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Abstract

An image signal processor (ISP) for a camera image sensor consists of many complicated functions; in this paper,
a full chain of the ISP functions for smart devices is presented. Each function in the proposed ISP full chain is
designed to handle high-quality images. Every function in the chain is fully converted to a fixed-point arithmetic,
and a special function is not used for easy porting to a Samsung Reconfigurable Processor (SRP). Several parallelizing
optimization techniques are applied to the proposed ISP full chain for real-time operation on a given 600-MHz
reconfigurable processor. To verify the performance of the proposed ISP full chain, a series of tests was performed,
and all of the measured values satisfy the quality and performance requirements.
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1 Introduction
Image sensors are used in numerous types of image
acquisition devices such as digital cameras, camcorders,
and CCTV cameras. Recently, their application region
has broadened to include smart devices, and the acquired
images are not merely for storage but also for interaction
between a human and a computer. To satisfy the many
goals of image sensors, the role of image enhancement is
more important than ever before.
An image signal processor (ISP) is one of the non-op-

tical devices that enhance the image quality of captured
raw images and consists of several image processing
algorithms including demosaicing, denoising, and white
balancing, as well as other image enhancement algo-
rithms. The latest ISP algorithms that include iterations
with adaptive selections according to the image charac-
teristics produce an excellent image quality. The high
image quality costs vast amount of calculation, however,
and also require complicated adaptive routines that
cannot be executed in parallel.
An ISP can be implemented on a dedicated hardware,

a general-purpose processor, or a parallel-computing
processor. A dedicated hardware implementation,
however, shows a high image quality and processing

performance at the expense of scalability and flexibility,
whereas the implementation of an ISP on a general-
purpose processor can be appropriate not only for the
high image quality of complicated algorithms, but also
for sound scalability and flexibility; however, the imple-
mentation cost of the latter is high due to the large com-
putational amount, and a high-performance platform
such as a desktop PC is necessary. The high processing
performance and low power consumption of a parallel-
computing processor are accompanied by scalability and
flexibility for software implementation. The implemen-
tation of an ISP algorithm on a parallel-computing pro-
cessor, however, requires further optimization for the
utilization of multiple processing elements in parallel.
The conventional parallel-ISP-optimization methodology
requires the division of the algorithm into data processing
parts and control processing parts first, followed by their
operation in parallel because of the adaptivity of the
ISP algorithm. Very Long Instruction Words (VLIW)
architecture can therefore be an easy choice for ISP im-
plementation, even though Single Instruction Multiple
Data (SIMD) architecture can exploit a greater extent
of parallelism.
The ISP full chain that is suitable for parallel processing

is proposed in this paper, and the chain is implemented
through an optimization process for SIMD processor archi-
tecture to achieve both a high image quality and perform-
ance goals. The proposed ISP full chain is shown in Fig. 1.
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In Fig. 1, GWA is Gray World Assumption, AHD is
Adaptive Homogeneity-Directed Demosaicing, BF is Bi-
lateral Filter, AC is Auto Contrast, and LTI is Luminance
Transient Improvement.
The way that the high-quality images are processed by

all of the algorithms that are present in the proposed
ISP chain means that there are no iterations in the algo-
rithm to reduce the execution time of the real-time
budget [1]. While the basic idea of the algorithm is
maintained, the operations in the algorithm have been
simplified for easy parallelization on the SIMD architec-
ture; in addition, heavy memory accesses and excessive
computational overheads are reduced by limiting the op-
erational ranges. Each complicated special operation is
replaced by a simple operation that performs a similar
function and the result was verified by experiments.
The proposed parallel ISP algorithm is targeted to run

on the Samsung Reconfigurable Processor (SRP) [2–7]
that can be configured as an SIMD processor. Numerous
high-quality image processing algorithms form the basis
of each of the functional components of the proposed
ISP full chain [8–30]. By increasing the homogeneity of

the parallel operations in the ISP algorithms, the proposed
ISP algorithm can take advantage of the parallel perform-
ance of a SIMD processor while maintaining an image
quality that can pass the commercial image quality test of
Skype [31]. The proposed ISP can handle the resolution of
full HD video (1920 × 1080, 30 frames per second) on a
600-MHz SRP that is suitable for smart devices.
This paper comprises the following: Section 2 describes

the existing research; Section 3 describes the implemen-
tation of the proposed ISP full chain; Section 4 describes
the performance verification process and the results of
the proposed ISP full chain; and the conclusion is
presented in Section 5.

2 Background research
2.1 Algorithms of the ISP full chain
The functions of the ISP full chain mainly support re-
covering non-existing pixels, noise reduction, and image
enhancement. The proposed ISP full chain consists of
white balancing, demosaicing, color correction, color
space conversion, denoising, detail enhancement, and
gamma correction.
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Fig. 1 Proposed ISP full chain
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The color images that enter through an image sensor
can show colors that are different to those that are seen
by the naked eye; to correct this, the White Balance
(WB) process can be used. The WB algorithm GWA [8, 9]
assumes that the average of the image is gray; similarly,
the white-patch Retinex (WR) algorithm [10] assumes that
the maximum-intensity pixel is white. Since these as-
sumptions can be statistically false, Iterative White Balan-
cing (IWB) [11] iteratively refines the white pixels while
illuminant voting [12] checks the lighting conditions. The
GWA is chosen for the proposed ISP, since it allows for
an optimal parallelization during implementation that is
due to a relatively structured computation compared with
the existing algorithms, as follows:

CWB x; yð Þ ¼ C x; yð Þ Xn
x

Xn
y

Rþ
Xn
x

Xn
y

G þ
Xn
x

Xn
y

B

 !
=3
Xn
x

Xn
y

C

ð1Þ

where C represents one of R, G, and B and CWB repre-
sents the color value after white balancing.
After the WB process, demosaicing is an algorithm for

the production of full RGB channels, which is achieved
by the interpolation of the color pixels that are lacking
in image sensor-captured images. Many algorithms
including heuristic methods, directional interpolations,
frequency domain approaches, wavelet-based methods,
and reconstruction approaches [13–16] exist; in this
study, Adaptive Homogeneity-Directed Demosaicing
(AHD) [15], a type of directional interpolation method
that is commonly used for digital still cameras, was
modified and used. A higher image quality is associated
with other algorithms like wavelet-based methods [16],
but they are not suitable for real-time implementation
on the reconfigurable processor that is used in this study
due to the huge amounts of calculations and iterations.
The rough flowchart of the AHD algorithm is shown
in Fig. 2.
The directional interpolation of the AHD performs

interpolation in the direction of the strongest edge that
flows either vertically or horizontally. Finding the direc-
tion of the edge depends on the homogeneity of the

neighboring pixels that will also be generated. The
homogeneity map is defined by Eq. (2), as follows:

Hf x; yð Þ; δ; εL; εCð Þ ¼ B x; yð Þ; δð Þ∩Lf x; yð Þ; εLð Þ∩Cf x; yð Þ; εCð Þ�� ��
B x; yð Þ; δð Þj j

ð2Þ
B x; yð Þ; δð Þ ¼ p∈XjdX x; yð Þ; pð Þ≤δf g ð3Þ
Lf x; yð Þ; εLð Þ ¼ p∈XjdL f x; yð Þ; f pð Þð Þ≤εLf g ð4Þ
Cf x; yð Þ; εCð Þ ¼ p∈XjdC f x; yð Þ; f pð Þð Þ≤εCf g ð5Þ

where B is a set of the δ distance from (x, y) ∈ X; X is a
set of 2D pixel positions; B is defined by Eq. (3); Lf and
Cf are in the neighborhood that is established by the dis-
tance of the luminance and color in the CIELab color
space and are defined by Eqs. (4) and (5), respectively; E
is a set of tolerance values and δ, εL, εC ∈ E; and dL and
dC are distance functions, where luminance and the ab
plane in the CIELab color space are used. A detailed
implementation of AHD is introduced in Hirakawa and
Parks [15].
Inevitably, the acquired images comprise a variety of

noises due to the characteristics of the sensor and con-
verter circuits that are used—especially with the low
light of an indoor environment. To remove these noises
effectively, highly adaptive noise reduction methods
such as the Bilateral Filter (BF) [18–21] or a 3D noise
reduction filter [22, 23] can be used. The BF, proposed
by Aurch et al. [20] and improved by Tomash et al.
[21], is a non-linear adaptive low-pass filter with vari-
able weighting factors according to the distance and the
intensity of the neighboring pixels. Equation (6) shows
the BF:

BF xp; yp
� �

¼ 1

W xp; yp
� � X

xq ;yq∈S

GS xp; yp
� �

− xq; yq
� ���� ���� �

� GI I xp; yp
� �

−I xq; yq
� ���� ���� �

I xp; yp
� �

ð6Þ
where the normalization term W(xp, yp) is defined in
Eq. (7):

W xp; yp
� �

¼
X
xp ;yp∈S

GS xp; yp
� �

− xq; yq
� ���� ���� �

� GI I xp; yp
� �

−I xq; yq
� ���� ���� �

ð7Þ

In Eqs. (6) and (7), (xp, yp) is the location of the center
pixel, (xq, yq) is the location of the neighboring pixel
I(xp, yp), I(xq, yq) represents the intensities of the corre-
sponding pixels, GS is the Gaussian function for the
spatial domain, and GI is the Gaussian function for the
intensity domain. The proposed ISP uses a modified BF

Fig. 2 AHD algorithm
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that can flatten the noise area while preserving the edge
information.
For an improved subjective image quality, it is neces-

sary to enhance the contrast and edge information; to
improve the image contrast, auto level, AC, and histo-
gram equalization are examples of the methods that can
be used [24]. The proposed ISP full chain includes the
AC function that comprises a relatively low color dis-
tortion and less complex operations; in addition, Lumi-
nance Transient Improvement (LTI) and Chrominance
Transient Improvement (CTI) are also applied to
enhance the edges of the luminance and chrominance,
respectively [25, 26]. For LTI and CTI implementation,
the difference of Gaussian method [27] is used because
of the relatively simple corresponding operations and
an excellent edge extraction performance. The differ-
ence of Gaussian method is represented by Eq. (8):

O x; yð Þ ¼ I x; yð Þ þ 1
2πσ2

e−
x2þy2

2σ2

� �

� g1−g2ð Þ � X x; yð Þð Þ ð8Þ

where O is the enhanced signal, I is the input luminance
signal, g1 and g2 are two Gaussian filters with the variances
σ1 and σ2, the symbol “∗” is the 2D convolution operator,
x is the row number, and y is the column number.
The color correction function changes an entire color

according to the desired color temperature. In the
proposed ISP full chain, color correction is combined
with color conversion to reduce the redundant memory
accesses. The applied color correction matrix is shown
in Eq. (9), as follows:

Rcc

Gcc

Bcc

2
4

3
5 ¼ CC½ �

R
G
B

2
4

3
5 ¼

Crr Crg Crb

Cgr Cgg Cgb

Cbr Cbg Cbb

2
4

3
5 R

G
B

2
4

3
5 ð9Þ

where Crr through to Cbb are the correcting values that
will be multiplied by the RGB channels and Rcc, Gcc, and
Bcc are the color-corrected values of the color channels.
While the acquired images are processed in the ISP

full chain, several different color spaces are used. Color
conversion is a signal-processing technique for the
transformation of the color representation coordinates
into another coordinate system where some of the color
axes comprise a small correlation, and the application of
signal-processing functions can reduce the incidence of
processing errors [30]. In the proposed ISP, the input
signal is initially in the RGB space before it is converted
into the YCoCg color space, and the input is then sub-
jected to luminance-related processes; subsequently, the
signal is converted back to the RGB space, color-related
processes are applied to the signal, and the signal is then
sent to the output display.

Co ¼ R−B ð10Þ
Cg ¼ G−Bþ Co >> 1ð Þ ð11Þ

Y ¼ Bþ Co >> 1ð Þ þ Cg >> 1
� 	 ð12Þ

where Y, Co, Cg, and R, G, B are the pixel values of the
YCoCg color space and the RGB color space.
Gamma correction (GC) modifies the linearity of the

camera input to match the non-linearity of the human
visual system [28, 29]. If GC is not applied to the ac-
quired images, humans cannot differentiate the immense
number of bits that represent the information. The GC
can be modeled as Eq. (13); in the proposed ISP, the GC
is implemented using a polynomial approximation:

I 0 x; yð Þ ¼ AI x; yð Þγ ð13Þ
where I ' is output image, I is input image, and γ is
gamma value. A is a constant 1 in a common case.

2.2 Implementation platform
The proposed ISP is implemented on an SRP in accord-
ance with the test of the preliminary version of the pro-
posed ISP [1]. Since the SRP can support both of the
parallel processing modes SIMD and VLIW, the proposed
ISP is accelerated by the implementation of numerous key
operations so that it can run in parallel. The SRP supports
the following three operation modes: SIMD, VLIW, and
scalar. As the SRP configuration that is used in this study
can process 128 bits at a time with 16 functional units, it
supports SIMD configurations that can process four 32-bit,
eight 16-bit, or 16 8-bit data at the one time. In the VLIW
mode, eight of the function units can be operational at the
same time, whereby up to eight operations can be executed
in parallel. Since the routing channel of the SRP comprises
independent configurations for the SIMD, VLIW, and sca-
lar modes, the three modes cannot be used in combination;
however, the SRP can switch among the three operational
modes dynamically while the ISP software is processed.
While the sequential codes in the complex control se-
quences of the algorithm run in Scalar mode, the parallel
codes of the massive image data processing operation are
accelerated in the SIMD mode or the VLIW mode.
The memory access of the SRP should be aligned by

128-bit words; therefore, if the data size is not a 128-bit
word, the data should have an additional buffering stage
to ensure an alignment with the 128-bit words. The SRP
also consists of a single memory port for read-and-write
operations; therefore, memory-intensive jobs like lookup
table operations cannot be parallelized and they signifi-
cantly slow down the processing speed.
The VLIW mode of the SRP comprises a greater pro-

gramming flexibility because data processing operations
and control operations can be executed simultaneously
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in this mode. The control operations often limit the
parallelism, however, because of the dependency among
the codes and data; alternatively, the SRP often suffers
from the lack of data that is processed in parallel in the
SIMD mode. Since a lack of parallelism is inherent to
the algorithm, the algorithms in the proposed ISP are
modified to supply enough parallelism; therefore, the
proposed ISP can mostly run in the SIMD mode for a
sufficient computational performance. Figure 3 shows
the SRP architecture overview.
In Fig. 3, FU is Function Unit, RF is Register Files,

VLIW is Very Long Instruction Words, and CGRA is
Coarse Grained Reconfigurable Array.
The existing research shows that other algorithms that

have been ported on the SRP platform such as the ray-
tracing algorithm [4] comprise low-power audio pro-
cessing [5] and 3D graphics [6]. The proposed ISP full
chain is designed to work with SIMD-style parallel
processing; however, due to its high parallelism, the
proposed design can be used for platforms with other
types of microprocessors such as Intel [31], ARM [32],
and the TI Digital Signal Processor (DSP) [33].
Intel processors and ARM processors are based on

the superscalar architecture that executes multiple
instructions at the same time. The performances of
the Intel processor platforms are more effective that
those of the ARM processor platforms because the
former contains a variety of hardware accelerators for
multimedia processing (MMX, SSE, etc.); alterna-
tively, ARM processor platforms consume less power
than Intel processor platforms, making them suitable
for mobile applications. TI DSP platforms comprise
VLIW architectures, whereby multiple signal-processing

operations and control operations can be executed in
parallel.

2.3 Algorithm porting on SRP
A number of optimization technologies were used to
improve the computational performance of the ISP full
chain on the SRP while the image quality is maintained.
The SRP that is used in this study comprises several
commands for the efficient use of SIMD arithmetic data.
The composition of the SIMD commands is for the
processing of the 128-bit data of eight 16-bit data. The
SIMD commands are composed of ADD, SHF (shift),
CLIP, MUL (multiply) and ADD, and MUL and SHF
functions. Since there is no SIMD command to verify
the results after the comparison, the SUB and CLIP
commands were used in combination so that the results
after the comparison could be available for implemen-
tation. The SIMD commands were heavily used in the
proposed ISP functions for a high performance.

3 Module optimization for the proposed ISP
3.1 WB
In the proposed ISP, the WB uses the GWA algorithm
[9]. The GWA algorithm corrects the colors of an image,
assuming that the average color of each RGB channel
is gray. Using Eqs. (14) to (16), we calculated the GWA
as follows:

Rgain ¼ R þ G þ B

3R
ð14Þ

Ggain ¼ R þ G þ B

3G
ð15Þ

Fig. 3 SRP architecture overview [3]
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Bgain ¼ R þ G þ B

3B
ð16Þ

where Rgain, Ggain, and Bgain are the color gain values for
each of the channels and R, G , and B are the averages of
the pixel values of the corresponding color channels.
In the input Bayer pattern, the number of G pixels is

twice those of the R or B pixels. As the WB process
requires the average of the entire image, it is possible to
use the data of only half of the G pixels without incur-
ring a significant error; therefore, when the GWA was
applied, only half of the G pixels were used so that the
GWA equaled the calculation amounts of R and B. Since
the sum of the entire pixel amount is too large to fit into
an integer register, a proper significant figure addition
was used to limit the bit number of the sum. If the size
of the integer registers that are used for the calculations
is too small, the effective numbers become too small
while the errors become larger; contrarily, if the integer
register size is too large, the processor limitation makes
parallelization difficult. For this reason, the sum register
size was limited to 32-bit and the temporary variables
can be stored in the 64-bit registers. Since the SRP does
not support division, shift operations are used for the
WB result. A division by 3 in Eqs. (14) to (16) is simpli-
fied by 3/8, which is performed as a multiplication by 3
followed by a shift right by three bits.

3.2 Modified AHD
As in Fig. 2, after the WB process is performed in the
Bayer pattern of the image sensor, the modified version
of the original AHD [15] is used as a demosaicing algo-
rithm. The AHD consists of the following three steps:
directed interpolation, homogeneity-directed map cre-
ation, and iterative noise filtering. The method for finding
the direction of the edge is dependent upon the location
and color of the pixel that is to be generated. The width
of the variables is 16 bits including three bits for the
fractional part. An operational example of the proposed
modified AHD is explained in the following section.
In Fig. 4, R, G, and B are the red, green, and blue

pixels, respectively, and the number is the pixel position.
Figure 4 comprises GBRG, the Bayer pattern of the
image sensor that was used for the proposed ISP imple-
mentation; based on G44 in the middle, GBRG is com-
posed of a pattern that consists of G44, B45, R54, and
G55, and numbering starts from the top left. Equations
(17) and (18) represent the horizontal interpolation of
the G and R pixels on the B channel where the input B
pixel exists. In Eqs. (17) to (27), all of the parameters are
the corresponding pixel values of the locations in Fig. 4.

G45 ¼ −
B43
4

þ G44
2

þ B45
2

þ G46
2

−
B47
4

ð17Þ

G11 R12 G13 R14 G15 R16 G17 R18

B21 G22 B23 G24 B25 G26 B27 G28

G31 R32 G33 R34 G35 R36 G37 R38

B41 G42 B43 G44 B45 G46 B47 G48

G51 R52 G53 R54 G55 R56 G57 R58

B61 G62 B63 G64 B65 G66 B67 G68

G71 R72 G73 R74 G75 R76 G77 R78

B81 G82 B83 G84 B85 G86 B87 G88

Fig. 4 Test Bayer pattern

Choi et al. EURASIP Journal on Image and Video Processing  (2016) 2016:29 Page 6 of 14



R45 ¼ R34
4

þ R36
4

þ R54
4

þ R56
4

ð18Þ

Equations (19) and (20) represent the horizontal
interpolation of the G and B pixels on the R channel
where the input R pixel exists, as follows:

G54 ¼ −
R52
4

þ G53
2

þ R54
2

þ G55
2

−
R56
4

ð19Þ

B54 ¼ B43
4

þ B45
4

þ B63
4

þ B65
4

ð20Þ

Equations (21) to (24) represent the horizontal
interpolation of the R and B pixels on the G channel
where the input G pixel exists, as follows:

R44 ¼ R34
2

þ R54
2

ð21Þ

R55 ¼ R54
2

þ R56
2

ð22Þ

B44 ¼ B43
2

þ B45
2

ð23Þ

B45 ¼ B45
2

þ B65
2

ð24Þ

The original AHD repeats the calculation vertically,
and it also comprises an additional direction-selection
process after the generation of the homogeneity map ac-
cording to the calculation of the CIELab color conversion
and epsilon parameter. The modified AHD selects the
direction immediately after the interpolation of the G
channel, and then the R and B channels are interpolated
only once; by doing this, the process of selecting a
direction-based RGB pixel value is removed to reduce
the amount of calculation. The G channel interpolation
equation is also modified, as shown in Eqs. (25) to (27):

H ¼ abs
B25
2

þ B65
2

−B45
� �

ð25Þ

V ¼ abs
B43
2

þ B47
2

−B45
� �

ð26Þ

G45 ¼
B44
2

þ B46
2

H≥Vð Þ
B35
2

þ B55
2

H < Vð Þ

8><
>: ð27Þ

where H is horizontal direction weight, V is vertical
direction weight, and abs() is absolute value function.
In Eqs. (25) and (26), and using Eq. (27), the G channel
interpolation depends on the results that are obtained
by the horizontal and vertical direction calculations of
the three tap filters.
An iterative noise filtering is used in the original AHD.

The iterative noise filtering is removed for the reduction

of operational loads, however, and it is also a redundant
operation because it is performed by the modified BF in
the next stage.
To minimize the data load for the Bayer pattern

images in the modified AHD, the memory area is desig-
nated a size that is one column larger than the original
image size and the images are read only once. By ma-
nipulating the pointer to the start position, boundary
processing is not needed at the time of the RGB channel
interpolation, and an ordered data loading technique is
applied to the vertical filter that is used for the RGB
channel interpolation.
When data are loaded from the memory and fed into

a filter, some of the data load may be overlapped due to
the convolution operation of the filter. The pseudo
codes 1 and 2 show the pseudo codes of the data load
for horizontal loading and vertical loading, respectively,
for the 1 × 3 filter. As shown in pseudo code 1, the buf-
fer size is 128 bits; that is, it consists of eight 16-bit
data. Once the filtering of an image line is complete,
the filtering of the next image line loads a new image
line (at code line 8) and the two lines that had been
loaded while the previous image line was processed
(code lines 6 and 7 are shown at code lines 2 and 3,
respectively). To prevent such an overlapping of data
loading, the data should be loaded by row unit, and
then the required data should only be read by referring
to the existing buffer, as shown in pseudo code 2, where
the overlapped data load in pseudo code 1 does not
exist. This technique, as shown below, is used for modi-
fied AHD, modified BF, modified LTI, and other modules
in the proposed ISP.

Pseudo code 1:
line i:
1: Buf1[0:127] = Image[i-1,j + 0:127]
2: Buf2[0:127] = Image [i,j + 0:127]
3: Buf3[0:127] = Image [i + 1,j + 0:127]
4: OUTPUT[0:127] = C1*Buf1[0:127] +

C2*Buf2[0:127] + C3*Buf3[0:127]
5: j = j + 128; goto 1

line i + 1:
6: Buf1[0:127] = Image[i,y + 0:127]
7: Buf2[0:127] = Image [i + 1,y + 0:127]
8: Buf3[0:127] = Image [i + 2,y + 0:127]
9: OUTPUT[0:127] = C1*Buf1[0:127] +

C2*Buf2[0:127] + C3*Buf3[0:127]
10: j = j + 128; goto 6

Pseudo code 2:
Before line i:
1: Buf1[0:127] = Image[i-1,j + 0:127]
2: Buf2[0:127] = Image [i,j + 0:127]

line i:
3: Buf3[0:127] = Image [i + 1,j + 0:127]
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4: OUTPUT[0:127] = C1*Buf1[0:127] +
C2*Buf2[0:127] + C3*Buf3[0:127]

5: temp = C1; C1 = C2; C2 = C3; C3 = temp
line i + 1:
6: Buf3[0:127] = Image [i + 2,j + 0:127]
7: OUTPUT[0:127] = C1*Buf1[0:127] +

C2*Buf2[0:127] + C3*Buf3[0:127]
8: temp = C1; C1 = C2; C2 = C3; C3 = temp

At the bottom of the image:
9: j = j + 128

where C1, C2, and C3 are the filter coefficients in pseudo
code 1 and pseudo code 2.
The PSNR values for the modified AHD algorithm

are compared with those of the conventional AHD in
Table 1. Kodak lossless true color images were modified
to form the GBRG Bayer pattern images that are used
for the PSNR comparison. The PSNR differences vary
between −0.22 and 1.76 dB, with an average difference
of 0.48 dB, while the computational load is significantly
reduced.

3.3 Color correction and color space conversion
After demosaicing, the color correction block finds the
color features and repairs the color artifacts; the color
correction is processed by the color correction matrix,
and the matrix that was used is shown in Eq. (9). The
color correction equation can be calculated in conjunc-
tion with the subsequent color space conversion. The
proposed ISP, the YCoCg color space, is used because it
has a lower correlation among the color channels com-
pared with other color spaces, and it performs integer
operations only without any information loss. Because
the color correction equation can be combined with the
equation of the YCoCg color space conversion, the inter-
mediate process for the storage of the values of the color
correction result can be removed, thereby reducing the
memory access cycle. The equations for performing the
combined color correction and the YCoCg color space
conversion are shown in Eqs. (28) to (31):

Bcc ¼ Cbr � Rþ Cbg � G þ Cbb � B ð28Þ

Co ¼ Crr � Rþ Crg � G þ Crb � B−Bcc ð29Þ

Cg ¼ Cgr � Rþ Cgg � G þ Cgb � B−Bcc

þ Co >> 1ð Þ ð30Þ

Y ¼ Bcc þ Co >> 1ð Þ þ Cg >> 1
� 	 ð31Þ

where Y, Co, Cg, and R, G, B are the pixel values in the
YCoCg color space and RGB color space, respectively. A
color control function is also combined in the YCoCg

color space conversion to control the color saturation
and color offset. A coefficient integerization technique
was used for the color correction.

3.4 Auto contrast
A linear stretch method is used in the AC, and the linear
scale factors in the AC function were calculated in the
YCoCg color space. Equations (32) and (33) were applied
to the AC that is used in this study:

RS ¼ Bmax

Ymax−Ymin
ð32Þ

Y out ¼ RS Y in−Yminð Þ ð33Þ

where RS is stretch ratio; Bmax is the maximum value of
bit depth; Ymax and Ymin are the maximum and minimum
values of the Y channel, respectively; Yin is the input
image; and Yout is the image after AC. For the calculation
of the Ymax and Ymin values, a technique to separate and
rearrange the algorithm is used to reduce the memory ac-
cesses. First, the Ymax and Ymin values were calculated by
using the Y value that is obtained through the YCoCg color
conversion, and the calculated results are used for the AC
calculation that is included in the modified BF function.
The AC optimization techniques have been designed to
shift operations, instead of resulting in the breakage of the
coefficient integerization.

Table 1 PSNR comparison with AHD and modified AHD (M-AHD)

Number AHD M-AHD Difference Number AHD M-AHD Difference

01 31.47 31.08 0.39 13 27.40 27.08 0.32

02 36.36 36.47 −0.11 14 32.87 32.96 −0.11

03 38.67 37.98 0.69 15 35.36 35.58 −0.22

05 31.46 31.16 0.30 16 37.84 36.08 1.76

06 33.79 32.42 1.37 20 35.95 34.50 1.45

07 38.00 38.18 −0.18 21 33.06 32.44 0.62

08 30.86 29.86 1.00 22 34.06 33.96 0.10

11 34.07 33.46 0.61 23 38.95 38.04 0.09

12 38.85 38.31 0.54 24 29.48 29.42 0.06
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3.5 Modified BF
BF is used as a noise reduction algorithm [18–21]. The
original BF comprises the following two Gaussian filters:
one is for the distance weight between pixel locations
and the other is for the difference weight between pixel
intensities. To simplify these two Gaussian filters, the
Gaussian functions are replaced by fixed-point, binary
threshold functions in the proposed modified BF. The
threshold values are determined by pre-calculating the
Gaussian filter coefficients for the pixel locations and
pixel intensities.
In the proposed ISP algorithm, the BF is simplified to

reduce the amount of calculation. Since the Gaussian
function requires a special math hardware, GS and GI

are replaced by the binarization functions BS and BI. The
size of the spatial domain of GS in the proposed ISP is
7 × 7. The output of BS for the same domain size is 1 for
a 3 × 3 area and 0 for any others; therefore, the domain
S of 7 × 7 is replaced by the new domain S ' of 3 × 3.
The BI that is the binarization of GI is represented by
the following:

BI Ip−Iq
�� ��� 	 ¼ 1 Ip−Iq

�� ��≤ITh
0 Ip−Iq
�� �� > ITh

8<
: ð34Þ

where ITh is the threshold value of the pixel value dif-
ference. The resulting modified BF is Eq. (35):

BFModified p½ � ¼ 1
W 0

p

X
q∈S0

BI Ip−Iq
�� ��� 	

Ip ð35Þ

where the new normalization term W ' p is the following:

W 0
p ¼

X
q∈S0

BI Ip−Iq
�� ��� 	 ð36Þ

To further reduce the calculation complexity, the 3 × 3
filter of the domain S ' was replaced by a separable filter
that is composed of two 1D filters of the sizes 3 × 1 and
1 × 3; by using this separable filter, the computational
complexity of the proposed BF becomes O(n), instead of
the O(n2) of the original BF [34].
When the algorithm is implemented with a 2D filter,

the amount of memory access and computation for the
SRP needs to be increased quadratically. Instead of the
2D filters in the original BF, the separable filter is applied
to the proposed modified BF. By making the 2D filter
separable, the computational load of 2D filtering is
reduced to twice that of 1D filtering. Figure 5 compares
the filtering operation of a 2D filter with that of a 1D fil-
ter for the SRP. Due to the SRP structure, all of the data
should be stored in buffers before a filter is used; so,
when a 3 × 3 filter mask is used, fifteen 128-bit registers
are needed to start a necessary operation. Alternatively,
when a 1D filter is used, it is possible to perform an op-
eration with five 128-bit registers for a horizontal filter
and three 128-bit registers for a vertical filter; therefore,
the use of a separable filter also makes it possible to
reduce the amount of memory access.
In Fig. 5, a square box represents a single pixel of 16

bits and a buffer has eight-pixel data. In addition, the
filter size has also been modified from 7 × 7 to 3 × 1 and
1 × 3, and a vertical data loading technique is applied to
the 1 × 3 vertical filter.

3.6 Detail enhancement
For detail enhancement, an LTI based on the difference
of Gaussian [27] is used. The Gaussian mask sizes in the

Buffer1 Load Buffer2 Load Buffer3 Load

Memory loading area for 3x3 filter 
15 buffers require for 1 pixel 

2D filter data size (ex : 3x3)

1D filter data size (ex : 1x3) 

Buffer4 Load

Buffer5 Load

Buffer Load

Fig. 5 2D vs. 1D memory-loading area and number of buffers used
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LTI are 3 × 3 and 5 × 5, which are with pre-calculated
coefficients. Since CTI rarely affects image quality, a
simple 1 × 3 Laplacian sharpening filter is configured
for the CTI. The separable filters are implemented for
LTI and the filter size is adjusted. As the filter that is
used here is also a vertical filter, a vertical data loading
technique was applied.

3.7 Gamma correction
For GC, the lookup table method or a piecewise linear
interpolation method [29] is used. The input data is used
as the index of the lookup table method, while the input
range and the linear interpolation parameter are checked
from the table for the piecewise linear interpolation
method. In this study, instead of using the lookup table
that is difficult to parallelize due to a large volume of
irregular memory access, the quadratic approximation of
the GC equation that utilizes the 128-bit data processing
of the SRP was used. Equation (37) is the equation that
is used for GC:

y ¼ k1x
2 þ k2xþ k3 ð37Þ

where k1, k2, and k3 are the GC coefficients, x is the
pixel value of the RGB channel, and y is the GC result
value. The parameters are determined to have the least
square error over most of the central region. Since GC
is performed for all three of the RGB channels, the algo-
rithm was rearranged to use the results of the YCoCg-to-
RGB color space conversion.

4 Experiment results
To verify the performance of the proposed ISP full
chain, the quality of the result images should first pass
a commercially available image quality test such as
Skype [35]. The experiments were conducted using a
CMOS image sensor with a specification that is shown
in Table 2. Figures 6, 7, and 8 are the parts of the test
patterns.
Figure 6 is the image quality resolution test pattern,

which is used to measure the clearness of luminance im-
ages. Figure 7 is for the evaluation of color performance
and Fig. 8 is for the verification of texture acuity. Other
patterns for the measurement of aspects such as expos-
ure error, gamma, SNR, and dynamic range exist.

Table 3 shows the results of the image quality for the
proposed ISP full chain that was implemented on the
SRP; as shown in Table 3, all of the measured values
meet the requirements of the test. Since the entire pro-
posed ISP chain has been designed only with fixed-point
addition and multiplication, the proposed ISP chain can
be easily ported onto any other microprocessor; further-
more, even when the characteristics of a CMOS image
sensor change, it is still possible to meet the image quality
evaluation standards by simply adjusting the coefficients
that are used for the ISP full chain.
The performance goal of the proposed ISP is the pro-

cessing of full HD image sequences (1920 × 1080, 30
frames per second) with a 600-MHz SRP.
Table 4 shows the number of clock cycles that were

taken by the modules in the proposed ISP full chain.
The number of cycles for sequential processing com-
prises the cycles that are taken without the use of any
SIMD operations, and the number of cycles for parallel
processing is the cycles that are taken from the use of
the SIMD operations of eight processing elements. The
parallelizing speedup by a factor of 4.9 is obtained by
dividing the total sequential-cycle number by the total
parallel-cycle number. The degree of parallelism can be
found by using Amdahl’s law of Eq. (38), as follows:

Speedup ¼ Tsold þ Tpold

� 	
Tsnew þ Tpnew

� 	 ð38Þ

where Ts_old is the time taken by the sequential opera-
tions that are not affected by parallelization; Tp_old is the
time taken by the sequential operations that are affected
by parallelization; Ts_new is the time taken by the sequen-
tial operations that are not affected by parallelization
after improvement; and Tp_new is the time taken by the
parallel operations after improvement.
Since the sequential parts are not affected by

parallelization, the processing time does not change
after improvement, as shown by Ts_old = Ts_new = Ts. In
the proposed ISP, the parallelization is performed by
the SIMD with eight processing elements, so Tp_new =
Tp_old/8. If Tp_new is assumed as 1, Eq. (38) is changed,
as shown in Eq. (39):

4:9 ¼ Ts þ 8ð Þ
Ts þ 1ð Þ ð39Þ

By inducing the sequential time Ts from Eq (39), Ts =
Ts_old = 0.81. Since the total execution time before
parallelization is Ts_old + Tp_old = Ts + Tp_new * 8 = 8.81,
the time that is not affected by parallelization is only
9 % of the total sequential execution time, whereby 91 %
of the total sequential time is parallelized by the eight
processing elements.

Table 2 Units and corresponding symbols

Specification

Active array size 2592 × 1944

Output formats 10-bit RGB raw

Lens size 1/4 in.

Input clock frequency 6 to 27 MHz

Max S/N ratio 36 dB
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Since the resolution of the CMOS image sensor that is
used in the experiment is larger than that of the target
performance, the conversion to get the performances of
the full HD image sequences is shown in Eq. (40), as
follows:

Cs ¼ CPP � Res ¼ Cf

TP
� Res

¼ 49; 080; 019
2; 624 � 1; 956
� �

� 1920 � 1080 � 30ð Þ
¼ 594; 868; 812 ð40Þ

where Cs is cycles per second, CPP is cycles per pixels,
Res is target resolution, Cf is simulation cycles, and TP
is the number of test image pixels. Since the input reso-
lution of the test camera is 2624 × 1956, the total num-
ber of cycles to handle an image of a 1920 × 1080
resolution was recalculated; therefore, the SRP simula-
tion result satisfies the real-time operation of the target
for the 600-MHz SRP.

Table 5 shows the performances of the proposed ISP
on other platforms in cycles per pixel. To compare the
parallelization performances of the proposed ISP algo-
rithm in a test, widely used, commercial processor plat-
forms were used to run the proposed ISP full chain. For
the test platform, general-purpose desktop processors of
the Intel processor family, a general-purpose mobile
processor of the ARM Cortex family, and a signal-
processing VLIW processor of the TI DSP family were
chosen; for the TI platform and the SRP platform, the
simulators that were provided by the manufacturers
were used in the experiments. Since each platform
comprises a different operating frequency, the cycles per
pixel were calculated for the purpose of comparison.
The proposed ISP full chain was compiled for a single

Fig. 6 The image quality resolution test pattern

Fig. 7 Test pattern of color performance Fig. 8 Test pattern of texture acuity
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processor because the communication overhead for mul-
tiple threads can abuse the efficiency of parallel opera-
tions. All of the platforms comprise the multiple-issue
pipelines and multimedia instructions of the SIMD style
[36–38], and the optimization options were disabled for
comparison purpose because the SRC compiler does not
have optimization options.
For faster porting, the cycle-accurate simulators for

the TI C64x + and SRP were used. The operating fre-
quencies of the commercial TI C64x + processors are
between 500 and 1200 MHz; for the proposed algo-
rithm, the target platform of the SRP processor was
designed to run at 600 MHz.
The results in Table 6 show the values of cycles per

pixels obtained by using the compiler optimization
option along with the proposed ISP full chain. In the
case of SRP platform, the SRP compiler does not provide
optimization options.

Table 3 Image quality test requirements [40] and experiment results

Metric MTF30 Over-sharpening Edge roughness

Requirements (20 lx) 0.33~0.8 ≤20 %

Requirements (200 lx) 0.35~0.7 ≤20 % ≤0.15 pixel

The proposed ISP (20 lx) 0.335~0.512 0 % –

The proposed ISP (200 lx) 0.448~0.568 0 % 0.058 pixel

Metric Texture acuity Exposure error Gamma

Requirements (20 lx) ≥0.65 −1.2~0.5 0.4~0.9

Requirements (200 lx) ≥0.65 −0.5~0.5 0.4~0.7

The proposed ISP (20 lx) 0.886 −1.2 0.425

The proposed ISP (200 lx) 0.880 −0.34 0.488

Metric SNR DR Light falloff

Requirements (20 lx) ≥30 dB ≥33 dB

Requirements (200 lx) ≥30 dB ≥33 dB 70 %≤ RI ≤ 130 %

The proposed ISP (20 lx) 34.1 dB 44 dB

The proposed ISP (200 lx) 42.0 dB 44 dB 76.6 %

Metric Color uniformity SMIA

Requirements (20 lx)

Requirements (200 lx) Max ΔC≤ 10 |SMIA| < 6 %

The proposed ISP (20 lx)

The proposed ISP (200 lx) 3.06 −2.83

Metric Delta C00

2900 K 3500 K 5500 K

Requirements (20 lx) Mean≤ 15
Max ≤ 20

Mean≤ 10
Max≤ 15

Requirements (200 lx) Mean≤ 10
Max≤ 15

Mean≤ 10
Max≤ 15

The proposed ISP (20 lx) Mean = 8.35
Max = 13.6

Mean = 6.91
Max = 15.0

The proposed ISP (200 lx) Mean = 6.45
Max = 11.7

Mean = 6.33
Max = 11.0

Table 4 The number of clock cycles to process one frame with
an SRP simulator

Module Sequential Parallel

WB 11,892,670 2,651,547

Modified AHD 45,935,860 12,695,570

Color correction/RGB to YCoCg/Ymin,max 45,555,149 10,265,334

Modified BF (3 × 1)/AC 46,810,082 5,946,081

Modified BF (1 × 3) 30,112,720 5,154,872

Modified LTI (1 × 3) 21,785,128 3,220,328

YCoCg to RGB/GC 38,521,495 9,146,287

Total 240,609,434 49,080,019
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Using GCC compiler, for Intel and ARM platform,
option O1 allows for branch, register, and tree
optimization. Similarly option O2 (default option in
GCC) allows align, local, and global optimization, while
option O3 allows all the abovementioned optimization
for O1 and O2 along with the parallelizing optimization
for loop unrolling and loop vectorization. Although the
use of option O3 does not guarantee speedup as com-
pared to the use of option O2 [39], the application of
optimization option O3 along with the proposed ISP full
chain achieves higher speedup due to the inherent
higher degree of parallelism.
The TI platform also allows the use of optimization

options for the TI compiler. Option O1 in the TI
compiler is used for register usage optimization, option
O2 is used for global optimization including parallelizing
optimization such as software pipelining, loop optimization,
and loop unrolling, and option 3 is used for optimization
related with inline calls to small functions and reorder
function declarations. Again, using the optimization
option O2 along with the proposed ISP full chain

achieves higher speedup compared to other options
due to higher degree of parallels.
Since the SRP can process eight 16-bit operations in

parallel with a single SIMD instruction, the SRP outper-
forms the fastest commercial platform i7 by 3.36 times
at the fully optimized version in Table 6. Although Intel
platforms comprise an issue width of 4 and 4 × 16-bit
data SIMD instructions, the inefficiency of the dy-
namic scheduling and a lower memory bandwidth
limit exploit the parallelism of the proposed algo-
rithm; that is, the parallelism of the proposed algo-
rithm can also work for Intel platforms. With respect
to the ARM platform, its issue width is half that of
the Intel platform and it comprises an even lower
memory bandwidth, so the cycle-per-pixel value is
4.07 times higher than those of the Intel platforms.
The TI platform also comprises two issue pipelines,
but there are more operation slots for control opera-
tions; however, the proposed algorithm is designed for
data parallelism, and the performance gain over the
ARM platform is marginal.

5 Conclusions
In this study, a parallel version of the ISP full chain is
proposed and implemented on an SRP architecture with
eight data width SIMD instructions. The proposed ISP full
chain is written in C language for portability, and the
image quality was verified with a commercially available
test suite. The proposed algorithm was modified for lesser
computational loads and a capability that facilitates the
easy exploitation of parallelism. A variety of optimization
techniques were also applied to make the algorithm
suitable for an SIMD-style architecture. The experiment
results satisfy both the image quality standard and the
real-time operation speed for a 600-MHz SRP with full
HD image sequences, and it utilizes approximately five
out of the eight operation slots in the SIMD instruction
of the SRP. The parallelism of the proposed algorithm
was also tested in a comparison with other commercial
platforms, and the results show that it can be easily
exploited.

Table 5 ISP performance comparisons on a variety of platforms

Platform Core used Cycles per pixel Frequency Issue width 16-bit processing elements in SIMD

Intel i7-3770 1 631.71 1.7 GHz 4 4

Intel i5-2500 1 677.14 1.7 GHz 4 4

Intel i3-530 1 1094.77 1.73 GHz 4 4

ARM (Cortex-A9) 1 2972.59 667 MHz 2 1a

TI C64x+ 1 2730.61 Simulation 2 VLIW

SRP 1 46.88 Simulation 1 8
aCortex-A9 has SIMD instructions that can handle four 16-bit data, but its C compiler does not support the SIMD instruction set

Table 6 Compiler optimization option comparison

Platform Optimization option Cycles per pixel Percentage

Intel i7-3770 OFF 631.71 100.00

O1 233.55 36.97

O2 184.55 29.21

O3 157.40 24.91

ARM (Cortex-A9) OFF 2972.59 100.00

O1 875.90 29.47

O2 695.65 23.40

O3 640.42 21.54

TI C64x+ OFF 2730.61 100.00

O0 1743.09 63.83

O1 1342.80 49.18

O2 629.65 23.06

O3 642.44 23.53

SRP OFF 46.88 100.00
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