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Abstract

The systems based on image processing have numerous applications in the domain of motion control of robots and
autonomous vehicles. The current paper is oriented to the solution of the problem that precedes the implementation
of automatic avoidance of the on-road obstacles—how to detect them, to track in the sequence of images, and to
recognize which of them are stationary, incoming, or outgoing from the camera. The overall algorithm of obstacle
classification presented in this paper consists of three basic phases: (1) image segmentation in order to extract the
pixels belonging to the image of a road and the objects over it; (2) extraction of characteristic points inside the area of
the obstacle, their description and tracking in following frames; and (3) estimation of distances between the camera,
the obstacles and their rates of change (relative velocities). The verifications of particular steps of the proposed
algorithm are illustrated using real road-traffic images, while the overall algorithm is tested using both synthesized
sequences of images and the ones acquired in real driving.

Keywords: Machine vision, Image processing, Image segmentation, Pattern recognition, Support vector machines,
Feature extraction, Tracking, SURF, Pose estimation

1 Introduction
In recent years, self-anti-collision systems have been
developed for preventing traffic accidents and achieving
safe driving. This system should alert drivers of the pres-
ence of obstacles and help them to react in advance. In
these systems, the ability to detect obstacles is essential.
The safe operation of a vehicle depends heavily on the
vision. The vision of a driver can be improved by systems
that provide information about the environment around
the vehicle that cannot be seen or barely seen by human
eyes. Therefore, an obstacle detection system based on
machine vision is the subject of current research in smart
vehicle technology.
The particular aim of this work is to enable the classifi-

cation of the on-road obstacles according to their relative
velocities, onto the categories of incoming, outgoing, and
stationary, as a prerequisite for their avoidance in the
context of autonomously guided cars.
The existing techniques used in the on-road obstacle

detection may vary according to the definition of the
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obstacles. They might be classified into two categories
[1]. The first one is related to the obstacles reduced to a
specific object (vehicle, pedestrian, etc). In this case, the
detection can be based on search for specific patterns,
possibly supported by features such as texture, shape
[2, 3], symmetry [4, 5], or the use of an approximate
contour. The second category is used when the defini-
tion of the obstacles is more general. In this case, two
methods are generally used. (1) The usage of a monoc-
ular camera based on an analysis of optical flow [6–9].
This method requires rather huge calculation, and it is
sensitive to vehicle movement. Also, it detects only the
moving obstacles and fails when obstacle has small or null
speed (static ones). (2) The method based on stereo vision
[10–13]. Images are captured using two or more cameras
at the same time from different angles, and then obstacles
are detected by matching. This method generally requires
more time to do the necessary calculations, and it is sen-
sitive to the local motion of each camera caused by the
vehicle movement.
Generally, a method for detecting both moving and

static objects simultaneously is required because the static
objects such as boxes can fall on the road in front of a car
and they are dangerous too.
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Actually, the algorithm of on-road obstacles detection
should provide that:

1. The objects that are outside the road are eliminated.
2. Irregularities on the road surface that are not

affecting the driving are not considered.
3. Static obstacles on the road are properly recognized

in order to be avoided.
4. Vehicles on the road are detected in order to adjust

own motion according to their relative distances and
velocities.

We propose in this paper an obstacle detection method
using a monocular camera mounted on a vehicle receiv-
ing the light variations in the scene on the road ahead
and analyzing the captured images to carry out the obsta-
cle detection. The output of the proposed algorithm is a
classification onto classes of moving and static obstacles.
After getting the obstacle information, drivers can react
quickly and precisely to take corresponding actions to pre-
vent car accidents. Moreover, the system of autonomous
car driving may react appropriately in order to keep the
motion of a car along the nominal trajectory relative to
the road borders, simultaneously avoiding incoming and
outgoing cars. Here, obstacles are defined as actual arbi-
trary objects protruding from the ground plane in the road
area, both static and moving ones. Road markers in the
road area (e.g., pedestrian crossings) as well as a number
of objects outside the road region are considered as the
obstacles of no interest.
The current paper is organized as follows. Section 2

presents the methods used in the diffrents steps of the
proposed algorithm. Section 2.1, for the given sequence
of video images, synthetic or taken by a mobile camera,
the road region is detected using support vector machine
method. Section 2.2 describes how the on-road obstacles
are detected and extracted over the road region. From this
point on, the obstacle is represented by rectangular area
around the detected object on the road. Description of the
characteristic points inside these areas and their tracking
from frame to frame is done using the SURF (Speeded-
Up Robust Features) algorithm in Section 2.3. Section 2.4
deals with the calculation of the position and the relative
velocity of each obstacle to classify the static and dynamic
(incoming, outgoing) ones. Illustrations based on experi-
mental results are given throughout Section 3. The paper
is concluded in Section 4, with some comments regarding
the actual limits of the application and suggestions for the
future work.

2 Themethods
In order to detect the road obstacles, to track them, and to
determine their positions and relative velocities, the fol-
lowing operations are employed (as illustrated on Fig. 1).

Fig. 1 Flowchart of the proposed method

First, the road region is detected using the SVM (support
vector machine) classification method in order to distin-
guish class “road” from the class “non-road”. Second, the
non-road region as the result of this detection is classified
into two areas: “obstacles” and “road environment.” After
the latter classification, one has three types of regions:
environmental area, road region, and obstacles. The real
obstacles on the road like cars, pedestrians, boxes, etc.
are belonging to the class “obstacles.” Monitoring each of
these obstacles is done by using the SURF matching algo-
rithm. The final step consists in calculating the obstacles’
positions in the field of view and the calculation of their
relative velocities in order to distinguish the static and
dynamic obstacles (inside the range of 200 m ahead).

2.1 Road region extraction
The first step in the algorithm consists in segmentation
of an image into the road region and the other region
that includes the remaining part of image (“non-road”). In
order to classify one pixel as a member of a class “road,”
there are a number of possible segmentation methods
based on color, texture descriptors based on statis-
tic parameters, structure, or frequency spectrum, etc.
While some acceptable results have been obtained when
the color components have been used only, even three
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decades ago [14] or by use of the best candidates
among texture statistic and structure descriptors [15],
our reasoning here was oriented toward a more complex
approach where the color and texture are simultaneously
considered [16].
The proposed algorithm is composed of five compo-

nents. In the first feature extraction component, a feature
vector is extracted from each pixel of the input image. Sec-
ond, the component of dynamic training database (DTD)
is filled with training set labeled by a human supervisor in
initialization and updated by the new training set online.
Third, the component of Classifier Parameters Comput-
ing is used to estimate the parameters in SVM classifier.
The fourth SVM classifier component is in charge of train-
ing and classification which takes the training data and
classifier parameters to train the SVM classifier and use
the trained SVM classifier to classify image into road/non-
road classes. The last component contains two stages:
morphological operation and online learning operation.
The former implements connected region growing and
hole filling on the classification result to determine the
road region. The latter compares morphological result
and classification result to evaluate the quality of the
current classifier, then select new training set from that
comparison and update the DTD. The flowchart shown
on Fig. 2 illustrates this algorithm.
As an initial operation, the populations of “road” and

“non-road” pixels are indicated by an operator (driver)

action, via marking the appropriate rectangular regions
on the image as shown in Fig. 3. The same initialization
can be made by automatic designation of a rectangular
window in the central lower part of image, a priory guar-
anteeing that the contents is typical for the road area. This
way, an initial content of a Dynamic Training Database
(DTD) is specified.
In order to reduce the calculations, the number of pix-

els inside the rectangle is limited to 1000. If the total of
encompassed pixels is greater, one thousands of them will
be chosen in a random manner. This DTD is going to be
continually updated in order to follow the changes in the
road scene. The selected set of classifying parameters is
calculated for every subsequent image. The process of seg-
mentation is based on the SVM method. The final step in
the classification consists in morphological processing of
the binarized image. After the final segmentation is done,
the upgrade consisting in online updating of DTD is the
finishing step before the acquisition of a new image.
Feature vector is eight-dimensional:

Fi,j =[ ft1(i,j), ft2(i,j), ft3(i,j), ft4(i,j),
ft5(i,j), fc1(i,j), fc2(i,j), fc3(i,j)]

(1)

where i = 1..H and j = 1..W

Fig. 2 Flowchart of the road region extraction algorithm
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Fig. 3 Initialization of DTD. Red rectangles are used for “positive” training (road class), and blue ones for “negative” training (non-road class)

The first five elements are Haralick’s statistical features:

Energy =
∑

u

∑

v
{p(u, v)}2 (2)

Enthropy =
∑

u

∑

v
p(u, v) log{p(u, v)} (3)

Contrast =
Ng−1∑

n=0
n2

{ Ng∑

u=1

Ng∑

v=1
p(u, v)

}
(4)

IMD =
∑

u

∑

v

1
1 + (u − v)2

p(u, v) (5)

Correlation =
∑
u

∑
v

(u.v)p(u, v) − μxμy

σxσy
(6)

where IMD is the inverse moment of differences, p(u, v)
is an element of gray level co-occurrence matrix (GLCM),
and (μx,μy) and (σx, σy) are the mean values and covari-
ances calculated using this matrix.
The remaining three elements of feature vector are

pixels, USV color, and components.
It is natural to suppose that the features space of “road”

and “non-road” classes are in nonlinear relation and that it
is not expected to obtain some linear hyper-plane which is
distinguishing these two classes in original feature space.
Following the results given in [17], a Gaussian radial basis
function (RBF) kernel is used as the SVM kernel function.
There are two classifying parameters: complexity param-
eter C and γ parameter. It should be found which one is
more appropriate for this discrimination. In order to do
so, the parallel validation relative to these two parameters
is done on the image belonging to DTD.
Due to the continuous dynamic changes of the road

contents as a result of camera motion, DTD should be
updated from time to time. It was chosen that after each
ten frames, the training databases for both classes are
refreshed by replacing a hundred of stochastically chosen
old members by a hundred of new ones, among the pop-
ulation of pixels already classified in the particular class.
The larger numbers of updated elements leads to exces-
sive impact of incorrectly classified pixels, while for too
low numbers of replaced sampled pixels, one can expect
low adaptation abilities.

After this step of classification, it is usual that there
would be a number of small unconnected groups of pix-
els around the road, classified as the “road”, as well as
the number of “holes” over the road region. In order to
eliminate such small aggregations of pixels, the algorithm
includes morphological operations “opening” and “filling
the holes”.
Online training upgrade of SVMmethod [16] is optional

but is very useful in the context of this application. Besides
the already mentioned updating the DTD, it includes the
evaluation of the performance of current classification.
This process is based on the basic assumption that the
road region consists from connected pixels. As a result
of this, “road” pixels detected outside the main region of
road as well as the “non-road” pixels located over the road
region are the sources of information on how the classifier
should be modified.

2.2 On-road obstacles extraction
2.2.1 Classification inside the “non-road” region
To extract the on-road obstacles, one has to remove two
kinds of image objects: the marks on the road and the
environment outside the road. It is supposed that the
markers on the road are going to be associated to the road
region in the previous process of road detection. The envi-
ronment around the road has been already classified as
“non-road” region in the first step of classification. This
step of algorithm is oriented toward the separation of the
whole “non-road” region into two subclasses: the “obsta-
cles on the road” and “everything else existing outside the
road”.
Figure 4 shows the result of detection of a road region

(a) and the template image of the road region (b) where
the black pixels are representing the road. After analyzing
of a particular row in the image, one obtains a profile as
shown in Fig. 5. Based on this line profile, white line seg-
ments that have two adjacent black segments on both the
left and right sides are the line segments belonging to the
on-road obstacles. By checking each row in the template
image of the road, this classification can be done. Figure 4c
shows the results of this classification. The overall class
of obstacles on the road is represented by gray pixels
on (d).
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Fig. 4 Phases of classification inside the “non-road” region. a The result of road region detection. b Road region template image. c The result of
region classification. d Obstacle region

2.2.2 Obstacles’ detection andmarking
After the latter classification phase, three regions (classes
of pixels) are obtained: road region, obstacles on the
road, and environment region, while the on-road obsta-
cle class is important only. This region contains multiple
objects of different sizes (Fig. 4d). As a first step, the small
objects (less than 50 pixels) are eliminated because they
are considered as the false obstacles.
The extracted obstacles should be tracked continuously

in the sequence of incoming frames. In order to pre-
pare this tracking phase, some area of interest should be
specified—the detected obstacles should be marked by
specifying some tracking window encompassing each of
them. Even the last step in the relative velocity estimation

Fig. 5 Line profile of pixel intensity values (260th row in the road
region image)

is strictly affected by the choice of this regular geometrical
shape corresponding to the particular obstacle. Figure 6
shows the different steps of marking the obstacles on the
road. Figure 6a shows the region of the real obstacle after
filtering unwanted objects. The red rectangle around this
region is shown in b which will be replaced in the next step
by the green square of the width equal to the base of red
rectangle as in c. The final representation of a search area
superimposed to the original image is shown in d.

2.3 Principle of tracking of the on-road obstacles
In order to estimate the relative velocities of the obsta-
cles, they should be tracked in sequence of frames. If
the camera is stationary, the difference between two con-
secutive images would be used as a natural source of
information which part of the image is belonging to the
stationary background and which part is candidate to be
associated to the moving object. In our particular case,
the camera itself is a moving object and tracking princi-
ple cannot be based on this reasoning. The previous step
in the proposed algorithm was ended by the extraction
of a rectangular area around the detected road obstacle,
and the focus of attention should be directed toward these
regions in the sequence of incoming images.
The very first idea could be to detect in the next frame

what is the position where the overall content of rectan-
gular window around the obstacle can be found, based on
some correlation measure. This principle would be obvi-
ously a time-consuming one and, moreover, sensitive to
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Fig. 6 a–d Phases of on-road obstacle marking

the expected scale and rotation transformations in both
cases of incoming and outgoing obstacles.
As a result of this, it is more appropriate to select among

all pixels inside the tracking window a subset of points that
are the characteristics according to some pre-specified
criterion and to track them from frame to frame. These
characteristic points (key-points) may vary a lot, based on
the principle of extraction and capabilities to preserve the
stability of the object features based on their choice. Refer-
ence [18] was the source of exhaustive survey of methods
related to the subject of specifying the points of interest as
well as to the descriptors associated to these points.
Basically, our choice was oriented toward the points

characterized by high value of local gradients. The illumi-
nation conditions between two consecutive frames are not
going to be changed in some appreciable amount, while
the local gradients would keep almost the constant values
in the presence of affine transformations.
Corners are usually used as the characteristic points,

since they can be used to compute an angular orienta-
tion for the feature. Sometimes, it is highly suggested
to apply some sort of low-pass filtration as a first step
in order to reduce the influence of the noise. This way,
some combinations of LP and HP filtration, (Laplacian
of Gaussian—LOG—is the typical example) are used to
extract the corners as points of interest.
The well-known Harris detector [19] was analyzed as a

first among the appropriate candidates for characteristic
points extraction and description. While some very good

tracking results have been obtained using Harris detector
in a number of typical road scenarios, it was decided that
some more complex description of the neighbourhood
around the “high gradient” points is preferable in order to
overcome the problems when the obstacle changes its size
and orientation rapidly, which is typical when the incom-
ing vehicle closely approaching the camera, or the other
vehicle is just over-passing the vehicle where the camera
is mounted.
The next choice in this direction was the choice of

SIFT (Scale Invariant Feature Transform) algorithm. SIFT
belongs to spectra descriptors, typically involving more
intense computations in floating point. It is developed by
Lowe [20, 21] and provides the way of finding interest
points and feature descriptors, invariant to scale, rotation,
illumination, affine distortion, perspective and similarity
transforms, and noise. SIFT includes stages for selecting
center-surrounding circular weighted difference of Gaus-
sian (DoG) maxima interest points in scale space to create
scale-invariant key-point. While the SIFT algorithm can
be considered as the most powerful for this purpose, it is
a rather complex for any kind of real-time applications.
As a natural candidate based on SIFT principles, we

considered the SURF algorithm [22] as a version reducing
the computing time. The SURF algorithm is composed of
three consecutive steps [22, 23]. The first step is the detec-
tion of interest points, and the second step is building the
descriptor associated with each of the interest points. The
last step is descriptor matching.
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2.3.1 SURF algorithm
SURF was developed to improve the speed of inter-
est point detector, descriptor generation, and matching.
SURF uses a very basic Hessian matrix approximation for
feature point detection. At a point p(x, y) in an image I,
Hessian matrix inH(p, σ) at scale is defined as follows:

H(p, σ) =
[
Lxx(p, σ) Lxy(p, σ)

Lyx(p, σ) Lyy(p, σ)

]
(7)

where Lxx(p, σ) is the convolution of the Gaussian second-

order derivative
∂2

∂x2
g(σ ) with the image I in point x, and

similarly for Lxy(p, σ) and Lyy(p, σ). The authors approx-
imate the Hessian matrix with box filters approximating
second-order Gaussian derivatives and the filtering can
be performed using integral images with a very low com-
putational complexity while the calculation time is inde-
pendent of the filter size. Let Dxx,Dxy, and Dyy be the
approximations of Lxx, Lxy, and Lyy respectively.
The filter responses are further normalized with respect

to their size, which guarantees a constant Frobenius norm
for any filter size. With the Frobenius norm remaining
constant for the box filters at any size, the filter responses
are scale normalized and require no further weighting.
The construction of the scale space starts with the 9 × 9
filter. Then, filters with sizes 15× 15, 21× 21, and 27× 27
are applied (Fig. 7).
The dominant orientation assignment for the local set

of HAAR features is found using a sliding sector window
of size �

3 . This sliding sector window is rotated around
the interest point at intervals. Within the sliding sector
region, all HAAR features are summed. This includes both
the horizontal and vertical responses, which yield a set of
orientation vectors. The largest vector is chosen to repre-
sent dominant feature orientation. By way of comparison,
SURF integrates gradients to find the dominant direction.
To create the SURF descriptor vector, a rectangular grid

of 4 × 4regions is established surrounding the point of
interest, and each region of this grid is split into 4 × 4
sub-regions. Within each sub-region, the HAAR wavelet
response is computed over 5 × 5 sample points. The final
descriptor vector is of dimension 64: 4 × 4 regions with
four parts per region.

2.3.2 Proposed tracking algorithm

Algorithm 1 On-road obstacles tracking
1: Begin
2: Extraction of obstacles from the frame N◦1;
3: for i = 2 → Number of frames do
4: Extraction of obstacles from the frame N◦i;
5: for j = 1 → Number of obstacles in frame

N◦i − 1; do
6: Test = false;
7: for k = 1 → Number of obstacles in frame

N◦i; do
8: Test = SURF(frame i − 1, frame i,
9: obstacle j, obstacle k); � search if

the obstacle j in the frame i-1 matches obstacle k in the
frame i.

10: if Test then
11: obstacle k = obstacle j;
12: end if
13: end for
14: if Test == false then
15: lost obstacle;
16: end if
17: end for
18: The remaining obstacles are the new ones;

end for
19: end

The key-points are extracted from the rectangular
regions detected after the step described in Section 3.2.
These key-points are described as vectors in the descrip-
tion step. The next step is the matching. Several vectors
from a database are matched against new vectors from
a new input image by calculating the Euclidian distance
between these vectors. This way the objects can be rec-
ognized in a new frame. When the sufficient number of
matched points is found, particular obstacle is marked as
recognized and it is not tested more. Some new obsta-
cles would appear in this new frame, and they will be
considered in the next one, while there would be the
cases that some of previously existing obstacles are now
vanishing or are not recognized. Unmatched obstacles

Fig. 7 Filters Dxx (left) and Dxy (right) for two successive scale levels (9 × 9 and 15 × 15)
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would be treated in the next frames as the new ones. The
pseudo-code illustrating this part of algorithm.

2.4 Calculation of relative positions, velocities, and
classification of the on-road obstacles

2.4.1 General case of a reconstruction of camera’s spatial
and angular position

The spatial and angular position of a camera [24] (mov-
ing coordinate frame Ocxcyczc (CCF)) can be calculated
relative to the outer stationary coordinate frame (OIxIyIzI
(ICF)) according to the general relationships illustrated in
Fig. 8. Transformation matrix between these two coor-
dinate frames is defined as TO = T1(φ)T2(ϑ)T3(ψ),
where the angular orientation of a camera relative to
ICF is defined via a set of Euler angles of jaw, pitch,
and roll (ψ ,ϑ ,φ), and Tii = 1, 2, 3 are the elementary
matrix transformations. This rotational transformation is
followed by translation specified by position vector �R:

�eC = TO�eI ; �R = xO�eI1 + yO�eI2 + zO�eI3 (8)

In order to reconstruct the scene depth, |�R|, one should
know some a priory information about the distance |OIM|
between two points inside the scene (e.g., the distance
between the point M in horizontal plane of ICF and
coordinate origin OI as is illustrated in Fig. 8).
In practice, position reconstruction is based on detec-

tion of a rectangle ABCD, in the horizontal plane of ICF
with coordinate origin OI at the cross-section of diag-
onals, the axis OIxI parallel with AB (in direction of a
vanishing point P), and the axis OIyI parallel with BC (in
direction of a vanishing point Q), (Fig. 9).
For this particular application, parallel road lane borders

are used to specify vanishing point P (direction of OIxI ),
and the direction of OIyI is perpendicular to it (according
to the condition �mP �mQ = 0), while the lane-width is used
as a priory known distance in ICF.

Fig. 8 Illustration of a general case of camera’s position reconstruction

Fig. 9 Position reconstruction procedure

“m-vector” for any image point is generally defined as:

�m =
⎡

⎣
m1
m2
m3

⎤

⎦ = f

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc
xc
yc
xc
yc
xc

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡

⎣
f
xL
yL

⎤

⎦ ; xc �= 0 (9)

where f is a focal distance, (xc, yc, zc) are the coordinates of
a point represented in CCF, and (xL, yL) are its coordinates
in the focal plane.

2.4.2 Position of an obstacle relative to the camera
To calculate the position of an on-road obstacle rela-
tive to a camera mounted on the moving vehicle, one
should apply the principle illustrated in Fig. 9. This prin-
ciple is illustrated here on an example of synthesized
sequence of images, assuming the angular orientation of
camera (0◦, 0◦,−5◦), field of view ±15◦, and focal dis-
tance f = 5 mm. As a first step, one has to extract the
borders of the lane in the lower part of image, where
they are parallel. The reference rectangle ABCD now is
as shown in Fig. 10a with a priory known the informa-
tion: (AD)//(BC), (AB)//(CD) and the width of the lane
(3 m in this example). Vanishing point P is the intersec-
tion of AD and BC,Q is the intersection of AB and DC,
and O is the center of the rectangle ABCD. Figure 10b
shows the result of calculating the scene depth using the
information about distance |OE| which is equal to one
half of the lane-width and the position of the camera rel-
ative to the virtual point O ( �R vector). The next step is
calculating the distance to each of the obstacles on the
road by providing the virtual point O using the scene
depth, but here, the unknown quantity becomes |OIM| =
|OO1|. Point O1 is the center of the base of the green
square (the result of algorithm described in Section 3).
Figure 10c illustrates this last step in calculation of a
scene depth to the point O1, while in Fig. 10d, the camera
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Fig. 10 a–d Illustration of a camera’s position reconstruction

distance from the obstacle is shown. The estimated rel-
ative position is (−29.38,−3.07, 1.51)[m], while the real
was (−30,−3.15, 1.5)[m], introducing the relative error of
(2.1, 2.5, 0.67)%.

2.4.3 Relative velocities
To calculate the relative velocity of each of the obstacles on
the road, one should first calculate the relative positions in
consecutive time instants t and t + 1, as shown in Fig. 11,
using the relation:

Vob = Rt+1
ob − Rt

ob
�t

(10)

2.4.4 Classification
VRelative = VObstacle − VCamera

⇒ VObstacle = VRelative + VCamera (11)

The classification is done according to:

VObstacle = 0 ⇒ Stationary
VObstacle < 0 ⇒ incoming
VObstacle > 0 ⇒ outgoing (12)

Fig. 11 a–c Illustration of a relative velocity calculation
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2.4.5 Potential obstacles
Besides the obstacles that are already existing on the road
that should be classified according to their velocities rela-
tive to the moving camera, there are some objects poten-
tially suddenly incoming onto the road from the lateral
sides. These are pedestrians who are irregularly cross-
ing the street or vehicles making some parking maneuver
nearby the street car track, animals on the road, etc.While
it was shown that the initial classification of the road
surface is possible to make by proper characterization
based on color and texture features, the same approach is
practically not possible to apply when one considers the
neighboring non-road region, due to a huge diversity of
all possible continuously changing “out-of-the-road” back-
grounds. In order to take into account these potential
obstacles, they should be detected also and characterized
among themselves relative to their velocity component
perpendicular to the road orientation, in the following way.
Firstly, the vanishing point P should be determined as

the intersection of the lane and road border lines. Then,
the neighboring strip close to the road on the right side
(3 m in width and 30 m in length) could be extracted and
considered from its light intensity distribution point of
view. All pixels with a light intensity outside the region
specified as ±σ (standard deviation) around the mean
value are the candidates to represent the potential objects.
The realistic images require somemorphological filtration
of erosion type in order to eliminate small groups of pixels
after this segmentation. After that, the relevant groups of
pixels are aggregated and their centroids are representing
the potential objects’ positions. Their positions and veloc-
ities in direction perpendicular to the road orientation are
calculated in the same manner as for the obstacles already
appearing on the road. Objects that aremoving toward the
road are classified as potential suddenly incoming obsta-
cles. Their detection on the road (if they appear) is going
to be done in the regular way as for the other road obsta-
cles, but their existence is a type of alarm because their
appearance might require some immediate reaction (fast
stopping, sharp maneuver,...).

3 Results and discussion
3.1 Experimental results of the road region extraction
3.1.1 Comparison of results obtained by SVMmethod and

color onlymethod
The results of the road region extraction are shown in
Fig. 12. The typical images representing the highway
scenario, country road, and a street scene in an urban
environment are exploited.
The first row on Fig. 12 shows that the initialization of

DTD should select possible roadmarkers (lane separators)
as a part of road region. Similarly, when some areas in the
image are initially designated as the road environment, the
representative pixels of near and far environment should

be included. These were the criteria for positioning the
selecting windows on the images, while their shapes and
sizes are of no particular importance since the selection of
1000 points inside each rectangle is used. The second row
in Fig. 12 shows the results of SVM classification made
on these test pictures. It is obvious that some morpholog-
ical erosion procedures are needed in all cases, while the
need for filling of holes on the road was not frequently
present. The third row illustrates the situation when the
final classification results are superimposed onto the orig-
inal image. In order to show the superiority of the used
classification method, the fourth row represents the final
classification results if the color feature is used only (ini-
tialization and morphological processing have been the
same).

3.1.2 Comparison of results between offline learning and
online learning

Figure 13 shows three illustrations of advantages of online
training upgrade.
In the first example (a), the initial sampling acquired the

shadowed part of road but not in a sufficient way. The
second example (b) represents the case where the back-
ground was not encompassing the sky region. In the third
example (c), one can see that the surrounding buildings
are misclassified as a road because of the lack of learning.
Results obtained via offline learning are shown in the sec-
ond row, while the online upgrade resulted in the binary
images shown in the third one. After the morphological
processing, the resultant classification of offline learning
are superimposed in the original images in the fourth
row. The results of the online learning, clearly showing
superiority, are illustrated in the fifth row.

3.2 Experimental results of the on-road obstacles
extraction

Figure 14 shows the different steps of the on-road obsta-
cles detection in a sequence of digital images. the first row
illustrates the final classification results of the road region
using SVM method. The second row shows the result
of the real obstacle extraction. The third row represents
the final representation of a search area superimposed
onto the original image. Some of the tall vehicles, like
the trucks, are not going to be fully encompassed by this
type of tracking window, some low-profile cars would not
fill the tracking window completely, but the choice of a
square-shaped tracking window seemed as a reasonable
compromise.

3.3 Experimental results of the on-raod obstacles tracking
3.3.1 Comparison between Harris, SIFT, and SURF
Running time
The average time spent on key-point extraction,

description, and matching, normalized by the total
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Fig. 12 The process of basic road detection algorithm and comparison of results obtained by SVM method and color only method. 1st row: the
original image and sampling windows. 2nd row: the classification results (Red is road class. Yellow is non-road class). 3rd row: the results of
morphological filtration of SVM method. 4th row: the results obtained by the color only method

number of key-points processed are compared. The
results were obtained on an Intel(R) Core(TM) i5-4210
CPU @ 1.70 GHz, 1.70 GHz, and 8 GB of RAM using
the Matlab library implementations for each detector,
descriptor, and matching scheme. The results in Fig. 15a
clearly show that Harris detector spends approximately
0.75ms on each feature, while SIFT spends 3ms and SURF
spends approximately 1ms. SIFT and SURF compute at all
scales, but SURF is most likely because tSIFT 	 3 × tSURF.
Number of matches
Figure 15b shows the number of matching points

obtained by Harris detector, SIFT, and SURF algorithm.
Harris detector generates approximately 15 matches, and
in other case, using the SIFT algorithm, it generates
approximately 53 matches. The accelerated variant of
SIFT is SURF, and it generates approximately 31 matches
which is very accepted if the running time of each algo-
rithm is taken into consideration.

3.3.2 Experimental results of the on-road obstacles tracking
As it is illustrated in Fig. 16, two outgoing vehicles are con-
sidered as obstacles in series of pairs of two consecutive
frames, on 40 [ms] interval. The number of matches of
characteristic points between the pairs of tracked obsta-
cles is enough sufficient, especially having in minds the
fact that there were no false matches between the dif-
ferent obstacles at all. As it was expected, the number
of characteristic points and matched ones is obviously

greater when the obstacle is closer to the camera. The
second row in Fig. 16 illustrates the final result of the
tracking.

3.4 Results of calculation of relative positions, velocities,
and classification of the on-road obstacles

3.4.1 Simulation results of relative position calculation
The above described algorithm of relative position cal-
culation was first tested through a simulation of the
tracked vehicle, assumed to perform a uniform move-
ment. Although the image of the obstacle seen by
the camera is “calculated” by the simulator, the pro-
cessing chain implemented (incorporating the detection
phases/tracking and extraction of the primitive of inter-
est) is exactly the one to be used in real cases of images.
The tracked vehicle undergoes a uniform speed defined
by the vector (12.5, 0, 0)T [m/s] and an initial position
defined by the vector (70.5, 0, 0)T [m]. It is important to
note in this test, the vehicle carrying the camera under-
goes a uniform speed defined by the vector (21.25, 0, 0)T
[m/s] and an initial position defined by the vector
(0, 0, 0)T [m].
The results obtained at the end of the simulation are

shown in Fig. 17. These show the estimates of the coor-
dinates of the reference point in comparison to the
actual data, imposed by the simulated spatial relationships
between the obstacle/vehicle and the vehicle carrying the
camera. It is obvious that the error increases with the
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Fig. 13 a–c Comparison of results between offline learning and online learning

distance between the two vehicles. This is basically due
to the fact that as the vehicle moves away, its relative
size in the image decreases, affecting the image finite
resolution that becomes more important. In order to
improve the estimates of the relative position for further

objects, one can consider the usage of additional camera
with a narrow field of view, mounted above this one. The
overall task of tracking and position estimation could be
done by proper fusion of data collecting from these two
cameras.

Fig. 14 On-road obstacles extraction
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Fig. 15 a, b Comparison between three different tracking methods: Harris detector, SIFT, and SURF

3.4.2 Simulation results of relative velocities calculation
Figure 18 shows a comparison between the real and the
estimated relative positions and velocities of a simulated
moving obstacle on the road. It may be noted that the
actual relative velocity was uniform (V = −8.75m/s). The

estimated relative velocity oscillates around this value.
The error is increasing with the distance between the two
vehicles.
A simple moving average filter is applied to solve this

problem while its dimension (window size) has been

Fig. 16 Experimental results of the on-road obstacles tracking
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Fig. 17 Relative position estimation

dynamically adapted according to the estimated distance
as it is shown in Fig. 19.

3.4.3 Simulation results of the classification
For the specified scenario including four different vehicles
as shown in Fig. 20. In the sequence of frames with 400
[ms] inter-frame interval, the comparison results between
the estimated and real classification are shown in f and
g, respectively. Three areas can be distinguished: the red
zone for incoming vehicles, green zone for outgoing ones,
and the white area for stationary obstacles/vehicles. Col-
ors of curves correspond to the color of the vehicles. The
estimated results are consistent with actual data.
The illustration of detecting potentially incoming obsta-

cles coming from lateral direction is given on Fig. 21. The
first row represents the sequence of four images illus-
trating the potential obstacles in the strip aside the road.
Some of them are stationary while the others are moving

Fig. 18 Comparison between the real and estimated relative positions
and velocities

toward the road or out of the road. The result of detection
of groups of pixels representing the potential obstacles is
given in the second row. The third row of Fig. 21 is con-
sisting from the original sequence where the object’s labels
and the calculated data about their positions and lateral
velocities are superimposed. The fourth row distinguishes
the “dangerous” objects moving toward the road, as it is
also visible from the fifth row where the lateral veloci-
ties of all objects are represented, while two of them are
moving in direction toward the road.

3.4.4 Experimental results of the classification
Figure 22 shows a real scenario of a road traffic, presented
by a sequence of digital images captured by a monocular
cameramounted on amobile vehicle. In this sequence, the
inter-frame interval is 400 [ms]. Each frame contains two
vehicles (black and blue) which are moving with different
speeds. Figure 22f represents the estimation results of the
relative distance for each vehicle. The vehicles velocities

Fig. 19 Size of averaging filter in dependence to distance from the
obstacle



Bendjaballah et al. EURASIP Journal on Image and Video Processing  (2016) 2016:41 Page 15 of 17

Fig. 20 a–g Classification of the on-road obstacles (synthesized sequence of frames)

and their classifications are shown in Fig. 22g where it
can be seen that both of them represent an outgoing
obstacle.

4 Conclusions
The algorithm of an automatic classification of the
on-road obstacles according to their relative velocities
is presented here as a prerequisite for an application
of the automatic control system for obstacle avoidance.
The on-road obstacles have to be detected firstly, then
described properly in order to enable their tracking from
frame to frame. Our choice on these two steps have
been oriented toward rather complex methods: SVM
based on eight component vector (color + texture) for
the recognition of a road area and SURF based on 64
component vector for the description and tracking of
characteristic points inside the tracking windows. These
steps are verified using the realistic road-traffic images.
The effects of choice of these complex methods onto
the accuracy of detection and tracking have been shown
partially, comparing them with the simpler approaches
in road detection and obstacle’s characterization, and
showing the superiority. Consequently, the higher com-
putational cost must be paid and the ability to imple-
ment the algorithm in real time might be compromised.
Our further research will be oriented more toward the
algorithm implementation based on recent results in

parallel processing and new types of image coding given
in [25–28].
The final step of verification that was related to the

estimation of distances to the obstacles and their rates
of change was made using the synthesized sequences
representing the simulatedmotion of the camera andmul-
tiple vehicles as well as on the sequences from the real
driving.
These results have shown highly acceptable accuracy of

estimated relative velocities of obstacles. The automatism
of this algorithm is reduced by the very first requirement
that the operator should point onto the regions in the
image which are typical representatives of road and non-
road, but from that point on, nothing is required as a
human intervention. A priory knowledge of some road
measures, as lane-width, could be easily provided from
the vehicle global positioning system and digital map of
the road. A number of practically important algorithm
parameters have been analyzed and specified. They are
regarding to the part of the field of view usable for basic
orientation on the road, minimal size of tracked vehi-
cles, minimal correspondence of the characteristic points
required for the reliable tracking of obstacles, the size of
an averaging filter used in estimation of relative velocity,
etc. The future work will be oriented toward further ver-
ification of the algorithm using controlled experiments in
real road-traffic situations.
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Fig. 21 Classification of potential obstacles (synthesized sequence of frames)

Fig. 22 a–g Classification of the on-road obstacles (real scenario)
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