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Abstract

A measure for assessing the quality of a 3D mesh is necessary in order to determine whether an operation on the

mesh, such as watermarking or compression, affects the perceived quality. The studies on this field are limited when
compared to the studies for 2D. In this work, we aim a full-reference perceptual quality metric for animated meshes to
predict the visibility of local distortions on the mesh surface. The proposed visual quality metric is independent of
connectivity and material attributes. Thus, it is not associated to a specific application and can be used for evaluating
the effect of an arbitrary mesh processing method. We use a bottom-up approach incorporating both the spatial and
temporal sensitivity of the human visual system. In this approach, the mesh sequences go through a pipeline which
models the contrast sensitivity and channel decomposition mechanisms of the HVS. As the output of the method, a
3D probability map representing the visibility of distortions is generated. We have validated our method by a formal
user experiment and obtained a promising correlation between the user responses and the proposed metric. Finally,

we provide a dataset consisting of subjective user evaluation of the quality of public animation datasets.

Keywords: Visual quality assessment, Animation, Geometry, VDP CSF

1 Introduction

Recent advances in 3D mesh modeling, representation,
and rendering have matured to the point that they are
now widely used in several mass-market applications,
including networked 3D games, 3D virtual and immer-
sive worlds, and 3D visualization applications. Using a
high number of vertices and faces allows a more detailed
representation of a mesh, increasing the visual qual-
ity. However, this causes a performance loss because of
the increased computations. Therefore, a tradeoff often
emerges between the visual quality of the graphical
models and processing time, which results in a need to
estimate the quality of 3D graphical content.

Several operations on 3D models rely on a good esti-
mate of 3D mesh quality. For example, network based
applications require 3D model compression and stream-
ing, in which a tradeoff must be made between the visual
quality and the transmission speed. Several applications
require level-of-detail (LOD) simplification of 3D meshes
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for fast processing and rendering optimization. Water-
marking of 3D meshes requires evaluation of quality due
to artifacts produced. Indexing and retrieval of 3D models
require metrics for judging the quality of 3D meshes
that are indexed. Most of these operations cause certain
modifications to the 3D shape. For example, compression
and watermarking schemes may introduce aliasing or even
more complex artifacts; LOD simplification and denoising
result in a kind of smoothing of the input mesh and can
also produce unwanted sharp features.

Quality assessment of 3D meshes is generally under-
stood as the problem of evaluation of a modified mesh
with respect to its original form based on detectability of
changes. Quality metrics are given a reference mesh and
its processed version, and compute geometric differences
to reach a quality value. Furthermore, certain operations
on the input 3D mesh, such as simplification, reduce the
number of vertices; and this makes it necessary to handle
topographical changes in the input mesh.

Contributions Most of the existing 3D quality metrics
have focused on static meshes, and they do not tar-
get animated 3D meshes. Detection of distortions on
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animated meshes is particularly challenging since tem-
poral aspects of seeing are complex and only partially
modeled. We propose a method to estimate the 3D spa-
tiotemporal response, by incorporating temporal as well
as spatial human visual system (HVS) processes. For this
purpose, our method follows a 3D object-space approach
by extending the image-space sensitivity models for 2D
imagery in 3D space. These models, based on vast amount
of empirical research on retinal images, allow us to fol-
low a more principled approach to model the perceptual
response to 3D meshes. The result of our perceptual
quality metric is the probability of distortion detection
as a 3D map, acquired by taking the difference between
estimated visual response 3D map of both meshes
(Fig. 1). Subjective evaluation of the proposed method
demonstrates favorable results for our quality estimation
method. The supplementary section of this paper provides
a dataset which includes subjective evaluation results of
several animated meshes.

2 Related work

Methods for quality assessment of triangle meshes can
be categorized according to their approach to the prob-
lem and the solution space. Non-perceptual methods
approach the problem geometrically, without taking
human perception effects into account. On the other
hand, perceptual methods integrate human visual system
properties into computation. Moreover, solutions can fur-
ther be divided into image-based and model-based solu-
tions. Model-based approaches work in 3D object space,
and use structural or attribute information of the mesh.
Image-based solutions, on the other hand, work in 2D
image space, and use rendered images to estimate the
quality of the given mesh. Several quality metrics have
been proposed; [6], [12], and [28] present surveys on the
recently proposed 3D quality metrics.

2.1 Geometry-distance-based metrics

Several methods use geometrical information to compute
a quality value of a single mesh or a comparison between
meshes. Therefore, methods that fall into this category do
not reflect the perceived quality of the mesh.
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Model-based metrics The most straightforward object
space solution is the Euclidean distance or root mean
squared (RMS) distance between two meshes. This
method is limited to comparing two meshes with the
same number of vertices and connectivity. To overcome
this constraint, more flexible geometric metrics have been
proposed. One of the most commonly used geometric
measure is Hausdorff distance [9]. The Hausdorff dis-
tance defines the distance between two surfaces as the
maximum of all pointwise distances. This definition is
one-sided (D(AB) # D(BA)). Extensions to this approach
have been proposed, such as taking the average, root mean
squared error, or combinations [34].

Image-based metrics The simplest view dependent
approach is the root-mean-squared error of two rendered
images, by comparing them pixel by pixel. This metric
is highly affected by luminance, shifts and scales, there-
fore is not a good approach [6]. Peak signal-to-noise
ratio (PSNR) is also a popular quality metric for natu-
ral images where RMS of the image is scaled with the
peak signal value. Wang et al. [49] show that alternative
pure mathematical quality metrics do not perform bet-
ter than PSNR although results indicate that PSNR gives
poor results on pictures of artificial and human-made
objects.

2.2 Perceptually based metrics

Perceptually aware quality metrics or modification
methods integrate computational models or characteris-
tics of the human visual system into the algorithm. Lin
and Kuo [31] present a recent survey on perceptual visual
quality metrics; however, as this survey indicates, most of
the studies in this field focus on 2D image or video qual-
ity. A large number of factors affect the visual appearance
of a scene, and several studies only focus on a subset of
features of the given mesh.

Model-based perceptual metrics Curvature is a good
indicator of structure and roughness which highly affect
visual experience. A number of studies focus on the
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Fig. 1 Overview of the perceptual quality evaluation for dynamic triangle meshes
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relation between curvature-linked characteristics and per-
ceptual guide, and integrate curvature in quality assess-
ment or modification algorithms. Karni and Gotsman
[22] introduce a metric (GL1) by calculating roughness
for mesh compression using Geometric Laplacian of
every vertex. The Laplacian operator takes into account
the geometry and topology. This simplification scheme
uses variances in dihedral angles between triangles to
reflect local roughness and weigh mean dihedral angles
according to the variance. Sorkine et al. [41] modifies this
metric by using slightly different parameters to obtain the
metric called GL2.

Following the widely-used structural similarity concept
in 2D image quality assessment, Lavoue [26] proposes a
local mesh structural distortion measure called MSDM
which uses curvature for structural information. MDSM2
[25] method improves this approach in several aspects:
The new metric is multiscale and symmetric, the curva-
ture calculations are slightly different to improve robust-
ness, and there is no connectivity constraints.

Spatial frequency is linked to variance in 3D discrete
curvature, and studies have used this curvature as a
3D perceptual measure [24], [29]. Roughness of a 3D
mesh has also been used to measure quality of water-
marked meshes [19], [11]. In [11], two objective metrics
(3DWPM1 and 3DWPM2) derived from two definitions
of surface roughness are proposed as the change in rough-
ness between the reference and test meshes. Pan et al.
[37] use the vertex attributes in their proposed quality
metric.

Another metric developed for 3D mesh quality assess-
ment is called FMPD which is based on local roughness
estimated from Gaussian curvature [48]. Torkhani and
colleagues [44] propose another metric (TPDM) based on
curvature tensor difference of the meshes to be compared.
Both of these metrics are independent of connectivity
and designed for static meshes. Dong et al. [16] propose
a novel roughness-based perceptual quality assessment
method. The novelty of the metric lies in the incorpora-
tion of structural similarity, visual masking, and saturation
effect which are highly employed in quality assessment
methods separately. This metric is also similar to ours in
the sense that it uses a HVS pipeline but it is designed for
static meshes with connectivity constraints. Besides, they
capture structural similarity which is not handled in our
method.

Alternatively, Nader et al. [36] propose a just notica-
ble distortion (JND) profile for flat-shaded 3D surfaces in
order to quantify the threshold for the change in vertex
position to be detected by a human observer, by defining
perceptual measures for local contrast and spatial fre-
quency in 3D domain. Guo et al. [20] evaluate the local
visibility of geometric artifacts on static meshes by means
of a series of user experiments. In these experiments,
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users paint the local distortions on the meshes and the
prediction accuracies of several geometric attributes (cur-
vatures, saliency, dihedral angle, etc.) and quality met-
rics such as Hausdorff distance, MSDM?2, and FMPD are
calculated. According to the results, curvature-based fea-
tures outperform the others. They also provide a local
distortion dataset as a benchmark.

A perceptually based metric for evaluating dynamic tri-
angle meshes is the STED error [46]. The metric is based
on the idea that perception of distortion is related to
local and relative changes rather than global and abso-
lute changes [12]. The spatial part of the error metric
is obtained by computing the standard deviation of rel-
ative edge lengths within a topological neighborhood of
each vertex. Similarly, the temporal error is computed
by creating virtual temporal edges connecting a vertex
to its position in the subsequent frame. The hypotenuse
of the spatial and temporal components then gives the
STED error. Another attempt for perceptual quality eval-
uation of dynamic meshes is by Torkhani et al. [45]. Their
metric is a weighted mean square combination of three
distances: speed-weighted spatial distortion measure, ver-
tex speed-related contrast, and vertex moving direction
related contrast. Experimental studies show that the met-
ric performs quite well; however, it requires fixed con-
nectivity meshes. They also provide a publicly available
dataset and a comparative study to benchmark existing
image and model based metrics.

Image-based perceptual metrics Human visual system
characteristics are also used in image-space solutions.
These metrics generally use the contrast sensitivity func-
tion (CSF), an empirically driven function that maps
human sensitivity to spatial frequency. Daly’s widely
used visible difference predictor [14] gives the per-
ceptual difference between two images. Longhurst and
Chalmers [32] study VDP to show favorable image-based
results with rendered 3D scenes. Lubin proposes a sim-
ilar approach with Sarnoff Visual Discrimination Model
(VDM) [33], which operates in spatial domain, as opposed
to VDP’s approach in frequency domain. Li et al. [30]
compare VDP and Sarnoff VDM with their own imple-
mentation of the algorithms. Analysis of the two algo-
rithms shows that the VDP takes place in feature space
and takes advantage of FFT algorithms, but a lack of evi-
dence of these feature space transformations in the HVS
gives VDM an advantage.

Bolin et al. [5] incorporate color properties in 3D
global illumination computations. Studies show that this
approach gives accurate results [50]. Minimum detectable
difference is studied as a perceptual metric [39] that
handles luminance and spatial processing independently.
Another approach for computer generated images is visual
equivalence detector [38]. Visual impressions of scene
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appearance are analyzed and the method outputs a visual
equivalence map.

Visual masking is taken into account in 3D graphical
scenes with varying texture, orientation and luminance
values [18]. Several approaches with color emphasis is
introduced by Albin et al. [1], which predict differences
in LLAB color space. Dong et al. [15] exploit entropy
masking, which accounts for the lower sensitivity of
the HVS to distortions in unstructured signals, for
guiding adaptive rendering of 3D scenes to accelerate
rendering.

An important question that arises is whether model-
based metrics are superior over image-based solutions.
Although there are several studies on this issue, it is not
possible to clearly state that one group of metrics is supe-
rior to the other. Rogowitz et al. conclude that image
quality metrics are not adequate for measuring the quality
of 3D meshes since lighting and animation affect the
results significantly [40]. On the other hand, Cleju and
Saupe claim that image-based metrics predict perceptual
quality better than metrics working on 3D geometry, and
discuss ways to improve the geometric distances [10]. A
recent study [27] investigates the best set of parameters
for the image-based metrics when evaluating the quality
of 3D models and compares them to several model-based
methods. The implications from this study show that
image-based metrics perform well for simple use cases
such as determining the best parameters of a compression
algorithm or in the cases when model-based metrics are
not applicable.

The distinction of our work from the current metrics
can be listed as follows: Firstly, our metric can handle
dynamic meshes in addition to the static meshes. Sec-
ondly, we produce a per-vertex error map instead of
a global quality value per-mesh, which allows to guide
perceptual geometry processing applications. Further-
more, our method can handle meshes with different
connectivity. Lastly, the proposed metric is not applica-
tion specific.

3 Background

In this section, we summarize and discuss several mech-
anisms of the human visual system that construct our
model.

3.1 Luminance adaptation
The luminance that falls on the retina may vary in
significant amount from a sunny day to moonless
night. The photoreceptor response to luminance forms a
nonlinear S-shaped curve, which is centered at the cur-
rent adaptation luminance and exhibits a compressive
behavior while moving away from the center [2].

Daly [14] has developed a simplified local amplitude
nonlinearity model in which the adaptation level of a pixel
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is merely determined from that pixel. Equation 1 provides
this model.

RG,j) L(i,))
Ruyax  L(,)) + c1L(,j)b
where R(i,j)/Ryax is the normalized retinal response,

L(i,j) is the luminance of the current pixel, and ¢; and b
are constants.

(1)

3.2 Channel decomposition
The receptive fields in the primary visual cortex are selec-
tive to certain spatial frequencies and orientations [2].
There are several alternatives to account for modeling the
visual selectivity of the HVS such as Laplacian Pyramid,
Discrete Cosine Transform (DCT), and Cortex Trans-
form. Most of the studies in the literature tend to choose
Cortex Transform [14] among these alternatives, since
it offers a balanced solution for the tradeoff between
physiological plausibility and practicality [2].

2D Cortex Transform combines both frequency selec-
tivity and orientation selectivity of the HVS. Frequency
selectivity component is modeled by the band-pass filters
given in Eq. 2.

mesay_1 — mesdy fork=1.K—2

domy = { mesay_, — baseband fork = K — 1

(2)

where K is the total number of spatial bands [2]. Low-pass
filters mesay and baseband are calculated using Eq. 3.

1 0 <r— %”
1 ”(/’_H‘%W) tw tw
mesa 2(1+cos(tw TR <pETE S
k = 2
_
e 2° o <rk-1+ Y
0 ,otherwise

(3)

where r = 27K, ¢ = % (TK—1 + %W) and tw = %r. For the
orientation selectivity, fan filters are used (Eq. 4 and 5).

1 7|0—0:(D] .
fﬂl’l[ = 2 <1 + cos ( Orw )) for |9 8C(l)| < etw
0 otherwise

(4)

Oc(D) = (I = 1).6n — 90 (5)

where 6,(l) is the orientation of the center and 6;, =
180/L is the transitional width. Then, the cortex filter
(Eq. 6) is obtained by multiplying the dom and fan filters.

ghl _ domy fan; fork =1.K —land/=1..L
| baseband for k = K

(6)
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3.3 Contrast sensitivity

Spatial contrast sensitivity The contrast sensitivity
function (CSF) measures the sensitivity to luminance
gratings as a function of spatial frequency, where sensi-
tivity is defined as the inverse of the threshold contrast.
Mostly used spatial CSF models are Daly [14] and Barten’s
[3] models. Figure 2a shows Blakemore et al’s experimen-
tal results without adaptation effects [4].

Temporal contrast sensitivity Intensity change across
time constructs the temporal features of an image. In a
user study conducted by Kelly [23], the sensitivity with
respect to temporal frequency is estimated by displaying a
simple shape with alternating luminance as a stimuli. The
results of the experiment are used to plot the temporal
CSF shown in Fig. 2b.

Another issue to consider is the eye’s tracking ability,
known as smooth pursuit, which compensates for the loss
of sensitivity due to motion by reducing the retinal speed
of the object of interest to a certain degree. Daly [13]
draws a heuristic for smooth pursuit according to the
experimental measurements.

It is also important to note the distinction between the
spatiotemporal and spatiovelocity CSF [13]. Spatiotempo-
ral CSF (Fig. 3a) takes spatial and temporal frequencies
as input, while spatiovelocity CSF (Fig. 3b) takes directly
the retinal velocity instead of the temporal frequency. Spa-
tiovelocity CSF is more suitable for our application since
it is more straightforward to estimate the retinal velocity
than temporal frequency and it allows the integration of
the smooth pursuit effect.

4 Approach
Our work shares some features of the VDP method
[14] and recent related work. These methods have
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shown the ability to estimate the perceptual quality of
static images [14] and 2D video sequences for animated
walkthroughs [35].

Figure 4 shows the overview of the method. Our method
has a full reference approach in which a reference and a
test mesh sequence are provided to the system. Both the
reference and test sequences undergo the same perceptual
quality evaluation process and the difference of these out-
puts is used to generate a per-vertex probability map for
the animated mesh. The probability value at a vertex esti-
mates the visible difference of the distortions in the test
animation, when compared to the reference animation.
In our method, we construct a 4D space-time (3D+time)
volume and extend several HVS correlated processes used
for 2D images, to operate on this volume. Below, the steps
of the algorithm are explained in detail.

4.1 Preprocessing

Calculation of the illumination, construction of the spa-
tiotemporal volume, and estimation of vertex velocities
are performed in the preprocessing step.

Illumination calculation First we calculate the vertex
colors assuming a Lambertian surface with diffuse and
ambient components (Eq. 7).

I=k,Ia+ ksIqg(N - L) (7)

where I, is the intensity of the ambient light, I is the
intensity of the diffuse light, N is the vertex normal, L is
the direction to the light source, and k, and k; are ambient
and diffuse reflection coefficients, respectively.

In this study, we aim a general-purpose quality evalua-
tion that is independent of shading and material proper-
ties. Therefore, information about the material properties,
light sources, etc. are not available. A directional light
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source from left-above of the scene is assumed in accor-
dance with the human visual system’s assumptions ([21],
section 24.4.2).

The lighting model with the aforementioned assump-
tions can be generalized to incorporate multiple light
sources, specular reflections, etc. using Eq. 8; if light
sources and material properties are available.

n
I=kla+ Y [kdldi(N LY 4 kI (N - Hi)p] ®)
i=1

where 7 is the number of light sources, k; is the specular
reflection coefficient, and H is the halfway vector.

Construction of the spatiotemporal volume We con-
vert the object-space mesh sequences into an intermediate
volumetric representation, to be able to apply image-space
operations. We construct a 3D volume for each frame,
where we store the luminance values of the vertices at each
voxel. The values of the empty voxels are determined by
linear interpolation.

Using such a spatiotemporal volume representation pro-
vides an important flexibility as we get rid of the connec-
tivity problems and it allows us to compare meshes with
different number of vertices. Moreover, the input model
is not restricted to be a triangle mesh; volumetric rep-
resentation enables the algorithm to be applied on other
representations such as point-based graphics. Another
advantage is that the complexity of the algorithm is not
much affected by the number of vertices.

To obtain the spatiotemporal volume, we first calculate
the axis aligned bounding box (AABB) of the mesh. To
prevent inter-frame voxel correspondence problems, we
use the overall AABB of the mesh sequences. We use the
same voxel resolution for both test and reference mesh
sequences. Determining the suitable resolution for the
voxels is critical since it highly affects the accuracy of the
results and the time and memory complexity of the algo-
rithm. At this point, we use a heuristic (Eq. 9) to calculate
the resolution at each dimension, in proportion to the
length of the bounding box in the corresponding dimen-
sion. We analyze the effect of the minResolution parame-
ter in this equation on the performance, in Section 5.3.1.

minLength = min(widthgg, heightpg, depthpp)
w = |widthpp/minLength|
h = | heightgp/minLength |
d = |depthpg/minLength] 9)
W = w * minResolution
H = h * minResolution

D = d * minResolution

Page 7 of 18

At the end of this step, we obtain a 3D spatial volume for
each frame, which in turn constructs a 4D (3D+time) rep-
resentation for both reference and test mesh sequences.
We call this structure spatiotemporal volume. Also, an
index structure is maintained to keep the voxel indices of
each vertex. The rest of the method operates on this 4D
spatiotemporal volume.

In the following steps, we do not use the full spa-
tiotemporal volume for performance related concerns. We
define a time window as suggested by Myszkowski et al.
[35, p. 362]. According to this heuristic, we only consider
a limited number of consecutive frames to compute the
visible difference prediction map of a specific frame. In
other words, to calculate the probability map for the i
frame, we process the frames between i — [tw/2]| and
i+ |tw/2], where tw is the length of the time window. We
empirically set it as tw = 3.

Velocity estimation Since our method also has a time
dimension, we need the vertex velocities in each frame.
Using an index structure, we compute the voxel dis-
placement of each vertex (D;) between consecutive
frames (AD; = |pi — pi¢—1)ll where p;; denotes the
voxel position of vertex i at frame f). The remaining
empty voxels inside the bounding box are assumed to
be static.

Then, we calculate the velocity of each voxel at each
frame (v in deg/sec), using the pixel resolution (ppd
in pixels/deg) and frame rate (FPS in frames/sec) with
Eq. 10. We assume default viewing parameters of 0.5 m
viewing distance and 19-inch display with 1600X900
resolution, while calculating ppd in Eq. 10. This is
then adapted with N; frames to reduce the erroneous
computations (Eq. 11).

AD;

Vie = —— % FPS (10)
ppd

r Vig=1) T Vit T Vigt) (11)

it = 3
Lastly, it is crucial to compensate for smooth pursuit
eye movements to be used in spatiotemporal sensitiv-
ity calculations. This will allow us to handle temporal
masking effect where high-speed motion hides the vis-
ibility of distortions. The following equation (Eq. 12)
describes a motion compensation heuristic proposed by
Daly [13].

vr = v — min(0.82v; + Viin, Vinax) (12)

where vp is the compensated velocity, vy is the physical
velocity, v,y is the drift velocity of the eye (0.15 deg/sec),
Vmax is the maximum velocity that the eye can track effi-
ciently (80 deg/sec). According to Daly [13], the eye tracks
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all objects in the visual field with an efficiency of 82%.
We adopt the same efficiency value for our spatiotemporal
volume. However, if the visual attention map is available,
it is also possible to substitute this map as the tracking
efficiency [51].

4.2 Perceptual quality evaluation
In this section, the main steps of the perceptual quality
evaluation system are explained in detail.

Amplitude compression Daly [14] proposes a simpli-
fied local amplitude nonlinearity model as a function of
pixel location, which assumes perfect local adaptation
(Section 3.1). We have adapted this nonlinearity to our
spatiotemporal volume representation (Eq. 13).

R(x,y,z,t) L(x,y,z,t)
L(x,9,2,t) + c1L(x,y,2,t)°

(13)
Rmax
where x, ¥, z, and t are voxel indices, R(x, ¥, z, £) / Ryq is the
normalized response, L(x,y,z,t) is the value of the voxel,
b = 0.63 and ¢; = 12.6 are constants. In this step, voxel
values are compressed by this amplitude nonlinearity.

Channel decomposition We adapt the cortex transform
[14] which is described in Section 3.2, on our spatiotem-
poral volume with a small exception. A 3D model is not
assumed to have a specific orientation at a given time,
in our method. For this purpose, we exclude fan filters
that are used for orientation selectivity from the cor-
tex transform adaptation. Therefore, in our cortex filter
implementation, we use Eq. 14 instead of Eq. 6 with only
dom filters (Eq. 2). These band-pass filters are portrayed
in Fig. 5.

B* { domy fork=1.K—1 (14)

baseband for k = K

0 0.1 0.2 0.3 04 0.5
Fig. 5 Difference of Mesa (DOM) filters. (x-axis: spatial frequency in
cycles/pixel, y-axis: response)
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We perform cortex filtering in the frequency domain by
applying Fast Fourier Transform (FFT) on the spatiotem-
poral volume and multiplying this with the cortex filters
that are constructed in the frequency domain. We obtain
K frequency bands at the end of this step. Each frequency
band is then transformed back to the spatial domain. This
process is illustrated in Fig. 6.

Global contrast The sensitivity to a pattern is deter-
mined by its contrast rather than its intensity [17]. Con-
trast in every frequency channel is computed according
to the global contrast definition with respect to the mean
value of the whole channel, given in Eq. 15 [35], [17].

Ix — mean(lk)

ct =
mean(I¥)

(15)
where C¥ is the spatiotemporal volume of contrast values
and I is the spatiotemporal volume of luminance values
in frequency channel k.

Contrast sensitivity Filtering the input image with the
contrast sensitivity function (CSF) constructs the core
part of the VDP-based models (Section 3.3). Since our
model is for dynamic meshes, we use the spatiovelocity
CSF (Fig. 3b) which describes the variations in visual sen-
sitivity as a function of both spatial frequency and velocity,
instead of the static CSF used in the original VDP.

Our method handles temporal distortions in two ways.
First, smooth pursuit compensation handles temporal
masking effect which refers to the loss of sensitivity due to
high speed. Secondly, we use spatiovelocity CSF in which
contrast sensitivity is measured according to the velocity,
instead of static CSE.

Each frequency band is weighted with the spatiovelocity
CSF which is given in Eq. 16 [13], [23]. One input to the
CSF is per voxel velocities in each frame, estimated in
preprocessing; and the other input is the center spatial
frequency of each frequency band.

CSE(p,v) = ¢ (6-1 +7.3| log (%) |3) *

4mc1p(cav+2) (16)
- 45.9

cov(2mer p)? exp (

where p is the spatial frequency in cycles/degree, v is the
velocity in degrees/second, and co = 1.14,¢1 = 0.67,¢c3 =
1.7 are empirically set coefficients. A more principled way
would be to obtain these parameters through a parameter
learning method.

Error pooling All the previous steps are applied on the
reference and test animations. At the end of these steps,
we obtain K channels for each mesh sequence. We take
the difference of test and reference pairs for each channel
and the outputs go through a psychometric function that
maps the perceived contrast (C’) to detection probability
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using Eq. 17 [2]. After applying the psychometric function,
we combine each band using the probability summation
formula (Eq. 18) [2].

P(Cy =1 — exp (—| c |3) 17)

K

13=1—]_[(1—Pk)

k=1

(18)

The resulting P is a 4D volume that contains the detec-
tion probabilities per voxel. It is then straightforward to
convert this 4D volume to per vertex probability map for
each frame, using the index structure (Section 4.1). Lastly,
to combine the probability maps of each frame into a sin-
gle map, we take the average of all frames per vertex. This
gives us a per vertex visible difference prediction map for
the animated mesh.

Summary of the method The overall process is summa-
rized in Eq.19 in which F denotes the Fourier Transform,
F~1 denotes the inverse Fourier Transform, and Lt and
Ly, are spatiotemporal volumes for test and reference mesh
sequences, respectively. pX is the center spatial frequency
of channel k and V7 and V; contain the voxel velocities
for Lt and Lg, respectively.

CX o = Contrast (Channell;R) * CSF (pX, Viz)

Channel/%R =F1 [f(ACTR) * DOMk]
ACtr = AmplitudeCompression(LTR)
k k k
Pk =p(ck - c)
K

P=1-[] (1-PY
k=1

(19)

5 Validation of the metric

In this section, we provide a two-fold validation of our
metric: through a psychophysical user study designed
for dynamic meshes and comparison to several standard
objective metrics. We also give measurements on the
computational time of the proposed method.

5.1 User evaluation

We conducted subjective user experiments to evaluate
the fidelity of our quality metric. In this section, we
explain the experimental design and analyze the results.
The subjective evaluation results in this study are publicly
available as supplementary material.

5.1.1 Data

We used four different mesh sequences in the experi-
ments. The original versions of these animated meshes
(Fig. 7) are obtained from public datasets [42] and [47];
and information about these meshes are given in Table 1.
The animations are continuously repeated and the play-
back frame rate is 60 frames/second for the sequences.
For the modified versions of the animated meshes, we
apply random vertex displacement filter on each frame
of the reference meshes, using MeshLab tool [8]. The
only parameter of this filter is the maximum displacement
which we set as 0.1. The vertices are randomly displaced
with a vector whose normal is bounded by this value.
This corresponds to adding random noise on the mesh
vertices.

5.1.2 Experimental design

In this experiment, our aim is to measure the corre-
lation between the subjective evaluation and the pro-
posed metric results. The subjects in the experiment
evaluated the perceived quality of the animated meshes
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Fig. 7 Sample frames from the reference animations

T

by marking the perceived distortions on the mesh. For the
experiment setup, we used simultaneous double stimulus
for continuous evaluation (SDSCE) methodology among
the standards listed in [6]. According to this design,
presenting both stimuli simultaneously eliminates the
need for memorization.

Task In the experiments, we used two displays; one for
viewing the animations and the other for evaluation. In
the viewing screen (Fig. 8a), both the reference and test
meshes were shown in animation and the interaction
(rotating and zooming) was simultaneous.

In the evaluation screen (Fig. 8b), a marking tool with
tip intensity was supplied to the user. The user’s task was
to mark the visible distortions. The task of annotation
would be very difficult if it was performed on dynamic
state. Therefore, the users marked the visible distortions
on a single static frame, selected manually (frames in
Fig. 7). One may argue that marking the distortions on
static state may introduce bias. We try to minimize this
effect in two ways. First of all, the annotation was done
on a sample frame of the reference animation instead of
the modified animation. In this way, the distortions were
never seen statically by the observers. Secondly, the user
was still able to view both of the animations and manipu-
late the view-point simultaneously in the viewing screen,
during the evaluation. This eliminates the necessity for
memorization.

Table 1 Information about the meshes

Camel Elephant Hand Horse
# vertices 21,885 42,321 7997 8431
# frames 42 48 45 48

At the beginning of the experiments, subjects were given
the following instruction: “A distortion on the mesh is
defined as the spatial artifacts, compared to the refer-
ence mesh. Consider the relative scale of distortions and
mark the visible distortions accordingly, using the inten-
sity tool”

Setup The environment setup in the experiments has a
significant impact on the results. Therefore, the parame-
ters such as lighting, materials, and stimuli order should
be carefully designed [6]. We explain each parameter
below.

e Viewing Parameters: The observers viewed the
stimuli on a 19-inch display from 0.5 m away the
display.

e Lighting: We use a stationary left-above, center
directed lighting [40].

e Materials and Shading: To prevent highlighting
effects and accentuate distortions unpredictably, we
used Gouraud shading in the experiments. Moreover,
we used meshes without texture.

e Animation and Interaction: Free-viewpoint was
enabled to the viewers for interaction. Furthermore,
since inspection of the mesh during paused state was
contradictory to the purpose of the experiment, two
different displays were used and the evaluation of the
mesh was conducted on one of the screens while the
animation is ongoing on the other screen.

e Stimuli order: Each modified and reference mesh
combination was presented in a random order
allowing for more accurate comparisons. In other
words, there was not a specific ordering of the
meshes and subjects were also able to pause their
evaluation and continue whenever they want.
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Test

Subjects Twelve subjects with various levels of computer
experience participated in the experiment. All of the sub-
jects evaluated every animated mesh in the experiment.

5.1.3 Results and discussion

The mesh frames that were marked by the subjects were
stored as vertex color maps. To unify the responses of
each subject for each mesh, we calculate a mean subjective
response using Eq. 20.

N Riar)

N (20)

nwip) =

where N is the number of subjects who evaluated the
mesh M’, Ry(v;r) represents the given response to a
single vertex v;, mesh M’ and subject s combination.
Figure 9a, b shows sample results from the experiment
along with the reference and modified mesh pair and the
output of our algorithm.

Next, we compare the mean subjective responses with
our proposed method’s predictions. For this purpose, we
use two common methods for correlation: Pearson lin-
ear correlation coefficient (r) for prediction accuracy,
and Spearman rank order correlation coefficient (p) for
monotonicity between the mean subjective response and
estimated response [31].

Notice that correlation coefficients vary in the range
of [-1,1] and a negative coefficient indicates a negative

correlation while positive coefficient means a positive cor-
relation. While interpreting the correlation analysis, we
used the categorization in [43], where correlation coeffi-
cients (in absolute value) which are < 0.35 are considered
as low or weak correlations, 0.36 < r, p < 0.67 modest or
moderate correlations, and 0.68 < r, p < 1 strong or high
correlations.

While measuring the correlation, we considered the lim-
itations of the paint tool, in which subjects may uninten-
tionally mark some region nearby the region they actually
target. To reduce the effect of this problem, we followed
the approach used in image/video quality assessment val-
idations where image or video frame is divided into a
regular grid and the comparison is done tile by tile [2].
Based on this idea, we grouped the nearby vertices and
find the correlation based on the average intensity of these
regions. We asked a designer to segment the mesh man-
ually using a paint-based interface, although any available
mesh segmentation technique could also be used for this
purpose [7]. The designer was instructed to create about
50 segments for each model.

Table 2 includes the correlation coefficients for each
mesh and when all the samples are combined (over-
all). Both Pearson and Spearman correlation analysis
give consistent results. However, Spearman’s correlation
could be more reliable in our case, because a darker
mark in user responses indicates a higher distortion;
yet, it is a subjective issue to decide on which intensity
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Fig. 9 a Camel mesh. b Hand mesh. Top-left: reference mesh, top-right: modified mesh, bottom-left: mean subjective response, bottom-right:
estimated visual response. Blue regions in the mean subjective response and estimated response maps demonstrate the high perceptual differences

corresponds to which distortion amount. Hence, find-
ing a correlation between the rank orders of the ver-
tices rather than the absolute color values is more
appropriate.

As the table indicates, the average correlation is about
70%, which can be considered as a promising result for

Table 2 Pearson (r) and Spearman (p) correlation coefficients for
each mesh

Pearson, Spearman,, Strength
Camel 0.835 0.829 High
Elephant 0.585 0.654 Modest
Hand 0.715 0.707 High
Horse 0.713 0.700 High
Overall 0.712 0.723 High

the field of local dynamic mesh quality assessment. Cor-
relation coefficients for Camel, Hand, and Horse meshes
are high, while Elephant mesh exhibits a moderate corre-
lation.

One important issue that affects the results negatively is
that the subjects tend to evaluate only certain views of the
meshes. Eight of the subjects reported that they had gen-
erally marked the meshes from the side views. In addition,
since the meshes are known objects, visual attention prin-
ciples may have come into play and our metric does not
reflect this mechanism.

5.2 Comparison to STAR techniques

It is required to compare the performance of our method
with the current state-of-the-art techniques. We first
compared our metric to the static metrics using the public
LIRIS/EPFL general purpose dataset [26].
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In this dataset, there are 88 models, between 40 K and
50 K vertices, which were generated from four reference
objects: Armadillo, Venus, Dinosaur, and RockerArm. Two
types of distortion, noise addition and smoothing, were
applied with different strengths at four locations: on the
whole model, on smooth areas, on rough areas, and on
intermediate areas. The dataset also includes mean opin-
ion scores (MOS) from 12 observers and 7 static metric
results for these models.

Since our method is also applicable for static meshes,
we ran our algorithm on these models by setting veloc-
ities to 0. Although our aim is to produce a 3D map as
output, to be able to compare our metric to the other
techniques, we used the average of the vertex probabili-
ties in the output map as the overall score of the mesh
quality. These scores are in the range of 0-1 and a high
score indicates that the distortions on this mesh are highly
visible.

Figure 10 includes several examples from the Venus
model. MOS values of the highly noisy objects in (b) and
(c) are higher than the smoothed object in (d). This is intu-
itive as the smooth model seems less distorted than the
noisy object. Our metric conforms to this situation since
the metric outputs for (b) and (c) are higher than the out-
put for (d). According to the subjective evaluations, model
in (c) exhibits the highest distortion as our model also
reflects. Our results show similarity between the results of
the MSDM metric as well.

Figure 11 provides MOS vs. our metric estimation plots
for each object in the dataset. Spearman correlation coef-
ficients between MOS values and each of the provided
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metric results were also calculated as listed in Table 3.
We have not included the results for pure geometric met-
rics RMS and Hausdorff Distance since they are quite low.
According to these results, our metric well correlates with
the subjective responses and it is superior to most of the
static metrics.

Perceptual error metrics designed for dynamic meshes
to date that we are aware of are [46] and [45]. However,
dynamic mesh datasets of [46] and [45] provide only one
frame per animation and this is not sufficient for our met-
ric to be applied on these datasets. Our metric also differs
from these metrics in two ways. First, we do not require
the test and reference meshes to be the same connec-
tivity; for example, the test mesh could be a simplified
version of the reference mesh, with a different number
of vertices. Moreover, they are not directly comparable
to our method since we produce a 3D map of local vis-
ible distortions as output, while they give a global error
per dynamic mesh. Even though they also generate a 3D
map in the interim steps and accumulate it to a single
value, we do not have access to those interim steps. Hence,
although developing a single error value per dynamic
mesh is out of our purpose, to be able to compare our
metric, we unified our 3D map into a single score by aver-
aging the error values of each vertex. Then, we performed
a second user experiment, following a similar design
in [46].

In this experiment, we produced three modification
levels per dynamic mesh given in Table 1, resulting
in 12 animations. Using the MeshLab [8] tool, we
applied random vertex displacement filter by varying the

MSDM = 0.58, Our metric = 0.54)

Fig. 10 Top row: original models. Bottom row: Metric outputs. a Original model. b High noise on smooth regions (MOS = 8.80, MSDM = 0.64, Our
metric = 0.69). ¢ High noise on the whole object (MOS = 9.40, MSDM = 0.70, Our metric = 0.85). d High smoothing on the whole object (MOS = 8.10,
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maximum displacement parameter (The parameter was
set as 0.1, 0.2, and 0.3 for modification levels 1, 2, and 3,
respectively).

During the experiments, given the non-modified ani-
mation as reference, the subjects were asked to assign a
score of 0, 1, 2, or 3 to the modified animation. In this
evaluation scheme, 0 means that there is no percepti-
ble difference between the reference and test animations.
Evaluations of ten subjects were combined by calculat-
ing the mean opinion score (MOS) per modified mesh.
Then, the correlation between the metric outputs and
MOS values was calculated.

MOS vs. metric estimation plot in Fig. 12 reveals an
almost linear relationship. Pearson and Spearman corre-
lation coefficients for each mesh are also listed in Table 4.

Table 3 Spearman correlation coefficients for each model and

metric
Armadillo Venus Dinosaur Rocker Arm

Our metric 0.86 0.89 0.79 0.88
MSDM [26] 0.84 0.86 0.70 0.88
3DWPM2 [11] 0.71 0.26 047 0.29
3DWPMT [11] 0.64 0.68 0.59 0.85
GL1[22] 0.68 0.91 0.05 0.02
GL2[41] 0.76 0.89 022 0.18

Although the meshes used in the experiments are differ-
ent; considering that the correlation coefficients in [46]
varies between 0.92 and 0.98, our results are comparable
to the state-of-the-art. We see that the correlation is very
high (> 0.9) in this second experiment. This is because
assigning an overall score to the given dynamic mesh is an
easier task than marking the locations that are perceived
different. The main purpose of this study is to produce
a 3D map of visible distortions rather than generating an
overall quality estimation per mesh.

5.3 Performance evaluation

5.3.1 Resolution of the spatiotemporal volume

The resolution of the spatiotemporal volume at each
dimension affects the success of our method. In order to
investigate this effect, we also performed several runs of
our algorithm with varying voxel resolutions and calcu-
lated correlation coefficients for each run. We changed
the minResolution parameter in Eq. 9, which determines
the length of the spatiotemporal volume at each dimen-
sion, in proportion to the length of the bounding box of
the mesh.

Figure 13 plots the correlation coefficients with respect
to the minResolution parameter in Eq. 9. The plot includes
the mean results of all the meshes. We see that the cor-
relation is very low when minResolution is 10. Then, it
starts to increase rapidly with the increasing resolution to
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a certain extent. After a while, for about minResolution >
50, the increase rate drops. For minResolution > 100,

mean correlation settles to the band of 0.6 — 0.7
and increasing the resolution no further improves the
accuracy.

Table 5 lists the strength of the correlation with respect
to the minResolution parameter, for each mesh. One can
observe that the correlation coefficients generally increase
with the increasing resolution. When the resolution is too
small, too many vertices fall in a single voxel, thus the
result is not accurate. As the resolution gets higher, esti-
mation is more accurate but the computational cost also
increases. Moreover, incrementing the resolution does
not improve the performance radically after a certain
value.

According to our experiments, we drew a new heuris-
tic to calculate the minResolution parameter. It is not
desired to have too small resolution that allows many ver-
tices to fall into the same voxel. So, we aim to distribute
the vertices to different voxels as much as possible. We
start with the assumption that vertices are distributed
homogeneously. We also know that a mesh is generally
represented with the vertices located on the surface and
inside of the mesh is empty. Hence, we can assume that
vertices are located on the facets of the bounding box.
More conservatively, we take the facet of the AABB with
the minimum area and obtain a resolution that allows
distributing all the N vertices of the mesh to this facet

Table 4 Pearson (r) and Spearman (p) correlation coefficients for
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Fig. 13 Effect of the minResolution parameter on the mean correlation
coefficients

homogeneously. For this purpose, we first calculate the
proportions of the facets of the AABB (w, 4, and d in
Eq. 9). Then, we can express each dimension as a func-
tion of some constant k (such that wk, hk, dk). If we select
the minimum two of these dimensions as min; and mins,
we can distribute N vertices to the facet of minimum area
with k = /N /(miny * miny). We can then substitute this
k value as the minResolution parameter.

This heuristic results in the following approximate
minResolution values for Camel, Elephant, Hand, and
Horse meshes, respectively: 100, 200, 90, and 60. Accord-
ing to Table 5, these values provide high correlations.

In summary, the resolution of the spatiotemporal
volume has a significant impact on the estimation accu-
racy and computational cost of our method. Our heuris-
tic to calculate the resolution of the volume works
well. Alternatively, a more intelligent algorithm that
considers the distribution and density of the vertices
along the mesh bounding box could produce better
estimations.

5.3.2 Processing time

We monitored the processing time of our algorithm on
a 3.3 GHz PC. As mentioned before, the resolution of
the spatiotemporal volume, namely minResolution param-
eter in Eq. 9, determines the running time of our method.
Figure 14 displays the change in the running time of our
metric (without preprocessing) per frame, with respect to

each mesh Table 5 Effect of the minResolution parameter on the correlation
Pearson, Spearman,  strengths of each mesh

Camel 0.926 0.937 30 60 90 120 150

Elephant 0.939 0972 Camel Weak Modest High High High

Hand 0.949 0.941 Elephant Weak Weak Weak Modest Modest

Horse 0.988 0.948 Hand Weak Modest High High High

Overall 0.921 0.883 Horse Modest High High High High
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Fig. 14 Processing time (in seconds) of one frame with respect to the
minResolution parameter

the minResolution parameter. Note that in our method,
frames of the animation can be processed in parallel.
Hence, processing time of the animation is determined by
the processing time of one frame. The figure implies that
processing time changes in proportion to the cube of the
minResolution parameter, expectedly.

Table 6 includes the approximate processing times for
several meshes, along with their vertex count and minRes-
olution parameter calculated according to our heuristic
described in Section 5.3.1. As the table indicates, our
metric cannot be used in real-time applications in its
current form. However, it is possible to improve the per-
formance by processing the spatiotemporal volume on
GPU or employing more efficient data structures which
process only the non-empty voxels. Another improvement
possibility is to use lookup tables for CSF and Differ-
ence of Mesa (dom) filters, instead of calculating them
on-the-fly.

6 Conclusions

In this paper, our aim is to provide a general-purpose
visual quality metric for dynamic triangle meshes since
it is a costly process to accomplish subjective user eval-
uations. For this purpose, we propose a full-reference
perceptual quality estimation method based on the well-
known VDP approach by Daly [14]. Our approach
accounts for both spatial and temporal sensitivity of the
HVS. As the output of our algorithm, we obtain a 3D prob-
ability map of visible distortions. According to our formal

Table 6 Processing times (seconds) for several meshes

# Vertices minResolution Time
Horse 8K 60 8
Camel 21K 100 33
Elephant 42K 200 274
Venus 100K 300 915
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experimental study, our perceptually-aware quality metric
produces promising results.

The most significant distinction of our method is that
it handles animated 3D meshes; since most of the stud-
ies in the literature omit the effect of temporal variations.
Our method is independent of connectivity, shading, and
material properties; which offers a general-purpose qual-
ity estimation method that is not application-specific. It
is possible to measure the quality of 3D meshes that are
distorted by a modification method which changes the
connectivity or number of vertices of the mesh. Moreover,
the number of vertices in the mesh does not have a sig-
nificant impact on the performance of the algorithm. The
algorithm can also account for static meshes. The pro-
posed method is even applicable to the scenes containing
multiple dynamic or static meshes. More importantly, the
representation of the input mesh is not limited to triangle
meshes and it is possible to apply the method on point-
based surface representation. Lastly, we provide an open
dataset including subjective user evaluation results for 3D
dynamic meshes.

The main drawback of our method is the computa-
tional complexity due to 4D nature of the spatiotem-
poral volume. However, we overcome this problem to
some extent by using a time window approach which
processes a limited number of consecutive frames. Fur-
thermore, a significant amount of speed-up may be
obtained by processing the spatiotemporal volume in
GPU.

As a future work, we aim to perform a more com-
prehensive user study, investigating the effects of several
parameters. Another possible research direction is to
integrate visual attention and saliency mechanism to
the system.

Appendix
Subjective user evaluation dataset
Supplementary material consisting of the subjec-
tive user evaluation results can be downloaded from
the following link: http://cs.bilkent.edu.tr/~zeynep/
DynamicMeshVQA .zip.

The supplemental material includes the mesh files in off
format and has the following directories:

e Metric output directory includes the results of our
algorithm for each mesh used in the experiments.

e Reference directory includes the original mesh
animations.

e Test directory includes the modified mesh
animations.

e User responses directory includes the user
evaluations of twelve subjects and the mean
subjective responses.


http://cs.bilkent.edu.tr/~zeynep/DynamicMeshVQA.zip
http://cs.bilkent.edu.tr/~zeynep/DynamicMeshVQA.zip
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