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Abstract

This paper proposes a novel entropy-weighted Gabor-phase congruency (EWGP) feature descriptor for head-pose
estimation on the basis of feature fusion. Gabor features are robust and invariant to differences in orientation and
illuminance but are not sufficient to express the amplitude character in images. By contrast, phase congruency (PC)
functions work well in amplitude expression. Both illuminance and amplitude vary over distinctive regions. Here, we
employ entropy information to evaluate orientation and amplitude to execute feature fusion. More specifically,
entropy is used to represent the randomness and content of information. For the first time, we seek to utilize
entropy as weight information to fuse the Gabor and phase matrices in every region. The proposed EWGP feature
matrix was verified on Pointing'04 and FacePix. The experimental results demonstrate that our method is superior
to the state of the art in terms of MSE, MAE, and time cost.
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1 Review

1.1 Introduction

Visual focus of attention (VFoA) is emphasized to esti-
mate at what or whom a person is looking and is highly
correlated with head-pose estimation [1]. To study head-
pose estimation, three-dimensional orientation parameters
from human head images are explored. Head poses con-
vey an abundance of information in natural interpersonal
communication (NIC) and human-computer interaction
(HCI) [2]; therefore, an increasing number of researchers
is seeking more effective and robust methodologies to es-
timate head pose. Head poses also play a critical role in
artificial intelligence (AI) applications and reveal consider-
able latent significance of personal intent. For example,
people nod their heads to represent understanding in con-
versations and shake their heads to show dissent, confu-
sion, or consideration. Head orientation with a specific
finger-pointing direction generally indicates the place that
a person wants to go. The combination of head pose and
hand gestures is used to assess the target of an individual’s
interest [3]. Mutual orientation indicates that people are
involved in discussion. If a person shifts the head toward a
specific direction, it is highly likely that there is an object
of interest in this direction. Therefore, the study of VFoA
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as an indicator of conversation target in human-computer
interaction and facial-expression recognition is increas-
ingly of interest.

Analyzing head poses is a natural capability of humans
but is difficult for AL. However, head-pose estimation has
been researched for years, and the state of the art in head-
pose estimation can contribute greatly to bridging the gap
between humans and Al [4, 5]. Head-pose estimation is
generally interpreted as the capability to infer orientation
relative to the observation camera. For example, head pose
is exploited to determine the focus point on the screen
based on the gaze direction [6]. The factors influencing
the estimation of head pose and their relationships have
been introduced in detail, and the crucial significance of
head pose was emphasized in [7]. These factors are mostly
related to the surroundings, including camera calibration,
head features, glasses, hair, beard, illuminance variations,
and image transformations.

To address the shortcomings of existing methods, we
concentrate on regional feature extraction based on en-
tropy information. We aim to utilize an information en-
tropy model to assess randomness and content as feature
metrics for a specific region for the first time. We then
employ the more adaptive feature to represent the virtual
region. In addition, the normalized entropy information is
regarded as a weight metric to fuse the ultimate feature
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matrix. The experimental results demonstrate that our
feature matrix is superior to the state-of-the-art.

This paper is structured as follows: Section 1.2 pro-
vides an exhaustive overview of previous related work
in head-pose estimation. Section 1.3 presents the pro-
posed methodology step by step, including a skin
model for face detection using Gabor features, PC fea-
tures, and entropy-weighted Gabor phase congruency
(EWG@GP). Section 1.4 describes the experiments using
the Pointing’04 dataset. Finally, in Section 2, we
present our conclusions and discuss future work.

1.2 Related work

Despite significant improvements in head-pose estima-
tion techniques [5, 6, 8, 9], robust and effective recogni-
tion remains challenging for various poses. Head motion
can be characterized by 6 degrees of freedom (DOF), as
shown in the schematic representation in Fig. 1. Under
the common assumption of regarding the head as a rigid
object in a fixed position, we also address the head as a
rigid ball with 3 DOF. We ignore translation in the hori-
zontal and vertical planes. Then, the head pose can be
categorized into pitch, roll, and yaw, which are indicated
with red arrows in Fig. 1.

In general, head-pose estimation approaches can be
classified into two types: coarse level and fine level [5].
The former commonly employ algorithms to calculate a
few discrete head orientations, such as left, right, and
looking up. The latter generally utilize methodologies to
compute the continuous pose in accurate angles. Here,
we redefine the coarse level and fine level: coarse-level
approaches recognize the head-orientation variations
using discrete estimation and accurate computation, and
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Fig. 1 Head motion degree of freedom. Under general assumption,
head motion is categorized into three degree of freedom, yaw,
pitch, and roll
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fine-level approaches indicate the intentions or interests
of the experimental subjects. The computational ap-
proaches of both layers can be divided into statistical
and non-statistical types based on their dependence on
statistical methods or not.

1.2.1 Statistical approaches

The most classical statistical method is to exploit classi-
fiers or regression methods to recognize specific discrete
head poses. Multi-classification tools such as a support
vector machine (SVM) are utilized to estimate discrete
head poses. SVM has been employed to locate the iris
centers in approximately detected eye regions [10] and
to distinguish frontal and look-up head-pose variations
in a Carnegie Mellon University (CMU) face dataset
[11]. Support vector regression (SVR) is an alternate ver-
sion that is used for the continuous problem. The differ-
ences in head-pose estimation between SVM and SVR
have been described in detail [12]. SVR performs well
for either horizontal or vertical head-pose variations,
whereas SVM performs better for vertical variations
than for horizontal. If the search range is not extensive,
the combination of SVM and SVR is a good option. In
addition, whenever the number of classes changes, the
SVMs must be re-trained from scratch.

Regression is another typical statistical method that is
available for both discrete and continuous head-
orientation angle estimation. Examples of regression ap-
proaches include the aforementioned SVR and multi-
layer perceptrons (MLP). Regression approaches are
classified as linear and nonlinear based on the causal re-
lationships  between independent variables and
dependent variables. An MLP can also be trained for fine
head-pose estimation over a continuous pose range. In
this configuration, the network has one output for each
DOF. The activation of the output is proportional to its
corresponding orientation [13—15]. The high dimension
of an image presents a challenge for some regression
tools. More specially, regression methods cannot resolve
the need for long, sophisticated training and are highly
sharply sensitive to head localization. In summary, di-
mension reduction via principle component analysis
(PCA) [16] or its nonlinear kernel version (KPCA) [17]
or localized gradient-orientation histograms [18] is ne-
cessary during the above procedure.

Instead of comparing images to a large set of discrete
class labels or a series regression values, the probe image
can be measured by a detector array that is also trained
on many images with supervised learning methods. De-
tector array methods are well suited for both high- and
low-resolution images. In addition, they are superior in
sub-regional operations. Most importantly, these
methods do not require separate head detection and
localization. The drawbacks of these schemes are the
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necessary scale of training, binary output of detectors,
and low accuracy; in practice, a maximum of 12 different
detectors can be formed, which limits the pose-
estimation definition to less than 12 states [5].

High-dimensional image samples can lie on a low-
dimensional manifold that is constrained to meet the
pose variations. Manifold-embedding methodologies, in-
cluding isometric feature mapping (Isomap) [19, 20],
locally linear embedding (LLE) [21], and Laplacian
eigenmaps (LE) [22], have shown promise for head-pose
estimation by mapping high-dimensional data into low-
dimensional space. Such low-dimensional spaces can be
formed by classification or regression. However, the limi-
tation of typical PCA is not averted for nonlinear head-
pose variations. Since unsupervised methods are utilized
during the classification or regression, these methods are
not available to incorporate the class labels during head-
pose training. Most importantly, the aforementioned
techniques cannot ensure that each class is expressed as
a single label.

1.2.2 Non-statistical approaches

Experimental results have revealed considerable differ-
ences between statistical methods and non-statistical
measurements [23-26]. The former mainly focus on
appearance-based measurements, whereas the latter usu-
ally consider geometric relationship cues, such as the de-
viation of the nose from the mid-line and the deviation
between the new head pose and the original state. In
non-statistical methods, flexible models, geometric infor-
mation, and motion trajectory are employed to estimate
head pose.

Flexible models seek to fit non-rigid models with facial
features and contribute to the exploration of the facial
structure in both discrete and continuous head orienta-
tions. Among flexible models, active shape models
(ASM) [27, 28] and active appearance models (AAM)
exhibit higher accuracy and robustness [29]. These ap-
proaches permit the direct prediction of head pose when
an inherent 3D model constrains the fitting of 2D
points. Combination of the 3D model and 2D points
enables direct head-pose computation using structure-
from-motion algorithms. In summary, flexible models
have great potential for both high accuracy and good ro-
bustness in head-pose estimation, but these qualities are
strictly correlated with the relative extracted feature po-
sitions and image definition. Additionally, geometric
methods exploit relative feature positions to estimate
head pose; however, the accuracy is highly related to the
feature-point extraction [30]. Importantly, the highest
accuracies of the presented approaches are at least 1—
2 pixels. Unfortunately, each pixel error generally relates
to an angle error of approximately 5°. Consequently,
geometric measurements cannot serve as precise head-
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pose estimates in cases of limited feature-point detec-
tion. The use of motion-trajectory tracking methods be-
tween subsequent video frames outperforms the other
aforementioned methods [27, 31, 32]. In previous work,
we employed a SIFT feature-point and bio compound-
eye mechanism to explore object-tracking measurements
with superior robustness and accuracy [33]. Tracking
methods operate in a bottom-up manner, following low-
level facial landmarks from frame to frame. Typically,
the subject must maintain a frontal pose before the sys-
tem started. The track system must be reinitialized
whenever the object of interest is lost. As a result, geo-
metrical approaches often rely on manual initialization
or a camera view in which the subject’s neutral head
pose is forward-looking and easily reinitialized with a
frontal face detector [5]. Recently, a number of hybrid
approaches have been proposed [33-38] that integrate
the remarkable advances in the above statistical and
non-statistical methods to provide the best accuracy and
robustness in head-pose estimation.

Our proposed method is a hybrid approach, and we
seek to estimate head poses on the coarse level to com-
pute the orientation angles using some machine classi-
fiers and geometrical information. Information entropy
is a good indicator of information representation with
respect to randomness and content. Histogram of gradi-
ent (HoG), Gabor, and phase congruency (PC) are effect-
ively and commonly used in direction estimation.
However, the dimensionality of these feature matrices is
usually too high for image representation. With the de-
velopment of technology, image-definition has increased
abruptly. More specifically, dimension-disaster frequency
has clearly risen. This paper presents an entropy-
weighted method to fuse Gabor and PC features and
exploits entropy as a weight metric to reinforce random-
ness for the first time. Additionally, entropy plays an im-
portant role in dimension reduction and image
annotation. The experimental results prove that our so-
lution is effective in reducing the dimension and shows
good accuracy and robustness to variations of head pose.

1.3 Proposed methodology

Face detection is an important preceding step for head-
pose estimation [3, 32, 39, 40]. A schematic representa-
tion of our method is shown in Fig. 2. A skin model is
exploited to perform face detection and abstraction, and
on the basis of the image blocks, probe images are di-
vided into sub-regions. In our case, an elliptical skin-
color model is employed to detect facial regions in
YCbCr color space. Initially, the probe input image is
split into various sub-regions, and the features of each
sub-region are then extracted using Gabor and PC
methods. Gabor features and PC features show remark-
able advantages in representing orientation and gradient
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Fig. 2 Entropy weighted Gabor and Phase congruency feature matrix. Information entropy is regarded as weight metric to fuse Gabor and Phase
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information of images. Information entropy is capable of
assessing feature randomness and content. Therefore, in-
formation entropy is utilized to take advantage of Gabor
and PC features. Next, a new image-feature matrix,
called the entropy-weighted Gabor and PC feature
matrix (EWGP), is constructed. Ultimately, the matrix is
used as a classifier to estimate head pose on the coarse
level. Most importantly, the matrix shows promising re-
sults in dimension reduction and pose estimation, with
improved effectiveness and robustness.

1.3.1 Skin-color model

The use of skin-color characteristics in face detection is re-
ceiving an increasing amount of attention. An HSV-YCbCr
color-space skin model was suggested in [41]. An adaptive
skin-color model in the normalized RGB space was exam-
ined in [42]. In this paper, we employ an elliptical skin
model in a non-linearly transformed YCbCr color space,
which was proposed in [43]. This algorithm detects face re-
gions in probe images with good performance, and its core
operation is described in Egs. (1) and (2).

(x—ec,)’ N (y-ecy) >
ﬂ2 b2

x| | cosf
y| | -sinf
where ecx and ecy\ represent the offset from the original
position. Equation (2) describes the transformation with
the angle theta from YCbCr to two-dimensional coordi-

nates. C, and C, denote the skin cluster space. These pa-
rameters were calculated as c¢,=109.38, ¢,=152.02,

-1 M)

sinf } [Cb—cx] 2)

cost | | Cr—cy

Cy

theta = 2.53 (rad), ec, = 1.60, ec,=2.41, a=25.39, and b
=14.03. In addition, a Gaussian distribution is used to
model the skin tones in the transformed space by the
vector Z in Eq. (3), which denotes the skin-cluster space.
Therefore, the skin-pixel classification rule can be refor-
mulated using Eq. (4). We regard the current method-
ology as a binary classification, since we only need to
determine whether the pixel is in the skin cluster or not.
¢ is a two-dimensional vector that describes the mean
value of Z, and X is the covariance of Z. The left side of
Eq. (4) in the first line is the Mahalanobis distance. 1 in-
dicates whether the pixel is skin or not following the el-
liptical model, which is an empirical threshold. This
information can also be obtained by some other thresh-
old method, such as OTSU. Here, we combine the ellip-
tical model and Gaussian model to construct the face
region more accurately. From the elliptical model, we
can obtain the closed interval of the skin region. This re-
gion is simply the linear function in terms of the expect-
ation and standard deviation in the Gaussian model.
Additionally, the Gaussian distribution is exploited to
generate neighborhood face orientations using manifold-
embedding methods and to assign multi-labels to the
images [44].

Z= [gﬂ (3)

0(2) = { Lif(Z-)'2" (Z-p)<),

0 otherwise, @)
1 (x-ec,)’ (y—ecy)2 o
- ﬂZ + b2 -
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1.3.2 Gabor features

Gabor features are widely employed in head-pose esti-
mation for their advantages in the calculation of orienta-
tion and frequency. Gabor features are also used to
alleviate variations in illumination in highly tunable
properties. In addition, diverse sets of parameters are
obtained to create multi-kernels in terms of the con-
structed series of filters. The Gabor transform is applied
with the assistance of the window Fourier transform,
which extracts features in different directions and scales
from an image in the frequency domain. The covariance
of the Gabor descriptor and regional symmetry informa-
tion were applied to estimate head orientation, and prin-
cipal component analysis (PCA) was employed to reduce
the dimension of the data, obtaining promising results.
In our case, the original Gabor filter is utilized [45]. The
Gabor filter is defined in Eq. (5), where o is the standard
deviation of the Gaussian kernel, which is typically
linearly dependent on the wavelength; A is the wave-
length of the sinusoid; J denotes the orientation of the
filter; and x and y are the spatial position coordinates of
the filter.

242 o

g(x’ y,)L, 19) —e 3 eT(xcosl%Lysim‘)). (5)

1.3.3 Phase congruency

Gabor-based features cannot be identified for a sizable
portion of the features within an image on which current
pose-sensitive systems depend. PC-based edge descrip-
tors, which are sensitive to pose variations, can be used
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to process a higher density of features. The discrete Fou-
rier transform based PC-based edge descriptor (6) pro-
duces a higher density of features and is sensitive to
head orientation.

PC() = i ACOS(01) ()
LA (6)

i=1

@;(x) = Twix

A; indicates the amplitude of the ith Fourier compo-
nent, @,(x) represents the ith local phase of the compo-
nents, and ¢(x) is the weighted mean of all local phase
angles at the objective location. Additionally, for each
frequency w;, A; is the amplitude of the cosine wave, and
@x)—-p(x) is the phase offset of that wave. The term T is
related to the size of the image window, and we will as-
sume it a value of 1. It is important to assume that
phase-congruency features differ from one another when
dealing with different head-orientation probe images.
Consequently, it is necessary to distinguish which filter
orientation is more effective in pose estimation. In our
case, the Pointing’04 head-pose dataset was utilized to
evaluate the phase-congruency features after face detec-
tion by the eclipse skin model. To this end, binary-edge
images were collected.

1.3.4 EWGP feature fusion

Face extraction, Gabor features, and PC features play
important roles in head-pose estimation. After the pro-
cessing described in Sections 1.3.1 to 1.3.3, Gabor and
PC maps are collected for a specific image, which are

2 directions yaw and pitch, which varies from —90° to +90°
A\

Fig. 3 Sample of Pointing'04 Database. An example of the dataset. Each set contains of 2 series of 93 images of the same person at different
poses. There are 15 people in the database, wearing glasses or not and having various skin color. The pose, or head orientation is determined by
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Face detection

No
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Fig. 4 Experiment sketch. The experiments are separated into train
and test part. In each part, the processing is similar

relevant on the fine level. Region-based methods are
highly effective and robust in head-pose estimation. A
local directional quaternary patterns (LDQP) descriptor
has been proposed to estimate head pose and obtained
surprising results. In addition, the whole image must be
reconstructed with complex and uncertain patterns [46].
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Consequently, we employ regional thinking and imple-
ment feature extraction in each sub-region. Both Gabor
and PC features are computed and are described by the
distributions Rg and Rp in Egs. (5) and (6), respectively,
in the specific sub-region R,. The features exhibit differ-
ent similarities with the original data. Gabor features are
robust and invariant to different levels of illuminance
but are not sufficient to express the amplitude character.
By contrast, phase features function well for amplitude
expression. Both illuminance and amplitude vary over
different regions. Here, we regard entropy information
as the metric to evaluate the two aforementioned fea-
tures. More specifically, entropy information represents
the randomness and information content. Different prin-
ciples are applied to measure the distance or similarity
between two distributions using the entropy. For in-
stance, the distance between Rg and R; can be repre-
sented by Jeffrey’s divergence, given in Eq. (7). Similarly,
Eq. (8) is given for Rp and R;. The two distributions must
be normalized to the same scale before the similarity cal-
culation is performed. Finally, the results of (7) and (8)
are normalized.

Dyg(Ra||R)) = (RG-Ry) 1n1;—f, (7)

6 8 6 5 h b & & & & |

Fig. 5 Face detection results by skin color model. Face detection results of different person in various head poses, in three DOF
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Dy (Rp|[Rr) = (Re=Ry) lni—f, (8)

F = W,‘/‘ (D]g,D]p) [RG,L'}' RP,ij] . (9)

A larger value of D represents a closer relationship
with the probe representation. We employ Jeffrey’s en-
tropy as the weight to construct the new feature matrix.
Meanwhile, dimension-reduction operations are utilized
to optimize the Gabor feature matrix and PC feature
matrix, such as PCA and SVD. In summary, in our case,
the advantages of Gabor features and PC features are
combined for the first time to estimate head pose in Eq.
(9), where W is the normalized entropy weight for Gabor
and PC in the ixjth sub-region.

1.4 Experiments and analysis of results

In the experiments, we first utilized the Pointing’04
head-pose database, which comprises 15 sets of images.
Each set contains 2 series of 93 images of the same
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Table 1 Estimation results on Pointing'04
Features MSE (SVR) CVA (SVM) %
HOG 3.13 85.88
Gabor 332 25.92
pC 324 86.88
EWGP 0.93 96.79

List best result of head-pose estimation of MSE and CVA. Our case outperform
others by 0.93 and 97.79% in MSE and CVA for SVR and SVM, respectively

person in different poses. The database includes images
of 15 people who are wearing or not wearing glasses and
who have various skin colors. The pose or head orienta-
tion is determined in 2 directions, yaw and pitch, which
vary from -90° to +90°. An example is given in Fig. 3.

A sketch of the experiment is given in Fig. 4. The
probe images contain the neck and shoulders, resulting
in lower classification accuracy, and thus the elliptical
skin model is employed to extract the primary facial re-
gion and capture the eye, mouth, and nose information.

Fig. 6 Experimental results of EWGP. Experiment results on public data Pointing'04, and the results are binary images
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Then, the face region is divided into mxm sub-regions.
Next, Gabor and PC features are extracted. Information
entropy is utilized as a weight metric to fuse the Gabor
and PC features into the EWGP representation. Finally,
the EWGP matrix data are used to train multi-classifiers
to distinguish the head-pose variations.

In terms of the skin model, we conducted experiments
using the Pointing’04 database and extracted head infor-
mation at the fine level. We tested this model with three
different people in different directions. We tested three
pitch and ten yaw directions for each person under con-
ditions of varying levels of illuminance. In each direc-
tion, we executed experiments on three people. We
obtained some promising results. First, we completely
captured the eyes, nose, mouth and ears of the various
persons in different directions. Second, after the binary
operation, we clearly captured, the skin color informa-
tion for different head-pose variations in both the pitch
and yaw directions, as shown in Fig. 5.

On the basis of face extraction, the EWGP was com-
pared with state-of-the-art that are utilized in head-pose
estimation, such as HOG, Gabor, and PC by SVM and
SVR. Experiments were conducted in both the yaw and
pitch directions via k-fold cross validation, which means
that the whole extracted face images used in the experi-
ments were partitioned by a factor, related to the vari-
ation, into k parts, of which k-1 parts were used for
training, and the remaining part was used for testing.
The experimental results for the EWGP filter are illus-
trated in Fig. 6. Two types of evaluation measures,
cross-validation accuracy (CVA) and mean square error
(MSE), were used to compare the performance of the
different descriptors. The head-pose estimation results
for the Pointing’04 database were compared. The best
results for MSE and CVA are shown in Table 1. Detailed
information on the MSE and CVA states is depicted in
Fig. 7. The HOG, Gabor, and PC descriptors yielded

similar results for MSE. However, Gabor exhibited an
apparent decrease in CVA of 25.92%, which we tenta-
tively attribute to the use of only one direction filter for
all head-orientation images; this will be confirmed in fu-
ture research. Our proposed hybrid representation out-
performed other descriptors with respect to MSE and
CVA by 0.93 and 96.79, respectively, as shown italics in
Table 1. These experimental results indicate that the
proposed EWGP representation is suitable for head-pose
estimation in the yaw and pitch directions. The pro-
posed method was also compared with other methods.
Regardless of whether SVM or SVR was employed, the
MAE of our method on Pointing’04 was enhanced three
to fivefold, as shown in Table 2.

A pose-estimation system was implemented utilizing
simple linear-subspace methods and oriented Gabor and
PC features in [47]. Global Gabor and PC features were
employed as global and local measurements, respect-
ively, to estimate head orientations with Canonical Cor-
relation Analysis (CCA) on FacePix datasets. The
proposed EWGP method achieved better MAE. The
comparison is illustrated in Fig. 8. The EWGP method

Table 2 Comparison of head-pose estimation results on the
Point'04 database

Method MAE

Yaw Pitch
EWGP-SVM 1.03° 1.00°
EWGP-SVR 1.12° 1.31°
MLD-w)J 4.24° 269°
Kernel PLS 5.02° 3.54°
Kernel SYM 6.83° 591°
Kernel SVR 6.89° 6.59°

The proposed EWGP feature was tested by SVM with the MAE 1.03° and 1.00°
in Yaw and Pitch direction. When verified by SVR MAE are 1.12° and

1.31°, respectively
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Fig. 8 Experimental results MAE of EWGP, Global CCA, Local CCA, Global Gabor/CCA, and Local Gabor/CCA. The overall MAEs are 2, 10, 8, 4, 2.8 in
degrees, respectively. EWGP outperform the state of the art that also utilized Gabor and PC as feature matrix

exhibited better performance from -60 to 60, and the
MAE deviated by 2°. The overall MAEs of Global CCA,
Global Gabor of CCA, Local CCA, and Local Gabor of
CCA were 10°, 8, 4°, and 2.8°, respectively. MAE
increased in both directions as the pose angle increased.
When the head turns with large deviation, facial features
are obscured, and only a partial face image can be ob-
tained with a single camera. Thus, key face points are
missed.

Furthermore, the experiments were performed on both
homogeneous and heterogeneous data. We utilized clas-
sifiers that were trained on the Pointing’04 datasets on a
real-time video stream that was obtained using a
consumer-level webcam (320x240) on a Windows 10
(64 bit) platform, with 8G Ram and Intel(R) Core(TM)
i7-3635QM CPU@ 2.40GHz. Promising results were

obtained. Both single faces and multiple faces were de-
tected in real time, and we captured the nose region.
The results are illustrated in Fig. 9. Simultaneously, head
poses were also calculated with satisfactory conclusions,
as shown in Fig. 10. In the yellow label, / denotes the
horizontal yaw degree, and v represents the vertical rota-
tion degree, or pitch. For processing video information,
the face-detection event-capture rate was 100%, and the
maximum head-pose estimation time cost was 50 ms
for each frame. The lowest time cost was approxi-
mately 5-10 ms.

2 Conclusions

In this study, a novel entropy-weighted Gabor and
phase-congruency (EWGP) feature matrix was built on
the condition of feature fusion. We successfully applied

in real time

Fig. 9 Head extraction in real time. We detect both single face and multi-faces with ourselves video data, and the nose labeled by blue rectangle
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8.22° and pitch to up by 18.89°in right image

Fig. 10 Head-pose estimation in real time. The person yaw to left by 29.54°and pitch to up by 50.53°n left image. The person yaw to left by

EWGP in multi-classification for head-pose estimation
in still imagery and a real-time video stream with homo-
geneous and heterogeneous data. Our experimental re-
sults demonstrated that the proposed EWGP method
outperforms state-of-the-art when estimating head pose
in terms of MSE, CVA, MAE, and time cost. Unfortu-
nately, head pose only describes the direction in which a
person is looking and does not provide information on
the object of interest. Therefore, it is necessary to focus
on additional information, such as visual saliency in
head orientation, gaze direction, and hand gestures. In
future works, we plan to expand head-pose estimation
to include gaze estimation and obtain a better under-
standing of the object of an individual’s interest.
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