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Abstract

We propose a novel and general framework called the multithreading cascade of Speeded Up Robust Features
(McSURF), which is capable of processing multiple classifications simultaneously and accurately. The proposed
framework adopts SURF features, but the framework is a multi-class and simultaneous cascade, i.e., a multithreading
cascade. McSURF is implemented by configuring an area under the receiver operating characteristic (ROC) curve
(AUQ) of the weak SURF classifier for each data category into a real-value lookup list. These non-interfering lists are
built into thread channels to train the boosting cascade for each data category. This boosting cascade-based
approach can be trained to fit complex distributions and can simultaneously and robustly process multi-class events.
The proposed method takes facial expression recognition as a test case and validates its use on three popular and
representative public databases: the Extended Cohn-Kanade, MMI Facial Expression Database, and Annotated Facial
Landmarks in the Wild database. Overall results show that this framework outperforms other state-of-the-art methods.
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1 Introduction

Robustly and simultaneously learning highly discrimina-
tive multiclass classifiers with local image features is one
of the most significant challenges to computer vision
researchers, because they are critical infrastructures
for recognition engines; consequently, these researches
appear of great importance. Our study focuses on fea-
ture descriptors and learning classifiers to develop a novel
learning framework for multiclass recognition applica-
tions.

In this study, we propose a framework called the
multithreading cascade of Speeded Up Robust Features
(McSURF), which adopts SURF for training a multithread-
ing boosting cascade. The proposed learning model is
applied to facial expression recognition (FER), and while
it is derived from AdaBoost [1], it is a novel, multi-class,
simultaneous cascade, i.e., a multithreading cascade. In
contrast to the conventional boosting cascade models
(e.g., BinBoost [2], joint cascade [3], and LUT-AdaBoost
[4—6]), we propose a novel and robust cascade algorithm
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(McSUREF) that can simultaneously learn multi-task cas-
cades using the local feature detector and descriptor SURF
[7]. The proposed boosting cascade-based approaches can
be trained to fit complex distributions and can simultane-
ously process multi-class events much more robustly.

We experimentally evaluated the proposed method
in three public expression databases, i.e., the Extended
Cohn-Kanade (CK+) [8], MMI Facial Expression Database
[9, 10], and Annotated Facial Landmarks in the Wild
(AFEW) database [11], that together represent lab-
controlled and real-world scenarios. Some examples of
expression recognition results are shown in Fig. 1. The
experimental results show that the proposed method can
construct a robust FER system whose results outperform
well-known state-of-the-art FER methods.

The main contribution of our study is the development
of a novel framework (McSURF) that can simultaneously
build a cascade learning model while robustly processing
a multiclass recognition application. By so doing, we are
making the following original contributions: (1) Typically,
a boosting classifier is trained as a binary classification
model. Our proposed multithreading cascade learning
model allows multiple categories to be simultaneously
trained on a cascade learning model. (2) The McSURF
is an excellent FER application method. Its performance
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Fig. 1 Examples of facial expression recognition results

experimentally outperforms many state-of-the-art meth-
ods. (3) We experimentally evaluated the impact of face
registration at both learning and recognition stages and
determined how face registration works on a boosting
classifier during these stages. This represents an impor-
tant breakthrough that is relevant to related industries and
those with related research interests.

The remainder of this paper is organized as follows:
We review the related works in Section 2. We describe
the proposed framework in Section 3. In Section 4, we
describe our experiments, and we draw our conclusions in
Section 5.

2 Related work

Recently, mainstream FER approaches are based on effec-
tive local descriptors or facial action units. Local descrip-
tors such as local binary pattern on three orthogonal
planes (LBP-TOP) [12], HOE [13], and histograms of ori-
ented gradients (HOG) 3D [14] are extracted from the
local facial cuboid to obtain a representation of a certain
length independent of time resolution. In other words,
these approaches try to describe the spatiotemporal prop-
erty of facial expressions using descriptors. These feature
descriptor approaches present effective and robust FER
representations, because they can avoid intra-class vari-
ation and face deformation. However, rigid cuboids can
only capture low-level feature information and these low-
level features often fail to describe high-level facial con-
cepts, i.e., there is a “semantic gap” between low-level
features and high-level concepts. Therefore, the effective
use of local descriptors to represent complex expressions
has been an ongoing problem.

Another approach is adopted for processing facial
action areas. Although these approaches are not more
popular than those based on local descriptors, this
method category is also important to consider. Methods
based on facial action areas use a series of facial land-
marks, as discussed in [8] and [15] and use the active
appearance model (AAM) [16] and the constrained local
model (CLM) [15, 17] to encode shape and texture infor-
mation, respectively. These approaches do not have the
semantic gap problem, because they focus solely on the
detection of mid-level facial action areas, which contain
sufficient semantic cues. However, it is difficult to accu-
rately detect landmarks (or defined action units) when
facial expression varies, because these defined landmarks
cannot completely address the many varied and complex
expressions.

This study aims to present a more ideal solution for
FER. It have been proved that local features trained by
classifiers can effectively cancel out the problems caused
by semantic gap, which leads to an overall significant
improvement of the classification performance. There-
fore, we propose a novel and general learning framework
that contains robust classifiers as well as high-quality local
feature descriptors, and the technical details are discussed
in the following section.

3 The proposed method

Our proposed framework has these components: SURF
features for local patch description; logistic regression-
based weak classifiers, which are combined with the area
under the receiver operating characteristic (ROC) curve
(AUC) [18] as a single criterion for cascade convergence
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testing; and a multithreading cascade for boosting training
that can process multiple categories.

Figure 2 shows a schematic of the implementation pro-
cess of the proposed framework. First, the facial region is
detected based on the V-] framework. Then, the detected
facial region is parallel processed by multiple classifiers
to estimate the expression. The parallel classification, i.e.,
the multithreading aspect, is implemented by configur-
ing the AUC of the weak classifier for each data cate-
gory into a real-value lookup list. As shown in Fig. 2,
these non-interfering lists are built into thread channels
in which the algorithm can appropriately organize the
ensemble of weak classifiers into related classes. In the
proposed framework, SURF represents the expressional
features of the detected facial regions for weak classifiers.
We describe SURF in Section 3.1 and explain how to
use SURF features to construct logistic regression-based
weak classifiers in Section 3.2. To start the parallel aspect
as shown in Fig. 2, we design the multithreading cas-
cade channel in Section 3.3. We describe how to learn
weak classifiers in each channel in Section 3.4. Finally, in
Section 3.5, we describe the boosting cascade training.
These approaches are formulated in the following section.
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3.1 Feature description

SURF is a scale- and rotation-invariant interest point
detector and descriptor. It is faster than scale-invariant
feature transform (SIFT) [7, 19], and AdaBoost-based
algorithms that have adopted SURF have been shown to
obtain the best accuracy and speed [20]. In this study,
we adopt an 8-bin T2 SURF descriptor to describe the
local features, inspired by the approach of Li et al. [20].
However, in contrast to Li et al’s [20] approach, we allow
different aspect ratios for each patch (the ratio of width
and height) because this can improve the speed of image
traversal. We also imported diagonal and anti-diagonal fil-
ters to improve the description capability of the SURF
descriptors.

Given a recognition window, we define rectangular local
patches within it, each patch having four spatial cells and
with the patch size ranging from 12 x 12 to 40 x 40 pix-
els. Each patch is represented by a 32-dimensional SURF
descriptor, which can be computed quickly based on the
sums of two-dimensional Haar wavelet responses, and
we can make efficient use of the integral images [1]. d,
is defined as the horizontal gradient image, which can
be obtained using the filter kernel [—1,0,1], and d, is
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the vertical gradient image, which can be obtained using
the filter kernel [—1,0,1]7; define dp as the diagonal
image and dap as the anti-diagonal image, both of which
can be computed using two-dimensional filter kernels
diag (—1,0, 1) and antidiag (—1,0, 1). Therefore, 8-bin T2
is able to be defined as v = (Q_(ldx| + dx),>_(ldx| —
dy), Y (|dy| + dy), Y-(|dy| — dy), ¥-(Idp| + dp), Y- (ldp| —
dp), > (ldap| + dap), Y (ldap| — dap)). Here, dy, dy, dp,
and dap can be computed individually, using integral
images, by the filters shown in Fig. 3a(1), a(2), b(1), and
b(2) , respectively. For details on how to compute the two-
dimensional Haar responses with integral images, please
refer to [1].

The recognition template for SURF is 40 x 40 pixels
with four spatial cells, again with the patch size rang-
ing from 12 x 12 to 40 x 40 pixels. We slide the patch
over the recognition template with four pixels forward
to ensure a sufficient feature-level difference. In addi-
tion, we allow a different aspect ratio for each patch. The
local candidate region of the features is also divided into
four cells, and the descriptor is extracted from each cell.
Hence, concatenating the features in all four cells yields
a 32-dimensional feature vector. In practical feature nor-
malization, an Ly normalization followed by clipping and
renormalization (LpHys) [21] has been shown to work
best.

3.2 Weak classifier construction

In this study, we build a weak classifier over each local
patch described by the SURF descriptor and select the
optimum patches in each boosting iteration from the
patch pool. Meanwhile, we construct the weak classifier
for each local patch by logistic regression to fit our clas-
sifying framework, due to it being a probabilistic linear
classifier.

On one hand, we build a weak classifier over each local
patch, as described by the SURF descriptor, and select
optimum patches in each boosting iteration from the
patch pool. On the other hand, we construct a weak clas-
sifier for each local patch by logistic regression to fit our
classification framework, since it is a probabilistic linear
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classifier. Given a SURF feature F over a local patch,
logistic regression defines the probability model

1
14 exp (—q(wTIF + b)) ’

P(q|F,w) = (1)

where ¢ = 1 means that the trained sample is a positive
sample of the current class, g = —1 indicates negative
samples, w is a weight vector for the model, and b is a bias
term. We train classifiers on local patches from a large-
scale dataset. Assuming, in each boosting iteration stage,
that there are K possible local patches, which are repre-
sented by SURF feature IF, each stage is a boosting training
procedure with logistic regression as weak classifiers. In
this way, the parameters can be identified by minimizing
the objective

K

Zlog (1 + exp (—qk (wTFk + b))) +alwl,, (2

k=1

where A denotes a tunable parameter for the regulariza-
tion term and ||wl|, is the L, norm of the weight vector.
Note that it is also applied to L-loss and L;-loss linear
support vector machines (SVMs) by the well-known open
source code LIBLINEAR [22]. Therefore, this question
can be solved using algorithms in [22].

3.3 Multithreading cascade channel construction

In this subsection, we introduce how to implement the
parallel aspect. Assuming there are M expression cate-
gories in the training sample set, given the weak classifiers
hl(»”) for category i data, the strong classifier is defined as
HY @) = § X0 " ).

Assuming there are a total of N boosting iteration
rounds, in the round #n, we will build K weak classi-
fiers [hgn) (]Fk)]llle for each local patch in parallel from
the boosting sample subset. Meanwhile, we also test
each model hg") (Fr) in combination with previous n —
1 boosting rounds. In other words, we test Hl-(nfl)(F) +
hg") (Fy) for Hl.(") () on the all training samples, and each

a(l) a(2)

b (1)

Fig. 3 Filters used for computing SURF descriptors. a(1) for dy, a(2) for dy, b(1) for dp, and b(2) for dap

b(2)
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test model will produce a highest AUC score [18, 23]
JHDF) + 1 Fp)), e,

5 = max JH"D @) + 1" Fp). 3)

This procedure is repeated until the AUC scores con-
verge or the designated number of iterations N is reached.
Then, the selected S; is set as a threshold to gen-
erate an AUC score pool, which contains the values
of](Hl.("_l) ) + ht(n) (Fr)) > 0.8 x S;. In this way, it builds
an AUC score pool for each class of object.

To learn multi-class classifiers simultaneously, we adopt
these AUC data to construct independent channels for
boosting learning. The details of the procedure are sum-
marized as follows:

1. Assuming the AUC score pools have been
normalized to [0, 1], we divide the range into M
sub-range bins. Each bin corresponds to a channel
ID. In this way, we can obtain a channel ID set
C = {bin; =[ L2, L1|1=1,--- ,M}. In each
channel, we build an independent boosting model for
training classifiers that can recognize a
corresponding category task.

2. We set u = S;(IF, x) and define the weak classifier
h;(x) as follows:

ifu € Candx € {the samples of expression i},
then /;(x) = 2P(q|F,w) — 1.

(4)
These guarantee that the precision of h is greater
than 0.5.
3. Given the characteristic function
4,i) _ lunY=i
B Y) = { 0 otherwise’ ®)

where i € Y and Y is defined as the label set of those
expression categories that can be recognized by the
classifier h. This function is used to check and ensure
that the expression categories of the channel,
classifier, and sample are consistent.

4. Lastly, to cover the characteristic function, we
formally express the weak classifier as

M M
h(F) =" 2P (qlF,w) — ) B* w,Y).  (6)

=1 i=1

As shown in Fig. 2, by using the above approaches,
we can construct the parallel aspect for training.
Meanwhile, the classifier category is able to be judged
and auto-selected into the related channel. In this
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way, we can learn the classifiers with Algorithm 1 and
train multithreading boosting cascades
simultaneously in their training channels via
Algorithm 2.

Algorithm 1 Learning Boosting Classifiers on SURF.

Require:
1. Given: the number of label categories M and the over-
all sample setS = {(xl,yl) AR (xr,yf)}, where 7 is the

number of the samples;
2. Initialize the weight parameter wg for positive
(labeled as “+”) samples and negative (labeled as “-”)
samples:
a. wg =1/(M x 14) for those g = 1;
b.wy =1/(M x t_) for those g = 1;
3.
for (j=0;j <N;j=j+1)do
a. Sampled 30 x p (in this paper, p = 3) positive
samples and 30 x p negative samples from training
set;
b. Parallel replace each SURF template to train a
series of logistic regression models [h,'(]Fk)]I/f:l;
c. In order to obtain the AUC score, calculate
Hi(nfl) (F) + h;(Fy) on the best model of the previous
stage: Sl("_l) and each %;(Fy);
d. Choose the best model S;”) that contains the best
weak classifier /;(IF;), according to the Eq. 3;

e. Update the weight
wjexp(—gq;Yihi(F)))
Zi

where Z; is a normalization factor, which makes the
weight follow > wT =1land Y} w™ =1;
f. If AUC value S;n) is converged, break the loop;
end for
4. In order to ensure the overall AUC score to be the
highest one, test all learned models during the current
iteration process:
for(=0;j <K;j=j+1)do
it H" ™V (F) 4 h;(F;) > S\ then
a. 8" = H" V(®) + h(F));
b. Empty those unnecessary data to free the memory;
end if
end for
5. Output final strong model H i(") for this stage.

Wi+1 =

’

3.4 Learning weak classifiers

In this subsection, we describe how to learn weak clas-
sifiers in each threading channel as shown in Fig. 2.
Like most existing multiclass classification algorithms,
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Algorithm 2 Training multithreading boosting cascade

Require:

1. Over all FPR: Fi(") for i-th category data;

2. Minimum hit-rate per stage dfmm);

3. Current class samples: Xf;

4. Non-current class samples: X

5. The number of sample/label categories: M;

Initialize: j = 0,F” = 1,DY = 1;

for (i =0;i < M;i=i+1)do

while (F” > F™) do

L j=j+1;
2. Train a stage classifier Hi(l ) (F) by samples of X
and X~ via approaches of subsection 3.3;
3. Evaluate the model Hi(/) (F) on the whole training
set to obtain ROC curve; ,
4. Determine the threshold Hi(/) by searching on the

ROC curve to find the point (dy), fi(j)) such that
d/i = d}mm), but when existing the mimimum one
dlg’ ) that follows to the condition: d?’ ) < dl(mm), set

d;mm) = d? ) to update the minimal hit-rate;

5. Update: Fl.(]) = Fi(’il) xfi(’),
D? =pV ™ x d?;

6. Empty the set X;;

7. while (Fi(]) > Fl.(lil) and size |Xi+| #1X;1) do

Adopt current cascade detector to scan non-target

images with sliding window and put false-positive

samples into X ;

end while

end while

end for , ‘
8. Output the boosting cascade detector {Hi(j) > Gi(’)}
and overall training accuracy F and D.

our approach is crucially dependent on the labeled data
of sample space to learn the classifiers. In this study, we
combine this approach with the above constructed cas-
cade channels to implement multiclass classification. In
our case, we denote the sample space as X and the label
set as Y. A sample of a multiclass and multilabel problem
is a pair (x, V), where Y (i) is defined as

. lifieY
Y(’)z{—l ifigy’ @)

wherex € X,/ €Y,andY C Y.

The whole procedure involves a forward selection and
inclusion of a weak classifier over possible local patch
temples that can be adjusted using different temple
configurations, according to the processing images. To
enhance both the speed of the learning convergence and
robustness, our algorithm further introduces a backward
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removal approach. For more details on including back-
ward removal or even a floating searching capability into
the boosting framework, please refer to [24]. In this study,
we implement backward removal on Algorithm 1 step 4
to extend the procedure with the capability to backward
remove redundant weak classifiers. In so doing, it is not
only able to reduce the number of weak classifiers in each
stage but also improve the generalization capability of the
strong classifiers.

3.5 Boosting cascade training

Inspired by [18] and [20], here, we introduce AUC as a
single criterion for cascade convergence testing, which
realizes an adaptive False Positive Rate (FPR) among
the different stages (for a more detailed description
of AUC, refer to [18]). Hence, combined with logistic
regression-based weak classifiers to adopt SURF features,
this approach can yield a fast convergence speed and a
cascade model with much shorter stages.

Within one stage, no threshold for intermediate weak
classifiers is required. We need only determine each deci-
sion threshold 6; for ith emotional category in its thread-
ing channel. In our case, using the ROC curve, the FPR of
each emotional category is easily determined when given
the minimal hit rate d;mm). We decrease d?  from 1 on the
ROC curve, until reaching the transit point dé = di(mm).
The corresponding threshold at that point is the desired 6;,
i.e., the FPR is adaptive to different stage, and it is usually
much smaller than 0.5. Therefore, its convergence speed
is much quicker than the conventional methods.

To avoid overfitting, we restricted the number of sam-
ples used during training, as in [25]. In practice, we
sampled an active subset from the whole training set
according to the boosting weight. It is generally good prac-
tice to use about 30 x p samples of each class, where p is
a multiple coefficient (Algorithm 1 step 3.a).

After one stage of classifiers learning is converged via
Algorithm 2, we continue to train another one with false-
positive samples coming from the scanning of non-target
images with the partially trained cascade . We repeat this
procedure until the overall FPR reaches the stated goal. As
with many current methods [3, 20, 26, 27], this measure
was also inspired by the V-] framework [1], and although
we indicated in Section 3.3 that we had adopted this
approach, our approach is able to process binary cascades,
as well as multi-class cascades. In every independent
threading channel, respective cascade recognition sub-
frameworks can be trained simultaneously for each data
category. Furthermore, we propose an algorithm (Algo-
rithm 2) to implement the boosting ensemble of classifiers
for multiclass cascades, which is an original contribution
to boost learning research. Equally important is that in
our approach, the cascade training process is based on
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AUC analysis, and the FPR is usually much smaller than
0.5. In addition, it is adaptive for different stages. There-
fore, this approach can result in a model size that is much
smaller and has a recognition speed that is dramatically
increased.

4 Experiments

In this section, we provide details of the dataset and evalu-
ation results for our proposed method, as applied to FER.
We implemented all training and recognition programs in
C++ on Red Hat Enterprise Linux (RHEL) 6.5 OS, pro-
cessed with a PC with a Core i7-2600 3.40 GHz CPU and
8 GB RAM.

4.1 Databases and protocols
We evaluated the proposed method on three public
databases, i.e., CK+, MMI, and AFEW, which include two
lab-controlled databases (CK+ and MMI) and one with
real-world scenarios (AFEW).

4.1.1 CK+DB

The CK+ database (DB) is a set of facial expression sam-
ples posed by 123 people. There are 327 sequences, taken
from 593 sequences that meet the criteria for one of seven
discrete emotions of the Facial Action Coding System
(FACS) [8] (anger (An), contempt (Co), disgust (Di), fear
(Fe), happiness (Ha), sadness (Sa), and surprise (Su)). In
our experiments, we divided these samples into several
groups for each expression by the person-independent
rule, and each group included ten posers. A person-
independent tenfold cross-validation had been conducted
for this DB to compare the results of a number of the
outstanding current methods. For the recognition exper-
iments, we put these images into 10-min-length videos,
640 x 480 in size, and with a frame rate of 60 frames per
second (FPS), based on the person-independent rule.

4.1.2 MMIDB

The MMI DB is a public database that includes more
than 30 subjects, in which the female-to-male ratio is
roughly 11:15. The subjects’ ages range from 19 to 62, and
they are of European, Asian, or South American descent.
This database is considered to be more challenging than
CK+ because some posers have worn accessories such as
glasses. In the experiments, we used all 205 effective image
sequences of the six expressions in the MMI dataset. As
with the CK+ DB, a person-independent tenfold cross-
validation had been completed to compare results from
the state-of-the-art methods. For the recognition stage,
these images were also made into 10-min-length videos,
640x 480 in size, and with a frame rate of 60 FPS based on
the person-independent rule.
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4.1.3 AFEWDB

For the AFEW DB, which is a much more challenging
database, evaluation experiments also have been done
[11]. All of the AFEW sets were collected from movies
to depict the so-called wild scenarios. For this study, we
adopted the 2013 AFEW version [28], because the evalu-
ation results of many state-of-the-art methods have been
based on this version. We trained the training set, and the
results are reported for its validation set, in the same way
as for the latest FER work [29].

4.2 Face registration

Like most facial research, our recognition performance
is assessed based on faces normalized by the position
of the eyes [30-32], i.e., eye centers are used to register
faces, whereas we utilized elastic bunch graph matching
(EBGM) training images for the the rest [31, 32]. Some
examples of randomly selected faces on eye perturbation
are shown in Fig. 4.

At first, to determine the impact of face registration on
the boosting convergence speed, we considered eye per-
turbation in the training sets only. Our results showed
that the proposed method used only 261 min to con-
verge at the 11th stage. In contrast, our proposed method
used 422 min to converge at the 16th cascade stage when
not using any face registration approach, and there is no
corresponding increase in performance.

We expect that classifier testing on a dataset with similar
registration may improve the recognition results. There-
fore, we next considered eye perturbation in both the
recognition and training stages. As shown in Fig. 5b, the
performance improved by 3—6 % , compared to the results
in Fig. 5a.

The experiments show that in the FER case, the reg-
istration of the face is very important, because if it was
necessary to craft features for every permutation, this
would require more data. However, this problem is solved
by using a good face registration approach, which requires
less data and a reduced number of boosting convergence
stages. Face registration in both the testing and training
sets can improve the robustness of these algorithms in
FER applications. Because the classifiers are trained on
face images with similar eye perturbations, they can there-
fore better cope with face images containing registration
errors. This also gives us some insight into why V-] face
detection [1] is followed by the use of eye detectors.

4.3 Computational cost evaluation

We used all the training samples in the AFEW training set
and collected training samples from the CK+ and MMI
DBs, according to the person-independent tenfold cross-
validation rule. To reduce the training process time, we
trained the samples from the three datasets together. All
of the training samples were normalized to 100 x 100 pixel
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Fig. 4 Randomly selected faces from samples on eye perturbation

facial patches and processed by histogram equalization,
and no color information was used. To enhance the gener-
alization performance of boosting learning, we used some
transformations in the training samples (mirror reflection,
rotate the images, etc.), and finally increased the original

number of samples by a factor of 64. Normalization was
not performed on any of the testing sample sequences. In
the training stages, we adopted the training data of the
current processing expression as positive sample data, and
data from other expressions as negative data.
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For every expressional category, we set the maximum
number of weaker classifiers in each stage as 128. The
proposed method took 281 min to converge at the 11¢h
iteration stage. The cascade detector contained 2963 clas-
sifiers for all expressions and needed to evaluate only 3.5
SURF per window. Details of the FER cascade, as illus-
trated in Fig. 6a, b, include the number of weak classifiers
in each stage, and the average accumulated rejection rate
for all the cascade stages. The results indicate that the first
seven stages rejected 98 % of the non-current class sam-
ples. After training, we observed that the top three picked
local patches for FER laid in the regions of two eyes and
mouth. This situation is similar to Haar-based classifiers
[6], see the examples in Fig. 7.

In order to evaluate the convergence speed of the AUC
model, we determined the FPR at each boosting stage.
The results show that, in the AUC model, the FPR f; at
each cascade stage is adaptive among the different stages,
ranging from 0.04486 to 0.26837, and is much smaller
than the conventional model FPR of 0.5. In almost all
existing cascade frameworks, FPR ]_[].T=1 Ji (T denotes the
total cascade stages) reaches the goal (it is usually set
as 107°). This means that conventional models require
more iterations and that the AUC model cascade can
converge much faster. These relate directly to training
efficiency and recognition speed. Therefore, these exper-
imental results confirm that the AUC cascade model is
much more efficient than the conventional cascade mod-
els. However, since the proposed framework makes the
classifiers parallel recognize the multiclass expressions,
the peak of memory cost is nearly six times more than the
conventional one.

In addition, the average recognition speed of the pro-
posed method is 54.6 FPS for the three datasets. We tried
almost all existing local features, such as HOG [21] and
SIFT. At first, we thought that SIFT and HOG features
would be more discriminating than SUREF, but the results
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show that HOG descriptors lack robustness with regard
to head rotation, which has also been pointed out by
Klaeser et al. [14]. The accuracy of the SIFT-based version
is similar to the results of the 8-bin T2 SURF descrip-
tor, but its memory requirement is four times than that
of the 8-bin T2 SURF descriptors. Moreover, the speed
was only 15.4 FPS, which cannot process real-time scenes
smoothly. In addition, we adopted Haar’s version, which
contains more than 26 boosting stages and 27,396 clas-
sifiers of all categories. It also requires more than 37
Haar-like features per window and has the slowest conver-
gence speed of all. Consequently, we concluded that SURF
is more ideal for the proposed framework.

4.4 Recognition result evaluations

In this study, we used the same labels for the expression
categories as those in the original databases. All of the
recognition experiments are based on videos, and we eval-
uated their accuracies frame by frame. Here, we present
the recognition results for the three representative public
databases (CK+, MMI, and AFEW), because we needed
to evaluate both the lab-controlled (CK+ and MMI) and
real-world (AFEW) scenarios.

We also selected a number of methods for compari-
son to represent the state-of-the-art of this field, including
the methods that have been proposed for improving spa-
tiotemporal descriptors: LBP-TOP [12], HOE [13], PLBP
[33], and HOG 3D [14]. CLM [15] is a typical approach
that is used to process facial action units. These methods
are very popular for FER, while 3DCNN-DAP [34] and
STM-ExpLet [29] are the latest methods. We also com-
pared methods that focus on enhancing the robustness
of classification approaches for their classifying frame-
works, such as ITBN [35], 3D LUT [6], and LSH-CORF
[36]. For a fair comparison, we used the same databases,
which were evaluated via standardized items. Tables 1,
2, and 3 compare our method (McSURF) with these
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Fig. 6 The number of weak classifiers in each stage and the accumulated rejection rate over cascade stages. a The average number of weak
classifiers at each stage of FER. b The accumulated rejection rate over all the cascade stages
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order on the AFEW database

Fig. 7 The extracted SURF features for expressions in facial regions and the top thee local patches picked by training procedure in the green-red-blue

state-of-the-art methods, most of which were conducted
using their released codes and with their parameters
tuned to better adapt to our experiments. However, for
some methods, because we could not obtain their source
codes (e.g., STM-ExpLet [29] and 3DCNN-DAP [34]), it
was necessary to simply cite the results reported from
related studies. In addition, McSURF (3T) is the item of
recognition results (person-independent tenfold) by using
the data from the three databases together, yet McSURF
(OD) denotes the performance (tenfold) with the original
data from each database.

In Table 1, the experimental results, for the CK+
database, compare our approach (McSURF) with eight
state-of-the-art methods (CLM [15], HOE [13], LBP-TOP
[12], ITBN [35], HOG 3D [14], LSH-CORF [36], 3D LUT
[6], and 3DCNN-DAP [34]). The mean average precision

Table 1 Recognition results for the CK+ database

(mAP) of our method is highly competitive with state-of-
the-art methods.

Table 2 lists the evaluation experiment results for the
MMI DB. The proposed method outperformed those
state-of-the-art methods. In addition, unlike many exist-
ing methods that only evaluate some selected samples,
in our experiments, we used all 205 effective image
sequences of the six expressions (anger (An), disgust (Di),
fear (Fe), happiness (Ha), sadness (Sa), and surprise (Su)).

Table 3 shows the evaluation results for the AFEW
database (Ne means neutral), which is designed as a
real-world scenario dataset and where the faces have
sharp rotations. Since CK+ and MMI are lab-controlled
datasets, they have some shortcomings with respect
to being evaluated in real-world scenarios. Therefore,
we once again compared our proposed method with

Accuracy on CK+ (%)

Method

An Co Di Fe Ha Sa Su mAP.
CLM [15] 70.1 524 92.5 72.1 94.2 459 93.6 744
LBP-TOP [12] 822 77.8 91.5 72.0 98.6 57.1 976 824
HOE [13] 76.4 654 83.6 73.3 92.1 88.6 928 82.3
HOG 3D [14] 84.4 77.8 94.9 68.0 100 75.0 98.8 85.6
ITBN [35] 911 78.6 94.0 833 89.8 76.0 913 86.3
LSH-CORF [36] 713 - 90.8 79.0 926 90.5 96.6 86.8
3D LUT [6] 76.3 35.1 60.5 73.8 91.0 482 9238 68.2
3DCNN-DAP [34] 91.1 66.7 96.6 80.0 986 85.7 96.4 879
PLBP [33] - - - - - - - 96.7
McSURF (3T) 916 70.2 84.9 86.3 94.6 884 96.5 87.5
McSURF (OD) 96.1 74.6 86.2 92.5 98.2 94.1 96.4 91.2

The boldface data are the best results in their items
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Table 2 Recognition results for the MMI database
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Accuracy on MMI (%)

Method

An Di Fe Ha Sa Su mAP.
LBP-TOP [12] 58.1 56.3 53.6 786 46.9 50.0 57.2
HOE [13] 46.4 583 332 62.6 60.8 65.1 555
HOG 3D [14] 613 53.1 39.3 78.6 43.8 55.0 552
3D LUT [6] 433 553 56.8 714 282 77.5 47.2
ITBN [35] 46.9 54.8 57.1 714 65.6 62.5 59.7
LSH-CORF [36] 59.6 71.4 623 68.9 70.3 75.1 618
3DCNN-DAP [34] 64.5 62.5 50.0 85.7 53.1 575 62.2
STM-ExpLet [29] - - - - - - 654
McSURF (3T) 67.2 61.7 65.1 804 654 83.9 70.6
McSURF (OD) 69.5 65.3 68.4 839 68.2 826 73.0

The boldface data are the best results in their items

the state-of-the-art methods. Our results show that our
method can achieve 32.6 %, a performance better than
the following state-of-the-art methods: HOE [13] 19.5 %,
LBP-TOP [12] 25.1 %, HOG 3D [14] 26.9 %, LSH-CORF
[36] 21.8%, 3D LUT [6] 25.2%, and STM-ExpLet [29]
31.7 %.

To date, we have performed all the necessary experi-
ments and covered all items relating to the latest works
in FER. The proposed method, 3DCNN-DAP, and STM
outperform the other methods. This means general learn-
ing frameworks lead to greater robustness with respect
to intra-class variation and face deformation. Because
the local descriptor-based methods, such as LBP-TOP,
HOE, and HOG 3D, lack semantic meanings, they can
hardly represent complex variations over mid-level facial
action areas, so accuracy is difficult to achieve in methods
based on facial action areas. However, to obtain the spa-
tiotemporal property of expressions, 3SDCNN-DAP and
STM treat the time of the video as the third dimension,
which limits the possible number of subject-independent
applications. They can obtain good performance only
in dynamic images. Hence, although the mean average

Table 3 Recognition results for the AFEW database

precision of 3DCNN-DAP is almost the same as the aver-
age accuracy of our proposed method, its results sharply
decline in the MMI database. In contrast, the proposed
framework treats feature learning separately by dopting
the subject-independent classifier to the final objective of
classification. Since local features trained by classifiers can
effectively cancel out the problems caused by semantic
gap, which leads to an overall significant improvement of
the classification performance [37—39]. Thus, the learned
feature and classifier have specificity and discriminative
capability. Therefore, the performance of the proposed
framework is distinctive.

5 Conclusions

In this study, we proposed a novel cascade framework
called the multithreading cascade of SURF (McSUREF) for
robust FER. The main contribution is our proposed mul-
tithreading cascade learning model, which allows multiple
categories of data to be simultaneously trained. The con-
currency of this multithreading learning model can extend
the application range of cascades and represents a signifi-
cant advance in related imaging industries.

Accuracy on AFEW (%)

Method

Ne An Di Fe Ha Sa Su mAP.
LBP-TOP [12] 9.0 1.7 19.6 179 423 23.8 336 25.1
HOE [13] 6.1 12 16.5 9.0 335 153 283 195
HOG 3D [14] - - - - - - - 269
3D LUT [6] 6.8 45.7 0 0 62.0 132 486 252
LSH-CORF [36] - 23.1 128 38.6 9.7 211 109 218
STM-ExpLet [29] - - - - - - - 317
McSURF (3T) 16.3 47.3 8.2 316 36.5 154 72.8 32.6
McSURF (OD) 153 46.5 7.6 312 34.7 14.6 75.2 322

The boldface data are the best results in their items
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We used three popular and representative public
databases in the FER research field to experimentally con-
firm the validity of the proposed method. Based on our
experimental results, we analyzed the impact of face reg-
istration on both the learning and recognition stages,
obtaining detailed answers on how face registration works
on AdaBoost-based algorithms and why it can improve
the robustness of these algorithms in FER applications.
These issues are important to those with related research
interests.

In future work, we will first attempt to improve the
discriminative power of the multiple classification frame-
work and investigate how feature representation errors
impact recognition frameworks.
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