues. Never-
theless, when the image resolution gets higher and the
volume turns bulkier, handling such images is always a
challenging task. Subsequently, it becomes essential to
compress the images; while compressing, a lot secretive
information can probably get distorted. Hence, capturing
the identifiable information from the image turns out to
be a difficult task. Consequently, there is a need for the
present watermarking approaches to be strong enough
to deal with the compression issues. However, the digital
watermarking approaches should also be able to achieve
transparency, robustness, and better capacity to represent
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their unique identities. Data fusion can be also consid-
ered as an important aspect in image watermarking in
video recognition systems [1, 2]. Deep learning can also
enhance the image-based watermarking and can be used
to formulate ranking algorithms for image recognition
[3, 4]. Several watermarking techniques based on dis-
crete cosine transform (DCT) [5–10] and discrete wavelet
transform (DWT) [11–17] have been already established.
Patra [7] established a watermarking scheme based on the
Chinese remainder theorem (CRT), which was deployed
in the DCT domain, and this approach was more effective
against the JPEG compression attacks. Ababneh [12–14]
established a compensated signature embedding (CSE)
framework that could resist against attacks by the JPEG
2000 compression. Nevertheless, the abovementioned
techniques were unable to solve the problems of rotation
and scaling. Huynh-The and team [18] established a dig-
ital image watermarking scheme based on a coefficient
quantization method that intuitively encodes the owner’s
data for each color channel to enhance imperceptibility
and robustness of the concealed data. Wang and Col-
leagues [19] established a strong color image watermark-
ing model based on local quaternion exponent moments
that resisted the desynchronization attacks. Abdelhakim
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and team [20] established a scheme, in which the embed-
ding strength parameters for per-block image watermark-
ing in the DCT domain are optimized. In this approach,
the Bees algorithm was chosen as the optimization model
and the fitness function was employed to exactly fit the
optimization issues. Choi and Pun [21] presented a strong
reversible watermarking model, in which the bit plane
manipulation was deployed to conceal watermark bits in
bit planes that are resistant to attacks. Moosazadeh and
Andalib [22] established a digital image watermarking
approach in YCbCr color space and DCT domain. More-
over, their scheme employed the coefficient exchange for
embedding the watermark bits and also the genetic algo-
rithm was used for choosing the target Y component
coefficients of the host image. Kadu and team [23] pre-
sented a very proficient approach for copyright protection
that was based on a modest and a competent embed-
ding method for DWT-based video watermarking. They
utilized this model in indoor video watermarking applica-
tions. Presently, the notion of feature searching has been
widely employed in the digital watermarking approaches
for enhancing its robust capacity. Feature searching is an
important aspect of modern day sign-board reading sys-
tems. Detection of low-resolution images from weakly
labeled street images can be done using efficient learn-
ing and recognition system as the one developed by Tsai
et al. [24]. The scale invariant feature transform (SIFT) is
one of the widely used feature searching techniques [25].
Furthermore, SIFT can determine some feature points
even under distinct vicious distortions and the water-
mark is embedded in this feature region. Therefore, when
the image gets distorted, it is definitely feasible to deter-
mine the feature regions with embedded information.
Apart from selecting the feature region, identifying a
suitable ambience for embodiment is also an essential
task. Recently, the non-subsampled contourlet transform
(NSCT) is an emerging approach that can be utilized for
watermarking [26]. When compared with DCT, DWT,
and alternate transforms, the NCST has superior capacity
and offers a large amount of coefficients for the water-
marking process. Li [27] established a scheme, in which
they amalgamated the SIFT and NSCT approaches and
they employed the notion of quantization to embed the
watermark, thereby it has a greater capacity. Nevertheless,
while deploying the NSCT approach to embed the infor-
mation, the region surrounding the texture portion gets
distorted by high-frequency information. Consequently,
the resultant watermark turns out to be ruined due to the
high-frequency noises, thus conceding the capture qual-
ity. In this work, a novel work amalgamating the SIFT
and NSCT approaches with the tree split, voting, rotation,
searching, and morphology, thereby providing a splendid
and an efficacious model with high capture quality. In
Section 2, the SIFT and NSCT approaches are illustrated.

Section 3 presents the in-depth details of the proposed
method. The experimental results and conclusion are dis-
cussed in Sections 4 and 5, respectively. Overall, the main
contributions of this paper can be summarized as follows:

• Design, implementation, and evaluation of a novel
robust image watermarking scheme.

• The proposed watermarking scheme first perform a
quadtree decomposition on lowpass subband of
NSCT domain to avoid the relatively high-frequency
texture. Second, the proposed method employ
max-pooling technique to retrieve the fused
watermark from each subregions to enhance the
capture quality and tampering resistance. Third, a
circulation procedure is proposed to offer
rotation-tamper-proof ability. Finally, a morphology
step is included to refine the extracted watermark.

• The proposed watermarking algorithm offers
superior capability, better capture quality, and
tampering resistance, when compared with existing
watermarking approaches.

2 Materials andmethods
Lowe established the SIFT method, in which the notion
is to capture the feature points, not ruined by image pro-
cessing, despite the fact that the image is under a distinct
scale (either zooming or shrinking) [25]. As soon as the
images are processed by means of a Gaussian function,
the blurred version of the image shall be the best fit to
characterize the scaling space. Primarily, to capture the
feature points fruitfully, the difference of the Gaussian and
the pyramid depiction has to be exploited for simulating
the scaling space. Furthermore, in the region, extremes are
utilized as feature candidate points, thereby computing
the stability of these neighboring pixels. Subsequently, the
pixels with low stability are discarded and finally the ori-
entation of these feature points is determined. Moreover,
every feature point offers the information about its coor-
dinate, scale, and orientation, after the SIFT computation
[25]. The non-subsampled contourlet transform includes
two major steps: (1) non-subsampled pyramid (NSP) and
(2) non-subsampled directional filter bank (NSDFB). This
approach is analogous to Laplacian pyramid, with a sub-
band decomposition of L stages as shown in Fig. 1a,
and there is no requirement of downsampling. The NSP
process results in the decomposition of a lowpass sub-
band and L highpass sub-bands; further, NSDFB is applied
to the highpass sub-bands, as shown in Fig. 1b. More-
over, only the lowpass sub-bands are computed in this
work [26]. When compared with other transformed low
frequencies, the NSCT lowpass sub-bands have sev-
eral coefficients that can be employed for watermarking.
Nevertheless, the lowpass sub-bands are usually blurred
images which are processed by a filter. Furthermore, the
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Fig. 1 Non-subsampled contourlet transform. Non-subsampled contourlet transform for (a) three-stage pyramid decomposition. (b) Non-sampled
filter bank

lowpass sub-bands contain smooth low-frequency infor-
mation, in addition to a small number of high-frequency
information. Hence, when the watermarking is performed
in that region, the information gets effortlessly dispersed
by high-frequency noises, during the process of comput-
ing and capturing it.

3 Proposedmodel
After obtaining the feature details from the SIFT pro-
cess, the coordinate of the feature points is chosen to
be the center, thereby creating a rectangular region for
the watermark embedding. The measurement of every
part of the region is assessed by scales. However, if the
assessed region is very petite, so the capacity for the water-
mark embedding is not sufficient. On the other hand, if
the assessed region is very large, the image will undergo
severe tampering. Furthermore, the length and width of
the feature region are fixed as 4s+1 (making use of the
feature point as the center and 2s as the radius). Neverthe-
less, the SIFT approach computes several feature points,
and not all feature points are appropriate for information
embedding. Hence, the feature points need to be filtered.
The following particulars are assumed to be the filtering
constraints: (1) the feature points may overlap with the
neighboring regions, if the value of S is very large; (2) the
image undergoes severe tampering, if the value of S is very
petite; (3) since the value of S varies with the resolution,
a specific range of S is chosen to be the feature region,
which results in missing feature points, during the image
scaling process. Considering the entire scenario, primar-
ily, the threshold D is defined (it varies with the image
resolution)and every feature point is sorted based on its
value. Besides, the values of S greater than the value of
D are discarded and obtain N (the user can choose the
value of N) feature regions with decreasing orders of S.
The image resolution is fixed as m × n and m represents
the longest portion and n indicates the shortest portion
of the image. Based on our examination, there will be
an overlap, when the side length of the radius is greater
than 2m

15 . Therefore, the value of D is fixed to be m
15 ; and if

still there is an overlap, further, the feature region with a
larger scale is chosen. After fixing the feature regions, then
it is processed distinctly using NSCT approach.Moreover,
the lowpass sub-band is embedded and its resolution is
similar to the matching regions.

3.1 Embed phase
3.1.1 Orientation identify
The SIFT outcomes provide the orientation information
of every feature point; however, based on Lowe Lowe
[25], 15% of the feature points might have more than one
orientation. Moreover, in this work, merely a single orien-
tation information is required for positioning; therefore,
the other orientations produced by SIFT approach are
discarded. In order to obtain the orientation information
of the feature regions, the formula (1) is employed for
computing the gradient of feature regions in the x and y
axis t1, t2, f0 as the post-NSCT low pass sub-bands; f0(x, y)
as the intensity value of the matching position; f0(x̄, ȳ)
as the center of that region. Subsequently, the value of θ

is obtained by deploying the formula (2). In the result of
t1, t2, the angle is identical to −t1,−t2; however, the orien-
tation is 180° opposite as in Fig. 2. While making a single
orientation, (θ is on the first/fourth quadrant), when the
result is t1<0, θ+π is the only orientation of φ that
rotates the embedded binary image clockwise towards the
only orientation, and this phenomenon is referred to as
discrete rotation.

Fig. 2 Orientation. Identification of rotation for embedded binary
image
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t1 = ∑

(x,y)∈A
f0(x, y)/(x − x̄)

t2 = ∑

(x,y)∈A
f0(x, y)/(y − ȳ)

A = {(x, y)|√(x − x̄)2 + (y − ȳ)2 <= 2s}
(1)

θ = arctan(t2/t1)

φ =
{

θ + π , if t1 < 0
θ , otherwise

(2)

3.1.2 Embedding the watermark
As stated earlier, in the NSCT approach, the captured
image has blurred texture caused by the relatively high-
frequency components. Therefore, the tree split approach
is employed to safeguard the watermark from being
embedded into the high-frequency region. However, vot-
ing is the technique to capture the feature points, for
achieving better accuracy. Primarily, the edge detection
is performed on the lowpass sub-band of the feature
region for determining the location of the high-frequency
details, by employing the canny edge detector [28]. If the
region has no high-frequency details, then the region is
not segregated. On the other hand, if the region con-
tains the high-frequency information, then the region is
segregated into 2 × 2 blocks and all blocks are com-
pletely analyzed. The analysis is performed by using the
recursive method; it gets accomplished, when the segre-
gated block size is lesser than half size of the minutest
feature region and this process is referred to as “tree
split.” Once the segregation process gets over, the water-
marked image is modified into the similar size as each
block by means of bicubic interpolation. All bits are
embedded into analogous coefficients of f0. The block
size is adjusted, to prevent the watermark from getting
extensively distorted. Hence, the block size should be

identical to the half size of the smallest feature region. The
quantization process is similar to the technique used by
Li [27], due to fact that the coefficient of lowpass sub-
band ranges between 0∼255, and � is the quantization
step. The coefficient can be computed using the formula
255/� (255 is divided by �) to obtain the result. When
the resultant coefficient is a odd number, it is substi-
tuted in sub-formula 1 and when the resultant coefficient
is an even number, it is substituted in sub-formula 0.
In formula (3), f0(x,y) represents the number of coeffi-
cients.

Q(x, y) =
{
0, if k� ≤ f0(x, y) < (k + 1)� for k = 0, 2, ...
1, if k� ≤ f0(x, y) < (k + 1)� for k = 1, 3, ...

(3)

The original coefficient is assigned to the corresponding
number by using the embedded information. The coef-
ficients are represented in the numbers as depicted in
formula (3). Consequently, the coefficient has to be set in
the center of the corresponding quantization. Hence, the
quantization noise should be computed before finding the
deviation in formula (4).

r(x, y) = f0(x, y) − �f0(x, y)/�� ∗ � (4)

Furthermore, the outcome of formulas (3) and (4) is
employed to compute formula (5). wi indicates the bit of
the watermark process. The ultimate result of the coef-
ficient is given by formula (6). Figure 3 illustrates the
embedded diagram.

Fig. 3 Embed diagram. The detailed diagram for the embedded binary image
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u(x, y) =
⎧
⎨

⎩

−r(x, y) + 0.5�, if Q(x, y) = wi
−r(x, y) + 1.5�, if Q(x, y) �= wi, r(x, y) > 0.5�
−r(x, y) − 0.5�, if Q(x, y) �= wi, r(x, y) ≤ 0.5�

(5)

f̀0(x, y) = f0(x, y) + u(x, y) (6)

3.2 Extraction phase
Analogous to the embedding process, primarily, the ori-
entation of the feature region is computed and then the
tree-split approach is applied to the post-NSCT region.
In the tree split process, assuming that if the region is
segregated into n blocks, the formula (3) is applied to
every block for obtaining the corresponding watermark
bit information. Moreover, this process would result in the
capturing of n watermark images. Besides, the segregated
blocks containing no high-frequency information are uti-
lized for voting the matching bit; and lastly, the block
corresponding to the matching bit is found. The standard
of voting determines the captured bit, if 0 is voted, so
the matching bit would be 0; otherwise, it would be 1. If

each block encompasses high-frequency information, so
vote for bits is based on no high-frequency information
with its matching position. Once the watermark image is
obtained, it is scaled to four times larger in size and vot-
ing and scaling are repeated as aforementioned, until it
reaches the top of the tree. The watermark is obtained,
after accomplishing the abovementioned process. Further,
the watermark is rotated anticlockwise, depending on the
orientation of that region, which is termed as discrete
rotation.
Nevertheless, when the image is tampered due to rota-

tion, so the obtained square region shall not be the region
assimilated during the embedding process and it will
result in capturing distortion. Figure 4b depicts the vari-
ation in the embedded information, when the image is
rotated by 50°. It is apparent from the figure that the
captured image of each block is diverse from the segre-
gated portions during the embedding process. In order
to resolve this issue, the image rotation is used to ascer-
tain the best angle. Each unit is assigned with a value of
10°. Figure 4c, d represents the captured position of each
rotated angle. It can be noticed that after the rotation, the

Fig. 4 The example of rotation search. a is the feature region without rotation and the location of embedded watermark. b is the captured feature
region with 50° rotation, in comparison with the feature region without rotation. They do not match with each other. c is the captured feature
region after being re-rotated at 20°, in comparison with the feature region without rotation. They do not match with each other. d is the captured
feature region after being re-rotated at 40°, in comparison with the feature region without rotation. They have a great matching
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Fig. 5 Extraction flow diagram. The flow chart for the extraction procedure to obtain the final watermarked image

capture region and the embedded region look dissimilar.
Moreover, while comparing two captured blocks at a time,
it is apparent that the consistency should be greater than
τ for proceeding with the voting process, which is deter-
mined by a trial-and-error method on a training image.
When the voting process is accomplished, once again

the watermark images are compared. Furthermore, if
the angle is found to be perfect, then the result is
collected from diverse regions. The extraction flow

diagram presenting the procedure to obtain the final
watermarked image is shown in Fig. 5. The error angle
is segregated as shown in Fig. 6b, e. The black portion
indicates the matching and white signifies the unmatched
parts. Based on these characteristics, the morphology
closing for discarding the segregated black portions that
are matched. (Closing indicates the process of dilation
(Eq. 7) which is done first and then process of erosion
(Eq. 8) subsequently.) A represents the region for dilation,

Fig. 6 The examples of using morphology to determine the maximum connected component. a is the morphology diagram. b, c, and d are not
tampered by rotation and are re-rotated at 0°. They are the result after doing morphology closing on the perfect angle of watermark. e, f, and g are
not tampered by rotation but are re-rotated at 10°. They are the result after doing morphology closing on the error angle of watermark. The black
part is the connected component. b Exclusive-or. c dilation. d erosion. e Exclusive-or. f dilation. g erosion
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Fig. 7 Nine test images and a watermark binary image. Test images
images with a 512× 512 resolution, and the watermark embedded as
a 64 × 64 binary image. a Lenna. b aerial. c airfield. d lake. e Goldhill.
f Barbara. g Baboon. h elaine. i peppers. j ntrust

and B signifies the structuring elements. Dilation means
that B is a circle on the pixels around A as contin-
uum, to make A larger. Erosion means the region in
which A deducts B, to make B smaller, as illustrated
in Fig. 6. Figure 6c, d, f, g depicts the result of per-
forming the closing operation on two different angles.
The biggest black region is known as the connected
component and the angle of biggest connected com-
ponent is the accuracy angle. The region is searched
based on the accuracy angle and the subsequent step
is to search the accuracy angle with a deviation of ±
6° for obtaining the best rotated angle. If the devia-
tion is under 1°, when compared with the confirmed
angle, the region between ± 6° is fixed as the accuracy
angle.

D(A,B) =
⋃

b∈B
A + b (7)

E(A,B) =
⋂

b∈−B
A + b (8)

4 Experimental results and discussion
In our experiments, nine images from the USC-
SIPI database (http://sipi.usc.edu/database) are deployed
(Fig. 7). These images have a 512×512 resolution, and the
watermark embedded on it is a 64 × 64 binary image, as
shown in Fig. 7j. The N feature regions for embedding are
obtained, once the SIFT process gets over. In our experi-
ments, the value of N is set as five, which is determined
based on a trial-and-error method on a training image.
Therefore, five feature regions are essential to proceed
with the further process. In case of an overlap between
these regions, then the process is continued until five dis-
joint feature regions are obtained. The value of N is fixed
based on the requirements of the model. Moreover, if the
value of N is larger, then more feature regions would be
essential for information embedding, consequently lead-
ing to a superior chance of capturing watermarks with
enhanced quality. Nevertheless, tampering effect on the
original image would be highly intense, if there are more
regions with embedded information. Additionally, com-
puted peak signal-to-noise ratio (PSNR) dB values would
be lower.
The proposed method is compared with Li [27] and

Patra [7]. Moreover, based on the following three major
criteria, the performance of the proposed algorithm
can be found: (1) the perfection of watermark under
diverse tampering conditions (i.e., the robustness); (2) the
changeability of the information embedded in the image
(PSNR); (3) the amount of capacity offered by an image.
After performing the robust experiments, the normalized
Hamming similarity (NHS) is computed. The NHS

http://sipi.usc.edu/database
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formula is depicted in (9). w(i) and w(i) correspond-
ingly illustrate the original watermark and post-captured
watermark; M represents the total amount of bits in the
watermark image; ⊕ signifies the exclusive-or operation.

NHS = 1 − 1
M

{M−1∑

i=0
[w(i) ⊕ w(i)]

}

∗ 100 (9)

In order to tamper the image, the following values are
set: JPEG quality factor 10∼ 90%, rotation angle 10° ∼90°,
scaling ×0.65 to ×1.75, median filter 3 × 3 mask ∼ 9 × 9
mask, shearing X and Y are 1∼ 10%. Therefore, for cap-
turing the watermark from the N feature region and also
for accomplishing the NHS computation, select the largest
NHS value to beW, as illustrated in (10).

W = max(NHS1,NHS2, ..., NHSN ) (10)

For instance, considering Li’s [27] approach, it can
be observed that the lowpass sub-bands of NSCT are
embedded directly. Hence, the captured watermark would
produce blurred texture caused by the relatively high-
frequency components, as a result of diverse texture
details. In Fig. 8, the subplots 8a and b portrays the Lenna

image’s extracted watermark of Li’s [27] approach and our
proposed method, respectively. Furthermore, in our pro-
posed method, the tree split algorithm is employed to find
out the regions with high-frequency information and such
regions are not embedded. Additionally, the voting mech-
anism is deployed, in order to preserve the perfect nature
of the watermark, thereby resolving the high-frequency
problem.
With the purpose of resisting the image tampering, such

as rotation and deformation, the SIFT-produced orienta-
tions are not unique. The proposed method provides a
unique orientation depending on their content, thereby
it can be positioned perfectly. Moreover, the notion of
rotation searching and morphology is employed to deter-
mine the exact capture angle. From the computations
done so far, it is apparent that our method is superior
in terms of capture quality than Li’s [27] approach, and
it can resist all forms of tampering. It can be noticed
from Fig. 9 that the blue line specifies our W under
diverse tampering; red line signifies the W of Li’s [27]
approach; black line depicts the W of Patra’s [7] model.
Furthermore, it can be witnessed that, for the tamper-
ing with diverse JPEG quality factor,the proposed method
provides superior results than that of Li [27], and the

Fig. 8 The results of watermarking. The results of watermark extracted by a Li’s [27] method (Lenna). b Proposed method (Lenna). c Li’s [27] method
(peppers). d Proposed method (peppers)
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Fig. 9 The maximum NHS comparison among various attacks for Lenna image. Results for JPEG compression, rotation attacks, scaling attacks,
median filter, and Y and X shearing percentages of the proposed approach in comparison with Li [27], Patra [7], and Duman [11]. a JPEG
compressiion. b rotation attacks. c scaling attacks. dmedian filter. e shearing Y %. f shearing X %

maximum W is greater than 0.885. When compared
with Patra’s [7] model, predominantly, while process-
ing the JPEG with quality factor greater than 50, the
proposed method underperforms. On the other hand,
when the quality factor is lesser than 50, the proposed
method is comparatively superior than that of Patra’s [7]
model. Further, since the notion of SIFT feature search-
ing is deployed in the proposed method, it is supe-
rior than that of Patra’s [7], while resisting rotation and
deformation.
Considering the rotation experiment, even though cer-

tain angles of the proposed method are lower than that of
Li’s [27] approach, the average angle W is fairly superior

to that of Li’s [27] model. While taking into account about
the scaling experiment, as the feature scale of Li’s [27]
model is chosen from the fixating regions, if the scaling
factor is zoomed, it is dubious to capture feature regions
obtained from productive embedding. In the median filter
experiment, due to the watermark capture failure, W of
the proposed method is superior to Li’s [27] model for
diverse masks. While comparing our proposed method
for the Lenna experimental map with Patra’s [7] model,
it can be seen that the proposed method yields better
results. Moreover, apart from comparing the value of W,
the change of capacity and embedding of Patra [7] segre-
gate the image into blocks and one block was made as a
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unit for embedding the watermark. The size of the block
was 8 × 8; therefore, Patra [7] was able to embed 4096
bits into a 512 × 512 image. However, more fixing and
modifications of the image happen in Patra’s [7] approach.
In our proposed method, an amalgamation of the SIFT
and NSCT approaches are utilized, in which most of the
image details are unchanged and only a certain region
of the image is modified. Furthermore, all coefficients in
a region are permitted to be embedded. Additionally, as
portrayed in Table 1, after the information embedding, the
proposed method’s watermarked image has almost 1.8 dB
greater PSNR than Patra’s [7], and as displayed in Table 2,
the proposed method’s capacity can reach 17,689 bits (in
the maximum feature region with a size of 133×133). The
detailed results of the other experiments are illustrated in
Tables 3, 4, 5, 6, 7, and 8.
It can be clearly seen from the JPEG experiment in

Table 3 that the value of W for the pepper image, with
JPEG quality 40, is lower than Li’s [27] approach. Besides,
there is no disruption due to high-frequency noises, and
the watermark captured by the proposed method is more
pleasant for the human vision. Furthermore, as displayed
in Fig. 8c, d these are the captured watermark images of
JPEG quality 40 tampered peppers , obtained by employ-
ing Li’s [27] and the proposed method, respectively. It is
apparent from the rotation experiment in Table 4 that all
the output images of the proposed method have better
angle averages W than the other approaches. Neverthe-
less, it can be noticed from the scaling experiment in
Table 5, when there is an progressive increase in the image
scaling, the value of W computed by Li’s [27] model,
would drop down steadily. On the other hand, the pro-
posed method is very robust to scaling. While considering
the case of the image Elaine, even though the W aver-
age of the proposed method is mediocre under diverse
scaling conditions, the W average of Li’s [27] becomes
slowly declining, when there is ×1.5 scaling, and the
deterioration is faster for larger scaling values. Hence-
forth, in general, the proposed method is comparatively
superior than Li’s [27] model for the scaling experiment.

Table 1 Image quality evaluation based on PSNR

Image Proposed Li [27] Patra [7] Duman [11]

Lenna 42.8048 41.0184 41.0102 43.2878

Aerial 48.3773 42.6563 39.7875 45.2514

Airfield 44.5894 42.0151 40.3889 44.3458

Lake 42.5213 41.5496 40.8763 45.2097

Goldhill 45.9514 41.8544 42.5871 44.9961

Barbara 42.9446 40.8478 41.3454 44.3548

Baboon 44.9735 43.5218 41.4154 44.3998

Elaine 45.9933 41.6803 41.0367 44.1249

Peppers 41.7276 40.4359 40.1475 44.2377

Table 2 Image capacity evaluation

Image Proposed Li [27] Patra [7] Duman [11]

Lenna 17,689 18,769 4096 1024

Aerial 6561 14,161 4096 1024

Airfield 18,769 19,881 4096 1024

Lake 18,769 17,689 4096 1024

Goldhill 15,625 16,641 4096 1024

Barbara 16,641 21,609 4096 1024

Baboon 17,689 17,689 4096 1024

Elaine 10,201 13,225 4096 1024

Peppers 18,769 19,321 4096 1024

It is apparent from the results of the median experi-
ment shown in Table 6, although the W values are infe-
rior for Goldhill, Barbara, and pepper images, but the
results are extremely superior for the other six images.
Moreover, the shearing results of the proposed method
are identical to the other approaches. Generally, in case
of non-deforming tampering processes like zipping and
blurring, the SIFT approach offers better accuracy in
capturing the feature points and the proposed model
provides superior capture quality. Even though there are
few losses in the certain feature points due tampering
effects like deforming, the watermark can be captured
from the other feature regions that are stable. Finally,
in the case of majority of the image tampering pro-
cesses, the proposed approach preserves a great robust
capability.

5 Conclusions
Earlier, the concept of deformation was a very big issue
for watermarking technologies. Nevertheless, this issue
was addressed after the assimilation of feature searching
into the watermarking models. Moreover, the notion of
feature searching is inadequate to sustain deformation;
enhancing the capacity of the watermarking scheme is
the other fact that requires consideration. Consequently,
NSCT approach offers greater capacity for further pro-
gression in the watermarking technologies. The experi-
mental results have proven that the NSCT approach yields
superior capacity, in comparison with other DCT-based
watermarking schemes, even though the amalgamation
of both SIFT and NSCT was explored by Li [27], which
offers a high capacity and robust results. However, while
considering the quality of the captured information, there
are further challenges like blurred texture caused by the
relatively high-frequency components. Therefore, in this
work, the proposed method includes the concepts of tree
split, voting, rotation searching, and morphology, and this
resolves the issues caused by high-frequency noises in
NSCT computing, thereby greatly improving the image
quality.
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Table 3 Normalized Hamming similarity results for JPEG attack

Image Scheme JPEG 10 JPEG 20 JPEG 30 JPEG 40 JPEG 50 JPEG 60 JPEG 70 JPEG 80 JPEG 90

Lenna Proposed 0.7400 0.8379 0.8340 0.8204 0.8185 0.8421 0.8492 0.8482 0.8194

Li [27] 0.6528 0.7261 0.7455 0.7652 0.7594 0.7561 0.7555 0.7548 0.7565

Patra [7] 0.5886 0.6792 0.7114 0.7813 0.8274 0.8455 0.8828 0.9360 0.9539

Duman [11] 0.5098 0.5361 0.5811 0.5918 0.6904 0.7441 0.8779 0.9238 0.9336

Aerial Proposed 0.6447 0.6663 0.6185 0.7006 0.7103 0.6944 0.7151 0.6844 0.7161

Li [27] 0.5941 0.6812 0.6295 0.6615 0.6360 0.6437 0.6673 0.6263 0.6370

Patra [7] 0.6003 0.7866 0.9050 0.8057 0.8420 0.9224 0.8799 0.9465 0.9763

Duman [11] 0.4854 0.5713 0.6182 0.6230 0.7188 0.7012 0.7021 0.7285 0.7881

Airfield Proposed 0.6389 0.7316 0.7623 0.7590 0.7413 0.7762 0.7603 0.7716 0.7442

Li [27] 0.5791 0.6489 0.6693 0.6818 0.6605 0.6944 0.6647 0.6799 0.6793

Patra [7] 0.5835 0.7019 0.7153 0.7937 0.8406 0.8577 0.8948 0.9297 0.9431

Duman [11] 0.5518 0.5605 0.6543 0.6885 0.6797 0.7175 0.7324 0.7832 0.8779

Lake Proposed 0.7545 0.7891 0.7839 0.8204 0.8282 0.7791 0.8353 0.8482 0.8330

Li [27] 0.6615 0.6922 0.7384 0.7384 0.7542 0.7729 0.7261 0.7529 0.7700

Patra [7] 0.6033 0.6746 0.6970 0.7742 0.8274 0.8479 0.8914 0.9299 0.9534

Duman [11] 0.5049 0.5400 0.6104 0.6348 0.6787 0.7109 0.7930 0.8379 0.8896

Goldhill Proposed 0.6460 0.7649 0.7519 0.7536 0.7781 0.7917 0.8026 0.8101 0.7910

Li [27] 0.6269 0.6999 0.6970 0.6977 0.7087 0.6935 0.7090 0.6977 0.7019

Patra [7] 0.6296 0.6929 0.6750 0.8022 0.8293 0.8540 0.8901 0.9351 0.9509

Duman [11] 0.5635 0.5801 0.6465 0.6563 0.7178 0.7295 0.7754 0.8203 0.8760

Barbara Proposed 0.6980 0.7313 0.7829 0.7855 0.7584 0.7051 0.7581 0.7972 0.7910

Li [27] 0.6967 0.7322 0.7487 0.7490 0.7558 0.7578 0.7561 0.7652 0.7584

Patra [7] 0.5591 0.6497 0.6841 0.7551 0.8174 0.8457 0.8926 0.9316 0.9543

Duman [11] 0.4961 0.5195 0.5996 0.6289 0.6006 0.6621 0.7100 0.8223 0.9111

Baboon Proposed 0.5995 0.7426 0.7468 0.7674 0.7539 0.7578 0.7716 0.7571 0.7820

Li [27] 0.5778 0.6263 0.6492 0.6579 0.6495 0.6531 0.6512 0.6537 0.6460

Patra [7] 0.6038 0.7222 0.7200 0.8159 0.8643 0.8840 0.9146 0.9463 0.9585

Duman [11] 0.5830 0.6123 0.6533 0.6631 0.6514 0.6934 0.7402 0.7549 0.7432

Elaine Proposed 0.5478 0.7235 0.7293 0.6767 0.7245 0.7261 0.7003 0.7151 0.7161

Li [27] 0.6660 0.6851 0.7364 0.7329 0.7506 0.7590 0.7516 0.7578 0.7565

Patra [7] 0.5957 0.6770 0.6711 0.7800 0.8440 0.8594 0.9041 0.9414 0.9580

Duman [11] 0.4922 0.5283 0.5996 0.6816 0.7676 0.7920 0.8701 0.9189 0.9424

Peppers Proposed 0.7016 0.7464 0.7435 0.7800 0.7710 0.7972 0.7943 0.7978 0.8017

Li [27] 0.6996 0.7768 0.7548 0.7875 0.7623 0.7891 0.7920 0.7920 0.8010

Patra [7] 0.5886 0.6792 0.7114 0.7813 0.8274 0.8455 0.8828 0.9360 0.9539

Duman [11] 0.4541 0.4932 0.5566 0.5791 0.6914 0.7432 0.8027 0.8896 0.9453
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Table 4 Normalized Hamming similarity results for rotation attack

Image Scheme 10° 20° 30° 0° 50° 60° 70° 80° 90°

Lenna Proposed 0.7875 0.7733 0.7464 0.7503 0.7258 0.6954 0.7051 0.7213 0.7910

Li [27] 0.7422 0.7261 0.6663 0.7145 0.6757 0.6466 0.7158 0.7132 0.7225

Patra [7] 0.6328 0.6331 0.6270 0.6399 0.6458 0.6360 0.6199 0.5925 0.7012

Duman [11] 0.5557 0.5625 0.5313 0.5820 0.5742 0.5596 0.5293 0.5059 0.4980

Aerial Proposed 0.6776 0.6218 0.7083 0.7158 0.6240 0.6970 0.6305 0.7245 0.7090

Li [27] 0.6205 0.6076 0.6366 0.6308 0.5969 0.6189 0.6350 0.6373 0.6205

Patra [7] 0.6287 0.6460 0.6682 0.6763 0.6812 0.6736 0.6438 0.6108 0.6980

Duman [11] 0.5332 0.5635 0.5752 0.5635 0.5908 0.5576 0.5283 0.5176 0.4951

Airfield Proposed 0.7703 0.6037 0.7474 0.7891 0.7258 0.5975 0.7290 0.7758 0.7235

Li [27] 0.6683 0.6424 0.6360 0.6240 0.6324 0.6689 0.7238 0.7028 0.6405

Patra [7] 0.6328 0.6443 0.6677 0.6692 0.6675 0.6545 0.6484 0.6013 0.6965

Duman [11] 0.5137 0.5410 0.5410 0.5615 0.5586 0.5918 0.5381 0.5127 0.4883

Lake Proposed 0.7345 0.7287 0.6818 0.6815 0.6818 0.6460 0.7187 0.7271 0.7678

Li [27] 0.7361 0.7106 0.7261 0.7277 0.6967 0.7070 0.6912 0.7006 0.6970

Patra [7] 0.6375 0.6641 0.6782 0.6733 0.6626 0.6575 0.6401 0.6138 0.7014

Duman [11] 0.5088 0.5488 0.5820 0.5439 0.5684 0.5469 0.5293 0.5020 0.4639

Goldhill Proposed 0.6460 0.7649 0.7519 0.7536 0.7781 0.7917 0.8026 0.8101 0.7910

Li [27] 0.6809 0.6757 0.6764 0.6731 0.7087 0.6802 0.7109 0.7154 0.6783

Patra [7] 0.6257 0.6340 0.6438 0.6484 0.6558 0.6387 0.6245 0.5850 0.7017

Duman [11] 0.5635 0.5801 0.6465 0.6563 0.7178 0.7295 0.7754 0.8203 0.8760

Barbara Proposed 0.7839 0.7513 0.7897 0.7939 0.7494 0.7235 0.7093 0.6786 0.7342

Li [27] 0.7332 0.7216 0.7216 0.7006 0.7099 0.7432 0.7380 0.7222 0.7177

Patra [7] 0.6211 0.6279 0.6462 0.6482 0.6470 0.6436 0.6206 0.5940 0.7014

Duman [11] 0.5273 0.5664 0.5635 0.5625 0.5684 0.5596 0.5244 0.5342 0.5049

Baboon Proposed 0.7497 0.7164 0.7422 0.6948 0.7345 0.7048 0.7303 0.7429 0.6818

Li [27] 0.6550 0.7090 0.6305 0.6463 0.6428 0.6599 0.6344 0.6353 0.6483

Patra [7] 0.5984 0.6316 0.6370 0.6431 0.6436 0.6287 0.6152 0.5879 0.7014

Duman [11] 0.5195 0.5498 0.5488 0.5576 0.5947 0.5811 0.5684 0.5156 0.5078

Elaine Proposed 0.6909 0.6873 0.6974 0.6043 0.6970 0.6983 0.6308 0.7196 0.6954

Li [27] 0.7380 0.7429 0.7300 0.7397 0.7251 0.7319 0.7290 0.7364 0.7300

Patra [7] 0.6272 0.6313 0.6567 0.6655 0.6621 0.6533 0.6428 0.6069 0.7017

Duman [11] 0.5439 0.5537 0.5400 0.5488 0.5889 0.5557 0.5508 0.5488 0.4883

Peppers Proposed 0.8714 0.6944 0.6893 0.7410 0.7442 0.7300 0.6402 0.8227 0.8411

Li [27] 0.7248 0.7248 0.7222 0.7326 0.7410 0.7074 0.7645 0.7232 0.7468

Patra [7] 0.6321 0.6460 0.6509 0.6448 0.6487 0.6536 0.6416 0.6130 0.6995

Duman [11] 0.5078 0.5293 0.5850 0.5410 0.5859 0.5811 0.5430 0.5186 0.4775
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Table 5 Normalized Hamming similarity results for scaling attack

Image Scheme ×0.65 ×0.75 ×0.85 ×0.95 ×1.05 ×1.15 ×1.25 ×1.35 ×1.45 ×1.55 ×1.65 ×1.75

Lenna Proposed 0.7506 0.8214 0.8353 0.8672 0.8530 0.8230 0.8175 0.7881 0.7962 0.8046 0.7833 0.7752

Li [27] 0.6970 0.6864 0.7264 0.7232 0.6970 0.7510 0.7406 0.7468 0.7280 0.7339 0.6541 0.6557

Patra [7] 0.6089 0.6089 0.6072 0.6104 0.6399 0.6433 0.6523 0.6563 0.6572 0.6570 0.6519 0.6653

Duman [11] 0.4795 0.5137 0.5059 0.5156 0.5205 0.4883 0.5449 0.4912 0.5010 0.4834 0.4912 0.4404

Aerial Proposed 0.6967 0.7135 0.6860 0.6621 0.6877 0.7216 0.6902 0.6673 0.6663 0.6828 0.6657 0.6990

Li [27] 0.6059 0.6567 0.6890 0.6302 0.6557 0.6405 0.6525 0.6066 0.5940 0.6289 0.6043 0.5992

Patra [7] 0.5828 0.5820 0.5674 0.6028 0.5991 0.6008 0.6033 0.5959 0.5896 0.5891 0.5889 0.5928

Duman [11] 0.4932 0.5137 0.4912 0.4922 0.4766 0.4912 0.4727 0.4902 0.4883 0.4863 0.4883 0.4932

Airfield Proposed 0.6776 0.6970 0.6370 0.7661 0.7309 0.7829 0.7862 0.7116 0.6815 0.8033 0.6586 0.7539

Li [27] 0.6043 0.6286 0.6470 0.6609 0.7390 0.7129 0.6663 0.6873 0.6512 0.6583 0.6537 0.6531

Patra [7] 0.5872 0.6001 0.5996 0.6064 0.6084 0.6072 0.6055 0.6052 0.5977 0.6025 0.6035 0.6067

Duman [11] 0.5254 0.5039 0.5068 0.4912 0.5010 0.4834 0.5127 0.4971 0.5313 0.5234 0.4980 0.5029

Lake Proposed 0.7200 0.7794 0.7694 0.8068 0.8524 0.8359 0.8049 0.7991 0.8230 0.8072 0.7807 0.8395

Li [27] 0.7158 0.7248 0.6928 0.7487 0.7468 0.6731 0.7222 0.6893 0.6906 0.6289 0.6124 0.6079

Patra [7] 0.6094 0.6287 0.6218 0.6211 0.6338 0.6353 0.6523 0.6492 0.6257 0.6416 0.6475 0.6433

Duman [11] 0.5273 0.5117 0.5039 0.5078 0.4854 0.5020 0.5068 0.5146 0.5000 0.5205 0.4951 0.5166

Goldhill Proposed 0.6712 0.7271 0.7387 0.7846 0.7862 0.7481 0.7697 0.7784 0.6851 0.6941 0.7122 0.7196

Li [27] 0.6660 0.6702 0.7090 0.7190 0.7154 0.6993 0.6886 0.6848 0.6796 0.6660 0.6457 0.5966

Patra [7] 0.5667 0.5891 0.5991 0.5876 0.6177 0.6162 0.6252 0.6179 0.6116 0.6172 0.6162 0.6165

Duman [11] 0.5137 0.5146 0.5225 0.5352 0.4902 0.4805 0.5127 0.5186 0.4746 0.4971 0.5020 0.5166

Barbara Proposed 0.7099 0.7222 0.8088 0.7332 0.8288 0.8023 0.7536 0.7742 0.7661 0.7629 0.7358 0.7981

Li [27] 0.7232 0.7106 0.7251 0.7355 0.7264 0.7339 0.7322 0.7274 0.7019 0.6838 0.6618 0.6831

Patra [7] 0.5935 0.5806 0.5959 0.6030 0.6125 0.6206 0.6350 0.6206 0.6157 0.6233 0.6326 0.6294

Duman [11] 0.4727 0.4922 0.5146 0.4902 0.4863 0.4854 0.4971 0.5127 0.4756 0.4844 0.5088 0.4941

Baboon Proposed 0.7074 0.7464 0.7784 0.6634 0.7865 0.7742 0.7745 0.7952 0.7639 0.7494 0.7500 0.7458

Li [27] 0.5817 0.6224 0.6008 0.6495 0.6253 0.5940 0.6001 0.6376 0.6147 0.5904 0.5662 0.5833

Patra [7] 0.5444 0.5405 0.5627 0.5676 0.5808 0.5669 0.5803 0.5757 0.5623 0.5769 0.5596 0.5754

Duman [11] 0.5098 0.4990 0.5127 0.5068 0.5098 0.4922 0.5449 0.4756 0.4912 0.5137 0.4912 0.4717

Elaine Proposed 0.6793 0.7051 0.7484 0.6738 0.6838 0.6437 0.7691 0.7064 0.7006 0.6928 0.7448 0.7019

Li [27] 0.6654 0.6812 0.7332 0.7523 0.7477 0.7345 0.7455 0.7645 0.7474 0.7513 0.7506 0.5921

Patra [7] 0.5903 0.5891 0.6045 0.6074 0.6208 0.6211 0.6289 0.6331 0.6216 0.6362 0.6321 0.6338

Duman [11] 0.4775 0.4824 0.4893 0.5078 0.4834 0.5244 0.56225 0.5186 0.4961 0.4824 0.4854 0.5000

Peppers Proposed 0.8224 0.7926 0.8630 0.8876 0.7145 0.8472 0.8708 0.8669 0.8456 0.8718 0.8792 0.7455

Li [27] 0.6809 0.7054 0.7119 0.7720 0.7500 0.7461 0.7167 0.7148 0.7161 0.7174 0.7135 0.7099

Patra [7] 0.6101 0.6011 0.6030 0.6260 0.6270 0.6169 0.6365 0.6372 0.6255 0.6296 0.6189 0.6367

Duman [11] 0.4961 0.4756 0.5029 0.4932 0.5225 0.5391 0.5332 0.5254 0.4961 0.5205 0.5059 0.5391
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Table 6 Normalized Hamming similarity results for median filter attack

Image Scheme Mask 3 × 3 Mask 5 × 5 Mask 7 × 7 Mask 9 × 9

Lenna Proposed 0.8579 0.7959 0.7729 0.7529

Li [27] 0.7681 0.7448 0.7245 0.6999

Patra [7] 0.8137 0.7236 0.6836 0.6563

Duman [11] 0.6299 0.5283 0.5723 0.4834

Aerial Proposed 0.7332 0.7196 0.7122 0.6696

Li [27] 0.6560 0.6105 0.5950 0.6244

Patra [7] 0.7339 0.6494 0.6104 0.5967

Duman [11] 0.6084 0.5557 0.5146 0.5000

Airfield Proposed 0.7141 0.7393 0.6986 0.6395

Li [27] 0.6725 0.6418 0.6334 0.5982

Patra [7] 0.7451 0.6702 0.6323 0.6240

Duman [11] 0.5322 0.5039 0.5088 0.4883

Lake Proposed 0.8269 0.8440 0.7620 0.7258

Li [27] 0.7607 0.7487 0.7048 0.6977

Patra [7] 0.7651 0.6763 0.6460 0.6296

Duman [11] 0.4883 0.4590 0.5195 0.5449

Goldhill Proposed 0.7817 0.7455 0.6983 0.6531

Li [27] 0.7041 0.6838 0.6977 0.6983

Patra [7] 0.7815 0.6934 0.6565 0.6313

Duman [11] 0.5967 0.5449 0.5518 0.5010

Barbara Proposed 0.7813 0.7710 0.7329 0.6860

Li [27] 0.7552 0.7455 0.7284 0.7109

Patra [7] 0.7695 0.6875 0.6477 0.6284

Duman [11] 0.6152 0.5205 0.5068 0.5254

Baboon Proposed 0.7590 0.7758 0.7116 0.6130

Li [27] 0.6457 0.6250 0.6118 0.6098

Patra [7] 0.6765 0.6094 0.5894 0.5691

Duman [11] 0.5234 0.5215 0.5205 0.5469

Elaine Proposed 0.6718 0.6570 0.6557 0.7209

Li [27] 0.7464 0.7016 0.6815 0.6463

Patra [7] 0.7917 0.7200 0.6736 0.6406

Duman [11] 0.5029 0.5000 0.5547 0.5039

Peppers Proposed 0.8023 0.8207 0.8401 0.8130

Li [27] 0.7904 0.7859 0.7642 0.7452

Patra [7] 0.8025 0.7141 0.6726 0.6416

Duman [11] 0.6143 0.4219 0.4697 0.4951
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Table 7 Normalized Hamming similarity results for Y shearing % attack

Image Scheme 1% 2% 3% 4% 5% 6% 7% % 9% 10%

Lenna Proposed 0.8075 0.7658 0.7613 0.7661 0.7225 0.7539 0.7406 0.7187 0.7171 0.7464

Li [27] 0.7603 0.7477 0.7426 0.7435 0.7429 0.7380 0.7284 0.7523 0.7416 0.7358

Patra [7] 0.7197 0.7314 0.7173 0.7073 0.7244 0.7104 0.7007 0.7109 0.7073 0.6985

Duman [11] 0.4453 0.4580 0.4570 0.4893 0.5293 0.5010 0.5078 0.5166 0.5273 0.5264

Aerial Proposed 0.6441 0.5940 0.6612 0.6660 0.6525 0.6502 0.6521 0.6589 0.6034 0.6896

Li [27] 0.6696 0.6715 0.6738 0.6760 0.6841 0.6818 0.6515 0.6618 0.6715 0.6657

Patra [7] 0.6382 0.6399 0.6477 0.6335 0.6511 0.6494 0.6445 0.6543 0.6523 0.6482

Duman [11] 0.4609 0.5049 0.4932 0.4697 0.5234 0.5430 0.4912 0.5029 0.5186 0.5313

Airfield Proposed 0.6751 0.6967 0.7403 0.6037 0.7093 0.6970 0.6143 0.6082 0.7329 0.6899

Li [27] 0.6718 0.6873 0.6899 0.6541 0.6699 0.6596 0.6709 0.6667 0.6651 0.6686

Patra [7] 0.6416 0.6658 0.6516 0.6511 0.6614 0.6516 0.6663 0.6714 0.6558 0.6611

Duman [11] 0.4932 0.5039 0.4775 0.5225 0.5420 0.5000 0.5195 0.5010 0.5391 0.5059

Lake Proposed 0.7620 0.7322 0.7668 0.7405 0.7087 0.7374 0.6915 0.6864 0.5849 0.6932

Li [27] 0.7432 0.7519 0.7390 0.7322 0.7358 0.7319 0.7374 0.7229 0.7342 0.7264

Patra [7] 0.6853 0.6929 0.6841 0.6804 0.6882 0.6726 0.6704 0.6853 0.6777 0.6780

Duman [11] 0.5020 0.4639 0.4756 0.5176 0.4766 0.4990 0.5088 0.5205 0.5000 0.5186

Goldhill Proposed 0.7251 0.6754 0.6944 0.6537 0.6899 0.6518 0.6495 0.6818 0.6802 0.6143

Li [27] 0.6767 0.7099 0.7022 0.6893 0.6822 0.7035 0.7057 0.7016 0.6660 0.6983

Patra [7] 0.6448 0.6580 0.6428 0.6467 0.6328 0.6406 0.6372 0.6587 0.6340 0.6445

Duman [11] 0.4668 0.4814 0.4531 0.4941 0.5303 0.5156 0.5156 0.5146 0.5059 0.5156

Barbara Proposed 0.7930 0.8065 0.7852 0.7297 0.7368 0.6877 0.7600 0.7164 0.7064 0.7339

Li [27] 0.7671 0.7626 0.7655 0.7545 0.7523 0.7513 0.7552 0.7445 0.7419 0.7397

Patra [7] 0.6748 0.6777 0.6709 0.6750 0.6772 0.6750 0.6738 0.6650 0.6685 0.6614

Duman [11] 0.4824 0.4795 0.4688 0.4746 0.4980 0.5049 0.5127 0.5332 0.4922 0.5400

Baboon Proposed 0.7484 0.7500 0.7464 0.7158 0.6909 0.7442 0.6738 0.7374 0.7087 0.6024

Li [27] 0.6392 0.6450 0.6499 0.6499 0.6463 0.6525 0.6486 0.6508 0.6489 0.6528

Patra [7] 0.6274 0.6482 0.6406 0.6372 0.6331 0.6497 0.6252 0.6587 0.6338 0.6431

Duman [11] 0.4961 0.4609 0.4883 0.5010 0.5166 0.4902 0.5000 0.5098 0.5088 0.5313

Elaine Proposed 0.7348 0.7235 0.7203 0.6776 0.7048 0.7332 0.6586 0.6783 0.6576 0.6764

Li [27] 0.7506 0.7552 0.7545 0.7536 0.7558 0.7561 0.7536 0.7377 0.7432 0.7749

Patra [7] 0.6675 0.6829 0.6655 0.6685 0.6721 0.6804 0.6689 0.6721 0.6577 0.6670

Duman [11] 0.5020 0.4727 0.4482 0.4600 0.4785 0.4824 0.5068 0.4746 0.5391 0.5322

Peppers Proposed 0.9028 0.8589 0.7807 0.8253 0.8075 0.7571 0.7623 0.7410 0.7158 0.7274

Li [27] 0.8030 0.7787 0.7713 0.7258 0.7248 0.7235 0.7122 0.7193 0.7826 0.7668

Patra [7] 0.6726 0.6980 0.6763 0.6755 0.6853 0.6838 0.6716 0.6792 0.6824 0.6699

Duman [11] 0.4941 0.4932 0.4912 0.4902 0.5088 0.5000 0.4912 0.5283 0.5049 0.5000
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Table 8 Normalized Hamming similarity results for X shearing % attack

Image Scheme 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Lenna Proposed 0.8482 0.8127 0.8566 0.8117 0.8075 0.7968 0.7923 0.7519 0.7380 0.7820

Li [27] 0.7348 0.7503 0.7432 0.7510 0.7422 0.7045 0.7355 0.7251 0.7103 0.7067

Patra [7] 0.6641 0.6904 0.6553 0.6504 0.6765 0.6511 0.6494 0.6414 0.6382 0.6379

Duman [11] 0.6758 0.6406 0.5498 0.4805 0.5488 0.5889 0.5234 0.5977 0.5508 0.6602

Aerial Proposed 0.6670 0.6902 0.6851 0.6615 0.6605 0.6647 0.6760 0.6799 0.6912 0.6757

Li [27] 0.7167 0.6321 0.6318 0.6783 0.6854 0.6292 0.6925 0.6857 0.6718 0.6728

Patra [7] 0.6492 0.6660 0.6467 0.6494 0.6572 0.6387 0.6455 0.6501 0.6411 0.6345

Duman [11] 0.5840 0.5488 0.4863 0.4863 0.5303 0.5020 0.5508 0.5029 0.4990 0.5498

Airfield Proposed 0.7542 0.7584 0.7229 0.7057 0.6457 0.6347 0.5727 0.6809 0.7154 0.6402

Li [27] 0.6718 0.6873 0.6899 0.6541 0.6699 0.6596 0.6709 0.6667 0.6651 0.6686

Patra [7] 0.6406 0.6599 0.6470 0.6418 0.6636 0.6501 0.6431 0.6509 0.6414 0.6379

Duman [11] 0.6318 0.5225 0.4863 0.5791 0.5576 0.5244 0.5430 0.5078 0.5215 0.5508

Lake Proposed 0.8004 0.8388 0.7555 0.8437 0.7852 0.8194 0.7339 0.7736 0.7287 0.7161

Li [27] 0.7513 0.7558 0.7603 0.7494 0.7293 0.7313 0.7274 0.7293 0.7258 0.7145

Patra [7] 0.6846 0.6953 0.6838 0.6821 0.6851 0.6765 0.6643 0.6755 0.6660 0.6545

Duman [11] 0.6279 0.5684 0.5020 0.5693 0.5977 0.4814 0.5938 0.5283 0.4932 0.5762

Goldhill Proposed 0.7703 0.8043 0.7988 0.7804 0.7875 0.6815 0.6047 0.5998 0.6315 0.6298

Li [27] 0.6938 0.7067 0.7064 0.7057 0.6764 0.6986 0.6812 0.7070 0.6880 0.7051

Patra [7] 0.6931 0.7161 0.6729 0.6853 0.6841 0.6841 0.6804 0.6692 0.6777 0.6633

Duman [11] 0.6123 0.6768 0.5205 0.4795 0.5410 0.5264 0.5234 0.5928 0.5039 0.5801

Barbara Proposed 0.7636 0.7426 0.6961 0.7096 0.7445 0.7723 0.5756 0.6340 0.5730 0.5601

Li [27] 0.7368 0.7497 0.7335 0.7358 0.7371 0.7277 0.7406 0.7355 0.7309 0.7422

Patra [7] 0.6538 0.6597 0.6453 0.6460 0.6628 0.6326 0.6418 0.6389 0.6411 0.6160

Duman [11] 0.5957 0.6055 0.5361 0.4971 0.5830 0.4912 0.6250 0.5664 0.5781 0.5586

Baboon Proposed 0.7277 0.7613 0.7623 0.7028 0.6683 0.7067 0.7765 0.6260 0.6505 0.6744

Li [27] 0.6557 0.6541 0.6521 0.6486 0.6421 0.6402 0.6402 0.6466 0.6399 0.6318

Patra [7] 0.6057 0.6365 0.6060 0.6074 0.6326 0.6089 0.6116 0.6118 0.6152 0.5999

Duman [11] 0.5752 0.5713 0.5176 0.5254 0.5215 0.4922 0.5146 0.5127 0.5322 0.5664

Elaine Proposed 0.7125 0.6638 0.6883 0.6389 0.7258 0.6634 0.6676 0.6741 0.6434 0.6621

Li [27] 0.7477 0.7474 0.7500 0.7452 0.7345 0.7345 0.7400 0.7406 0.7284 0.7393

Patra [7] 0.6487 0.6567 0.6406 0.6482 0.6677 0.6306 0.6448 0.6458 0.6321 0.6274

Duman [11] 0.6797 0.4629 0.5781 0.5518 0.5039 0.5762 0.5342 0.5469 0.5137 0.5762

Peppers Proposed 0.8773 0.7836 0.7665 0.7571 0.7881 0.8353 0.8207 0.8198 0.7552 0.7539

Li [27] 0.7988 0.7691 0.7500 0.7316 0.7232 0.7778 0.7910 0.7833 0.7574 0.7510

Patra [7] 0.6602 0.6804 0.6511 0.6589 0.6665 0.6426 0.6458 0.6494 0.6475 0.6394

Duman [11] 0.6084 0.5332 0.5332 0.5850 0.5879 0.5811 0.5576 0.6035 0.5684 0.5273
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