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Abstract

Reversible watermarking is a kind of digital watermarking which is able to recover the original image exactly as well
as extracting hidden message. Many algorithms have aimed at lower image distortion in higher embedding capacity.
In the reversible data hiding, the role of efficient predictors is crucial. Recently, adaptive predictors using least square
approach have been proposed to overcome the limitation of the fixed predictors. This paper proposes a
novel reversible data hiding algorithm using least square predictor via least absolute shrinkage and selection
operator (LASSO). This predictor is dynamic in nature rather than fixed. Experimental results show that the
proposed method outperforms the previous methods including some algorithms which are based on the
least square predictors.

1 Introduction
Reversible data hiding technique embeds data into host
signal such as text, image, audio, or video with the func-
tionality of recovering original signal as well as extracting
hidden data. It can be utilized for various purposes such
as military or medical image processing which requires
the integrity of the original image.
Difference expansion invented by Tian [1] is a funda-

mental technique for reversible data hiding that expands
the difference value of a pair of pixels to hide one bit
per pair. Alattar [2] proposed an embedding method
using difference values among a triplet of pixels to hide
two bits per triplet. In addition, he showed that three
bits can be hidden into a quad [3].
After that, prediction error expansion (PEE) was pro-

posed by Thodi and Rodriguez [4] as a generalized form
of difference expansion. Prediction error which means
difference between the original pixel and the predicted
pixel is expanded for reversible data hiding. Probability
distribution function of the prediction errors is sharper
and narrower than that of the simple difference of the
pixel values, which is better for reversible data hiding.
Small distortion with large embedding capacity is a
desirable feature of the reversible data hiding. Thodi and
Rodriguez [4] also used the median edge detector

(MED) as a predictor introduced for the lossless image
compression standard such as JPEG-LS [5].
Chen et al. [6] compared the performances of many

predictors such as MED, 4th-order gradient-adjusted
predictor (GAP) employed in context-based adaptive
lossless image compression (CALIC) [7], and the full
context prediction [6] using the average of the four closest
neighbored pixels. Full context prediction using rhombus
pattern and sorting method is also proposed in [8] by
Sachnev et al. These are all classified as fixed predictor in
[9].
Full context rhombus predictor has the best performance

among all fixed predictors [6]. That is the reason why many
papers implemented embedding algorithm based on the full
context rhombus predictor [10–13].
On the other hand, various papers [14–16] focused on

improving PSNR performance in small embedding capacity.
Dragoi and Coltuc [16] utilized the rhombus pattern even
in small embedding capacity and obtain a good result.
However, the problem of these methods have small embed-
ding capacity. The optimization scheme such as least
square approach is essential for high embedding capacity as
well as small image distortion.
Adaptive predictors using least square approach are

also introduced in many papers [17, 18] and applied in
reversible data hiding [19, 20]. Edge-directed prediction
(EDP) is a least square predictor which optimizes the
prediction coefficients locally inside a training set. Kau
and Lin [17] proposed edge-look-ahead (ELA) scheme
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using least square prediction with efficient edge detector
to maximize the edge-directed characteristics. Wu et al.
improved the least square predictor by determining the
order of predictor and support pixels adaptively [18].
All of these predictors’ performance was properly

compared in several papers [17, 21]. However, all these
adaptive predictors` performance was not able to out-
perform the simple rhombus predictor, because those
had to use the only previous pixels of the target pixel
while the rhombus predictor utilized four neighboring
pixels [6].
Dragoi and Dinu [9] and Lee et al. [20] improved the

least square predictor by modifying traditional training
set consisting of only previous pixels of the target pixel.
Dragoi and Dinu utilized training set with pixels in
square shaped block surrounding the target pixel. Only
half of the pixels within the block are original pixels and
the other half are modified ones after data embedding.
Least square predictor in [20] includes four neighboring
pixels as well as a subset of previous pixels for the training
set. Their predictor divides an image into cross and dot
sets. When embedding data in the cross set, predictor uses
training set consisting of the original pixels, while in the
dot set, it uses half-modified training set. Therefore, both
techniques clearly outperform the previous least
square predictor [19] and the rhombus patterned fixed
predictor [8].
Least square approach is one of the most advanced

types of adaptive predictor in reversible data hiding.
However, in statistics, it is well known that penalized re-
gression approach which accompanies efficient variable
selection can lead to finding smaller and more necessary
supports for the purpose of good prediction accuracy.
In this paper, we propose a reversible data hiding tech-

nique using the least square predictor via penalized

regression method called the least absolute shrinkage
and selection operator (LASSO) to overcome weaknesses
of the existing prediction methods.
In addition to the difference expansion method, histo-

gram shifting (HS) method [22] has played important role
in the reversible data hiding community. It provides less
distortion to that difference expansion method. However,
in most cases, two methods are used as a single algorithm.
One of the mainstreams of the reversible data hiding is
utilizing a combination of histogram shifting and predic-
tion error expansion (PEE + HS) with good predictors.
Comprehensive explanation of the various algorithms and
their application can be available at [23].
The organization of this paper is as follows: section 2

explains the related works on which the proposed
method is based on, section 3 presents the proposed
algorithm, section 4 presents experimental results to
show that the proposed algorithm is superior to other
methods, and section 5 presents the conclusion.

2 Related works
2.1 Two-stage embedding scheme using rhombus pattern
Among fixed predictors, rhombus scheme has the best
performance compared to other kinds of predictors such
as GAP, MED, and CALIC [6]. In the rhombus pattern,
two-stage embedding scheme was proposed by Sachnev
et al. [8]. They divided an image into two kinds of non-
overlapping sets of pixels with a rhombus pattern. In
other words, it consists of two sets, so-called cross set
and dot set as shown in Fig. 1. Their predicted value is
obtained by the average value of four neighboring
pixels around the target pixel. For example, a pixel
which belongs to the cross set is predicted by the four
closest pixels which belong to the dot set as shown in
Fig. 1. Because of its effective grouping, it succeeds in

Fig. 1 Two-stage embedding scheme
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forming full context prediction and makes the out-
standing improvement of the prediction accuracy over
all other prediction methods which have support
pixels including only the previous region of the target
pixel. In other words, it is very difficult to design more
advanced rhombus pattern predictor, despite the high-
order modeling such as CALIC [7] and piecewise 2D
auto-regression (P2AR) methods having many support
pixels [6, 17, 18]. It turns out that accuracy of the
predictor depends on not only the order but also the
location of support pixels. Therefore, we adopt the
rhombus pattern predictor and the two-stage embed-
ding scheme in this paper.

2.2 Linear prediction
2.2.1 Least square approach
The coefficients for support pixels are computed adap-
tively by the least square (LS) methods in linear predic-
tion. It is one of the most advanced types of adaptive
predictor, and it normally can provide better perform-
ance than fixed predictors [6, 9]. The fixed predictor
uses the fixed coefficients. However, adaptive predictor
computes the coefficients dynamically according to the
context.
In this paper, we use x(n) to denote a current target

pixel, where n is the spatial coordinate in an image.
Suppose that an image is scanned in a raster-scanning
order, and x(n) is predicted by its causal neighboring
pixels. According to the N-th order Markovian property,
the predicted value is computed by N neighboring pixels
as follows:

xp nð Þ ¼
XN

k¼1

β kð Þx n−kð Þ; ð1Þ

where β(k) is a prediction coefficient for the k-th support
pixel.
LS predictor works adaptively to the local features

around the target pixel on a pixel-by-pixel basis [17]. In
other words, the relations between each training set
pixel and its support pixels are exploited usefully for
predicting the relation between the target pixel and its
support pixels as shown in Fig. 2.
The prediction coefficients are optimized locally inside

each training set. A convenient choice of the training set
is shown in Fig. 2 enclosed by blue lines, which contains
M = 2L(L + 1) causal neighboring pixels. Let us denote
the pixels in the training set by a M × 1 column vector
as follows:

Y ¼ y1 nð Þ y2 nð Þ ⋯ yM nð Þ½ �T ð2Þ
Each pixel in the training set has the support pixels

which consist of the N closest red-colored cross pixels
as shown in Fig. 2. Then, the pixels in the training set
and their support pixels would form an M × N matrix X
as follows:

X ¼
x1 n−1ð Þ ⋯ x1 n−Nð Þ

⋮ ⋯ ⋮
xM n−1ð Þ ⋯ xM n−Nð Þ

2
4

3
5 ð3Þ

where xj (n–k) is the k-th support pixel of training set
pixel xj (n). The prediction coefficients are obtained
through LS optimization inside the training set:

Fig. 2 An example of a training set (in gray color) and a set of support pixels (with red crosses)
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min Y−Xβk k ð4Þ
It is a well-known fact that the P2AR optimization has

a closed-form solution as follows:

β ¼ XTX
� �−1

XTY
� � ð5Þ

where β = [β(1) β(2) ⋯ β(N)]T is the optimized predic-
tion coefficients which have to be multiplied by the sup-
port pixels. It provides an optimal prediction locally
inside the training set.

2.2.2 Penalized regression using LASSO
Penalized regression methods aim at simultaneous vari-
able selection in coefficient estimation. In practice, even if
the sample size is small, a large number of support pixels
are typically included to mitigate modeling biases. With
such a large number of support pixels, there might exist
multicollinearity problems among explanatory variables X.
Thus, selecting an appropriate size of the support pixels in
a subset is desirable. Penalized regression can be an
effective tool for such a selection.
Among methods that do both continuous shrinkage

and variable selection, a promising technique called the
LASSO was proposed by Tibshirani [24]. The LASSO is
a penalized least squares procedure that minimizes the
residual sum of squares (RSS) subject to the non-
differentiable constraint expressed in terms of the L1
norm of the coefficients. That is, the LASSO estimator
is given by

βL ¼ argmin Y−Xβð Þ0 Y−Xβð Þ þ λ
X

j¼1

p
βj

���
��� ð6Þ

where λ ≥ 0 is a tuning parameter.

Regarding the choice of the best parameter λ in Eq. (5),
we utilize the Bayesian information criteria (BIC) intro-
duced by Schwarz [25], through which we select a model
that maximizes the posterior probability P[model| Y],
where the model is subject to λ. Schwarz presents the
approximation to the posterior probability for the iid (in-
dependent and identically distributed) case:

BIC ¼ −2⋅l β̂
� �

þ p⋅ log nð Þ; ð7Þ

where l β̂
� �

is the log-likelihood equation evaluated at
the maximum likelihood estimate under the model of
interest, p is the degree of freedom of our estimator, and
n is the number of observations. It is interesting to note
that the BIC adjusts the trade-off between the likelihood
and the degree of sparseness so that the model maxi-
mizes the posterior probability.

3 Proposed algorithm
Compared to existing reversible data hiding methods,
the proposed method provides improved performance
by using a more accurate predictor. The proposed idea is
mainly based on two-stage embedding system of Sachnev
et al.’s idea. We focus on improving prediction accuracy by:

� Applying least square predictor which is able to
obtain adaptive weigh for each support pixel.

� Applying LASSO penalized regression to least
square predictor on purpose of selecting the
number and location of support pixels adaptively.

3.1 Least square predictor based on rhombus scheme
Basically the proposed predictor is based on the two-
stage embedding scheme using rhombus pattern [8]. It is

Fig. 3 A set of support pixels surrounding a target pixel (in the red box) of the proposed predictor (N = 26)
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combined with the LS-based adaptive predictor [17] in
the proposed method. Thus, support pixels of the pro-
posed method consist of surrounding pixels around y(n)
as shown in Fig. 3. A shape of a training set is shown in
Fig. 4 in gray color.
Due to the property of two-stage embedding scheme

[8], there are some pixels which should be excluded
from the training set. Suppose that we embed a bit in
dot set first. In Fig. 4, (in case of N = 9), basically all
pixels of the cross set in the past of target pixel can be

included in the training set and all pixels in the dot
set such as E1,E2,E3,E4,E5, and E6 should be excluded
from the training set because those pixels break
reversibility. In other words, those pixels use at least
one support pixel which is located in or behind target
pixel.

Table 1 The sample of prediction coefficients for support pixels

Index i x(n − i) βi
LS-based LASSO

0 N/A −26.393 −13.395

1 124 −0.022 0

2 84 0.337 0.228

3 123 0.499 0.458

4 77 0.417 0.374

5 95 0.459 0.434

6 141 −0.449 −0.312

7 98 0.073 0

8 146 −0.215 −0.084

9 113 0.168 0.021

10 46 −0.230 −0.086

11 84 −0.053 −0.069

12 59 0.154 0.094

13 73 −0.042 0

14 101 0.153 0.072
Fig. 5 An example of a target pixel (in the red box) and its support
pixels (N = 14)

Fig. 4 An example of a training set (in gray color) for prediction (L = 5)
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Suppose that we have M training set pixels excluding
the above improper pixels according to the size T. Each
pixel has N support pixels. Then, it forms an M × N
matrix X as shown in Eq. (3). However, the proposed
method applies one more idea to use more proper sup-
port pixels for the purpose of improving the accuracy of
the LS-based predictor.

3.2 Applying penalized regression via LASSO
LS-based prediction method, an adaptive predictor,
can be improved by using penalized regression. In the
proposed method, LASSO is utilized for penalized
regression. LS predictor provides an adaptive coeffi-
cient value, but penalized regression can make LS
method be more adaptive. By the proposed method,
we can penalize and remove some support pixels
which are not influential to the target pixel. In other
words, we can estimate the location of the most

critically influential support pixels as well as their
prediction coefficients.
The following example explains how the proposed

method achieves better performance. For example, in
Fig. 5, when the target pixel value y(n) is 83, its support
pixel values are x(n − 1) = 124,, x(n − 2) = 84,∙and x(n − 14)
= 101 (see Fig. 3). Prediction coefficients are obtained
from the LS-based approach and LASSO penalization.
After the LASSO penalization, prediction coefficients for
the blue colored pixels such as x(n-1), x(n-7), and x(n-13)
become zero as shown in Table 1, which means that the
number of the support pixels for the target pixel is
reduced as shown in Fig. 6. The left-hand side and the
right-hand side show the support pixels before and after
the LASSO penalization, respectively. By removing the
uncorrelated support pixels, prediction error gets smaller.
Table 1 shows that the coefficients of 124, 98, and

73 are smaller than others in magnitude. Thus,

Fig. 7 Encoder and decoder of the proposed method

Fig. 6 The result of LASSO penalization: before (left) and after (right)
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LASSO assigns 0 values to them and remove those
pixels from the support pixels.
The LS-based approach calculates the predicted

value xp as 74, and the LASSO penalization calcu-
lates it as 81 according to Eq. (1). LASSO estimates
the target pixel more exactly because its given value
is 83.

3.3 Encoder and decoder
This section describes the main step of the encoding
and decoding processes. The proposed idea is explained
more explicitly step by step with the description of the
full process.

3.3.1 Encoder
Original image is divided into the cross set and the dot
set for two-stage embedding as shown in Fig. 7. Embed-
ding procedure starts at the cross set, and pixels are
processed in raster-scanning order starting from the
upper left corner. The cross set embedding procedure is
as follows:

1. Compute local variance value for all pixels. Find the
threshold value of the local variance values which is
able to meet the embedding capacity.

2. Determine which pixels have smaller value of local
variance comparing with the threshold value of local

Table 2 Comparison in terms of average PSNR(dB) for low
embedding capacities(lower than 0.5 bpp)

Image Sachnev et al. Lee et al. Dragoi and Coltuc Proposed

Sailboat 42.06 43.59 43.32 44.10

Barbara 45.32 46.75 46.19 47.01

Baboon 37.60 38.48 38.32 38.69

Boat 42.45 43.92 44.28 44.64

Pepper 42.09 44.19 44.30 44.40

Lena 46.96 46.94 47.32 47.33

Goldhill 44.26 44.06 44.76 44.76

Couple 44.34 44.55 45.02 44.84

House 50.21 50.44 49.67 50.69

Airplane 50.80 49.91 49.89 50.78

Elanie 40.75 42.76 42.35 42.95

Cameraman 55.11 54.55 55.24 54.60

Pirate 39.57 39.77 41.38 39.94

Tiffany 47.80 48.30 47.84 48.33

Average 44.95 45.59 45.71 45.93

Average gain 0.982 0.344 0.226 —

Table 3 Comparison in terms of average PSNR(dB) for high
embedding capacities(higher than 0.5 bpp)

Image Sachnev et al. Lee et al. Dragoi and Coltuc Proposed

Sailboat 33.83 34.38 34.72 35.13

Barbara 34.64 38.56 37.87 39.14

Baboon 28.38 29.71 29.17 29.92

Boat 34.46 36.37 36.23 36.92

Pepper 34.17 36.56 35.69 36.88

Lena 39.32 39.60 39.69 40.02

Goldhill 36.16 36.21 36.57 36.73

Couple 36.08 36.82 37.08 37.04

House 39.15 40.27 40.53 40.57

Airplane 42.25 42.18 42.17 42.41

Elanie 32.26 34.72 34.10 35.02

Cameraman 48.29 49.03 48.98 49.37

Pirate 32.47 33.02 33.47 33.20

Tiffany 38.58 40.42 39.42 40.45

Average 36.43 37.70 37.55 38.06

Average gain 1.625 0.354 0.508 —

Fig. 8 Standard test images: Sailboat, Barbara, Baboon, Boat, Pepper, Lena, House, Elaine
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variance. Only these pixels are available for
embedding.

3. Compute xp(n) using only a rhombus predictor [8]
for the border pixels since training is not possible
along the border. Compute xp(n) using the proposed
algorithm for other pixels.
(a)Decide the training set with size L centered on

y(n) as shown in Fig. 4.
(b)Create X and Y from the pixel values of the

training set.
(c)Run LASSO estimator and obtain prediction

coefficient β for each support pixel.
(d)Compute xp(n) using Eq. (1).

4. Compute the prediction error such as e(n) =
x (n) − xp(n).

5. Embed a bit into the prediction error value using
the prediction error expansion and histogram shift
method.

6. Overflow and underflow problem has to be
considered by using the location map bits such as
Sachnev et al.’s method [8].

7. The pixels of the cross set are modified by
embedding associated bits as shown above. The dot

set embedding procedure starts with the same
process. Obviously, training set includes the
modified pixels of the cross set.

3.3.2 Decoder
Watermarked image is divided into the cross set and the
dot set. Decoding procedure proceeds in the inverse
order of the embedding procedure. In other words, dot
set decoding proceeds first and cross set second.
The dot set decoding procedure is as follows. Ob-

viously cross set and dot set are all modified by
embedding.

1. Obtain the threshold value of the local variance,
embedding capacity, and so on, from the side
information.

2. Determine which pixels have smaller value of the
local variance than the threshold value. Those
pixels have the embedded bits.

3. In case of those pixels, compute xp(n) using a
rhombus predictor [8] for the border pixels.
Compute xp(n) using the proposed algorithm
for other pixels.

Fig. 10 PSNR vs. bpp according to the number of support pixels a full scale, b zoomed (L = 13)

Fig. 9 PSNR vs. bpp according to training set size. a full scale, b zoomed (having 27 support pixels)
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4. Compute the modified prediction error such as
e(n) = x(n) − xp(n).

5. Extract a bit out of the modified prediction error
value using the prediction error expansion and
histogram shift method. Original value of the target
pixel is recovered.

6. Overflow and underflow problem has to be
considered by using the location map bits such as
Sachnev et al.’s method [8].

4 Experimental results
We implemented the reversible data hiding algorithms
of Dragoi and Dinu [9], Sachnev et al. [8], Lee at el. [20],
and the proposed method using MATLAB. We tested
above four algorithms implemented on well-known
512 × 512 sized 8-bit grayscale images such as those
shown in Fig. 8; Sailboat, Barbara, Baboon, Boat,
Pepper, Lena, Goldhill, Couple, and House. In addition,
Airplane, Elanie, Cameraman, Pirate, and Tiffany are
also utilized for further experiments in Tables 2 and 3.
We embed the watermark message and side informa-

tion as binary data in the images as a payload.

4.1 Effect of training set size, L
The effect of the training set size L for the ttLASSO pre-
diction vs. PSNR performance is analyzed. In the case of
Baboon¸ L=17 produces the best result as shown in
Fig. 9. Without zooming, the PSNR results are almost
close to each other, while significant gap exists in the
zoomed result. The average PSNR difference between
L=17 and L=13 is 0.038 dB, and the average difference
between 17 and 9 is 0.257 dB.
In all above test images, the value 13 or 17 is a

proper compromise as the training set size for the
best results. It means that LASSO-based LS method
needs to have enough training set size to obtain the
best effect.

4.2 Effect of the number of support pixel, N
The effect of the number of support pixel, N is quite
significant. The greater number of support pixel, the
better result in LASSO-based LS method. In the case
of Barbara, PSNR result according to N is shown in
Fig. 10. The average PSNR difference between N = 26
and N = 6 is 0.565 dB, and the average difference

Fig. 12 PSNR comparison of other methods with the proposed method on Baboon and Lena

Fig. 11 PSNR comparison of other methods with the proposed method on Sailboat and Barbara
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between 26 and 14 is 0.199 dB. In all above test
images, N = 26 has the best PSNR result. It means that
LASSO-based LS method needs to have enough
support pixels to obtain the best effect.

4.3 Comparison with other state-of-the-art schemes
Let us compare the performance of the proposed
scheme with other state-of-the-art schemes such as two-
stage embedding scheme of [8] and other kinds of LS
approaches of [9] and [20]. In the proposed method,
following features are exploited:

1. LS predictor via LASSO with well-compromised size
of L and N

2. Two-stage embedding scheme with histogram
shifting method [8]

The comparison results with other schemes are shown
in Figs. 11, 12, 13, and 14. It is manifested that the pro-
posed method outperforms Sachnev et al.’s method [8].
In addition, the proposed method produces slightly

higher PSNR value than other least square methods [9,
20] only except a few cases of capacities on two of the
test images such as Lena and Pepper. However, in terms
of average gain in PSNR, the proposed method outper-
forms the others on all test images of Fig. 8 with 1.82 dB
over [8], 0.59 dB over [9], and 0.38 dB over [20].
To further verify the superiority of the proposed

method, experimental results for high and low embedding
capacities are listed in Tables 2 and 3. The average PSNR
for low embedding capacities are computed by using
40,000, 70,000, 100,000, and 130,000 bits which are lower
than 0.5 bpp in Table 2. On all test images of Table 2, the
proposed method outperforms the others with an average
gain in PSNR of 0.982 dB over [8], 0.344 dB over [20], and
0.226 dB over [9].
The average PSNR for high embedding capacities are

computed by using 160,000, 190,000, and 220,000 bits
which are higher than 0.5 bpp in Table 3. The result of
high embedding capacities makes the superiority of the
proposed method clearer. The proposed method out-
performs the others with an average gain in PSNR of

Fig. 14 PSNR comparison of other methods with the proposed method on House and Elaine

Fig. 13 PSNR comparison of other methods with the proposed method Pepper and Boat
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1.625 dB over [8], 0.354 dB over [20], and 0.508 dB
over [9].
In addition, Figs. 15 and 16 confirms that the predictor

in the proposed method has higher accuracy than those
of Dragoi and Dinu’s method and Lee et al.’s method be-
cause the proposed method results in higher occurrence
of small prediction error values compared to others. The
reasons why the proposed method outperforms other
methods are summarized as follows.
First, the proposed method improves the state-of-the-

art LS predictors [9] [20] via LASSO optimization. Dra-
goi and Dinu’s method [9] and Lee et al.’s method [20]
utilize the LS predictor using the different shape of
training set and support pixels. However, the proposed
method applies LASSO optimization to improve the pre-
vious LS predictors. In most cases of images, the num-
ber of support pixel, N = 26 is selected for the best
prediction performance in the proposed method while
N = 4 [9] and N = 6 [20] are used in other LS predictor.
In the proposed method, LASSO optimization selects
the optimized support pixels to use and remove others.
In other words, the proposed method is able to utilize

more proper support pixels out of many candidate sup-
port pixels to increase accuracy of the LS computation.

5 Conclusions
In this paper, we proposed an enhanced predictor by
using LASSO approach over normal LS predictor with
rhombus-shaped two-stage embedding scheme. It en-
ables finding out the shape of region around the target
pixel and the proper weight coefficients. In other words,
in the proposed method, it is possible to find reasonable
number and location of the support pixels due to apply-
ing LASSO into the LS approach. That is why a set of
pixels located in highly variative region of image is pre-
dicted more effectively by the proposed scheme rather
than other LS predictors. Due to this property, the
number of high prediction errors decreases. Thus, the
proposed method has a tendency that significant im-
provement happens in high embedding capacity, espe-
cially in highly variative images. Experimental results
demonstrate that the proposed method has better results
than other state-of-the-art methods.

Fig. 16 Prediction error histogram comparison of other methods with the proposed method on Sailboat and Boat

Fig. 15 Prediction error histogram comparison of other methods with the proposed method on Baboon and Barbara
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