
EURASIP Journal on Image
and Video Processing

Li EURASIP Journal on Image and Video
Processing  (2016) 2016:26 
DOI 10.1186/s13640-016-0132-7

RESEARCH Open Access

Anisotropic mesh adaptation for image
representation
Xianping Li

Abstract

Triangular meshes have gained much interest in image representation and have been widely used in image
processing. This paper introduces a framework of anisotropic mesh adaptation (AMA) methods to image
representation and proposes a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme.
Different than many other methods that triangulate sample points to form the mesh, the AMA methods start directly
with a triangular mesh and then adapt the mesh based on a user-defined metric tensor to represent the image. The
AMA methods have clear mathematical framework and provide flexibility for both image representation and image
reconstruction. A mesh patching technique is developed for the implementation of the GPRAMA method, which
leads to an improved version of the popular GPRFS-ED method. The GPRAMA method can achieve better quality than
the GPRFS-ED method but with lower computational cost.

Keywords: Image representation, Adaptive sampling, Anisotropic mesh adaptation, Metric tensor, Mesh patching

1 Introduction
Triangular meshes have recently received considerable
interest in adaptive sampling for image representation
[1–17]. One common approach is to find proper sam-
ple points then connect the points to form a mesh. For
example, Ramponi and Carrato [5] have defined a sample
skewness parameter and used amulti-resolution approach
to obtain a grid with an almost uniform sample density
along the edges and no sample in areas with constant or
linearly changing gray level. Yang et al. [8] argue that small
(in area) elements are needed in image region where the
second directional directive is large and have introduced
the error diffusion (ED) scheme. They first construct a fea-
ture map based on the largest entry (of absolute value) in
the Hessian matrix of the image function, then use Floyd-
Steinberg dithering scheme to generate sample points, and
finally use Delaunay triangulation to connect the nodes
into a mesh. Demaret et al. [11, 12] have introduced
the greedy-point removal (GPR) scheme that first con-
structs a triangular mesh using all the image points and
then removes the sample points that yield smallest recon-
struction error repeatedly. Adams [17] has proposed the
GPRFS method based on the GPR scheme by replacing
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the initial triangular mesh of all image points with a subset
of the points and developed the GPRFS-ED method that
selects the initial points using the ED scheme.
Another approach is to use a mesh directly to repre-

sent the image. For example, Terzopoulos and Vasilescu
[2] have introduced an adaptive mesh approach where
the mesh is considered as a dynamic node/spring system.
They sample an image at a reduced rate and then recon-
struct it by concentrating the nodes of the mesh at regions
where the image values change rapidly (high-gradient
region). They develop adaptive meshes with a feedback
procedure that automatically adjusts spring parameters
according to the observations made at the nodes to which
they are attached, and use a Gaussian convolution of the
Hessian for the adaptive image reconstruction. Isotropic
triangles are used in their adaptive meshes. Courchesne
et al. [13] use the Hessian matrix based on the gray level
of MRI images as a metric tensor to adapt the trian-
gular mesh for 3D reconstruction of human trunk. The
Hessian matrix is reconstructed by linear or quadratic fit-
ting. They then adapt the mesh based on the provided
metric tensor and four constraint factors—minimum and
maximum Euclidean edge lengths, maximum stretching
of the metric, and target length of an edge in the metric.
Bougleux et al. [15] have developed a progressive geodesic
meshing algorithm that defines a geodesic distance using
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regularized Hessian as the metric tensor and exploits
the anisotropy of images through a farthest point sam-
pling strategy that forces the anisotropic Delaunay tri-
angles to follow the geometry of the image. They have
demonstrated the advantages of anisotropic triangular
approximation over isotropic triangular approximation.
Sarkis and Diepold [16] have used binary space parti-
tions in combination with clustering scheme to approxi-
mate an image with a mesh. They first cluster the image
into a few initial triangles (or rectangles) and then sub-
divide each triangle (or rectangle) into two or more
smaller triangles recursively according to a predefined
threshold.
Most of the adaptive sampling methods are “content-

based” that use some information from the image such as
edges, textures, or Hessian. Different sampling ormeshing
strategies have been developed. The GPR method pro-
vides high-quality meshes but requires significant compu-
tational cost. On the other hand, the ED method reduces
computational cost but provides lower quality meshes.
The GPRFS-ED method tries to find a balance between
mesh quality and computational cost by combining the
advantages of GPR and ED methods. It is worth mention-
ing that most of the sampling methods take the approach
of finding the desired sample points first and then con-
nect the points into a mesh. Only a few methods such as
[2, 13, 15, 16] follow the approach that starts from an ini-
tial mesh and then adapt the mesh to represent the image.
On the other hand, anisotropic mesh adaptation (AMA)

has been successfully applied to improve computational
efficiency and accuracy when solving partial differential
equations [18–23]. In this paper, we introduce a frame-
work of AMA methods for image representation. AMA
methods take the M-uniform mesh approach for mesh
adaptation and use finite element interpolation for image
reconstruction. The methods start with an initial triangu-
lar mesh, then adapt the mesh according to a user-defined
metric tensor M, and finally reconstruct the image from
the mesh. The framework has the flexibility for both mesh
adaptation and image reconstruction. Various metric ten-
sors can be chosen for mesh adaptation, and different
orders of finite element interpolation can be applied for
reconstruction. In this paper, we only consider linear
finite element interpolation for triangular elements in the
reconstruction step.
For reader’s convenience, the representation methods

under consideration are summarized in the following list.

• ED: error diffusion method developed by Yang et al.
[8].

• AMAmethods such asManiso,k : anisotropic mesh
adaptation method using metric tensorManiso with
the initial mesh being adapted k times to generate the
desired mesh, proposed in Section 3.

• GPR: greedy-point removal scheme proposed by
Demaret et al. [11, 12].

• GPRFS-ED: modified GPR scheme starting from a
subset of points chosen by ED method, proposed by
Adams [17].

• GPRED-CDT(γ ): GPR starting from γ times of the
desired number of sample points chosen by ED and
utilizing constrained Delaunay triangulation for mesh
patching, essentially the same as GPRFS-ED,
proposed in Section 4.

• GPRED-EC(γ ): same as GPRED-CDT(γ ) except
using ear clipping for mesh patching, proposed in
Section 4.

• GPRAMA(γ ): GPR starting from an AMA
representation of γ times of the desired sample
density and utilizing ear clipping for mesh patching,
proposed in Section 4.

The remainder of this paper is organized as follows.
Firstly, a brief introduction of the AMA methods is given
in Section 2 where the details of the methods can be found
in [24–26]. Then in Section 3, the AMA representation
framework is introduced and some results obtained from
different methods are presented. In Section 4, a GPRAMA
representation method based on AMA and GPR is pro-
posed and some results and computational complexity
are discussed. Finally, some conclusions and comments
are given in Section 5. For reader’s convenience, a brief
summary of finite element interpolation for triangular
elements is provided in the Appendix.

2 Anisotropic mesh adaptation (AMA)methods
Different adaptive sampling methods and mesh strate-
gies have been applied in image representation by other
researchers as summarized in Section 1. In this section,
we introduce the “anisotropic mesh adaptation” (AMA)
methods. AMA methods take the M-uniform mesh
approach, with which an adaptive mesh is generated as a
uniform mesh in the metric specified by a tensor M. The
metric tensorM is required to be strictly positive definite
and it determines the size, shape, and orientation of the
triangular elements [25]. Once a metric tensor is speci-
fied, the free C++ code BAMG (bidimensional anisotropic
mesh generator) developed by Hecht [27] is used to gen-
erate the corresponding triangular mesh. BAMG first
generates an initial mesh based on the geometry of the
domain provided in a file that defines the nodes and
edges and the desired mesh size using constrained Delau-
nay triangulation. Then users have the choice to either
provide a metric tensor on the initial background mesh
or use the internal metric tensor computed by BAMG.
Once a metric tensor M is provided, BAMG employs
five local minimization tools including edge suppression,
vertex suppression, vertex addition, edge swapping, and
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vertex relocation to generate the desired anisotropic mesh
according to M. One of our objectives in this paper is to
build the framework for AMA in image representation
that can take different metric tensors for different needs
in image processing.
Firstly, we introduce some notations and the conditions

forM-uniform meshes. Let � be the spatial domain, K be
any triangular element in a simplicial mesh Th, and K̂ to
be the reference element that is equilateral and unitary in
area. Let FK be the affine mapping from K̂ to K. An M-
uniform 2-D triangular mesh Th for a given metric tensor
M = M(x) satisfies the following condition

(F ′
K )TMKF ′

K = σh
N

I, ∀K ∈ Th (1)

that is equivalent to the following two conditions [25]

|K |√det(MK ) = σh
N

, ∀K ∈ Th, (2)

1
2
tr

(
(F ′

K )TMKF ′
K

)
= det

(
(F ′

K )TMKF ′
K

) 1
2 , ∀K ∈Th,(3)

where I is the identity matrix of size 2 × 2, |K | is the area
of the element K,N is the number of mesh elements, F ′

K is
the Jacobian matrix of FK ,

MK = 1
|K |

∫

K
M(x)dx, and σh =

∑

K∈Th
|K |√det(MK ).

(4)

Condition (2) is called the equidistribution condition
and determines the size of element K, while condition
(3) is called the alignment condition and characterizes the
shape and orientation of K.
In the framework of AMA methods, the goal is to

develop and use proper metric tensors based on the needs
of the problems. Different metric tensors will have differ-
ent properties and features. It is worth mentioning that
Hessian matrixH is not an optimal metric tensor [26] and
may not be positive definite. In our framework, we replace
the Hessian with its absolute form defined as follows

|H| = Q
[ |λ1| 0

0 |λ2|
]
Q−1, with H = Q

[
λ1 0
0 λ2

]
Q−1,

(5)

where λ1 and λ2 are the eigenvalues of H and Q is the
matrix of the corresponding eigenvectors. Themetric ten-
sor |H| is denoted as MH in this paper, and [13] can be
considered as a specific example in our AMA framework.
Some other metric tensors are described below.
For isotropic mesh adaptation, a metric tensor Miso is

defined for any triangular element K as follows [24]

Miso,K =
(
1 + 1

αh
‖HK‖F

)
I, (6)

where HK denotes the value of H at the center of ele-
ment K , ‖ · ‖F is the Frobenius matrix norm, and αh is a
regularization factor that is defined by

αh = 1
|�|

⎛

⎝
∑

K∈Th
|K | · ‖HK‖F

⎞

⎠ . (7)

Miso provides isotropic mesh adaptation where all trian-
gles are of the same shape butmay have different sizes, and
more triangles will be concentrated in the high-gradient
region.
For anisotropic mesh adaptation, a metric tensorManiso

is developed in [24] that is based on minimization of a
bound on the H1 semi-norm of linear interpolation error
and is defined for any triangular element K as follows

Maniso,K = ρK det
(
I + 1

αh
|HK |

)− 1
2
[
I + 1

αh
|HK |

]
,

(8)

and

ρK =
∥∥∥∥I + 1

αh
|HK |
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1
2

F
det

(
I + 1

αh
|HK |

) 1
4
, (9)

where αh is the regularization parameter and is defined
implicitly through

∑

K∈Th
ρK |K | = 2|�|. (10)

With this choice of αh, roughly 50 % of the triangular ele-
ments will be concentrated in large gradient regions [24].
The adaptation is anisotropic because the triangles in the
mesh may have different size, shape, and orientation.
For image processing with anisotropic diffusion filters

[28], a metric tensorMDMP is developed in [20] that takes
the inverse of the diffusion tensor. The elements of the
mesh based on MDMP will be aligned along the prin-
ciple diffusion direction, and the corresponding numer-
ical solution will satisfy the maximum principle under
some conditions of time step [22]. Another metric ten-
sorMDMP+adap is also developed in [20] that combines the
properties of both Maniso and MDMP, that is, the mesh
not only provides numerical solution that satisfies maxi-
mum principle but also performs adaptation based on the
interpolation error.
In this paper, we only focus on the metric tensors

MH ,Miso, andManiso. In the computations for those met-
ric tensors, the Hessian matrix H at a point is recon-
structed by the least-squares fitting from function values
at neighboring vertices. For convenience, we use the met-
ric tensor to denote the mesh as well as the corresponding
representation. For example,Maniso denotes the mesh and
representation according to the metric tensorManiso.
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As demonstrated in [15, 26], anisotropic meshes have
advantages over isotropic meshes in terms of computa-
tional efficiency and accuracy. Our results in Section 3
also confirm that anisotropic meshes provide better rep-
resentation quality than isotropic meshes. Therefore, we
will only use anisotropic mesh adaptation methods in the
AMA image representation framework.

3 AMA image representation framework
In this section, we introduce the AMA framework for
image representation. We consider an image as a func-
tion f that is defined on a set � of points on domain
� =[ 0, 1]×[ 0, 1]. Let S denote the set of desired sample
points and SD denote the sample density that is defined as

SD = |S|/|�|, (11)

where | · | is the cardinality of the set. The quality of the
mesh (or representation) is measured by the peak-signal-
to-noise-ratio (PSNR) that is calculated in decibels (dB) as
follows [17]

PSNR = 20 log10
(
2p − 1

d

)
, d =

(
1

|�|
∑

i∈�

|f̂ (i) − f (i)|2
) 1

2

,

(12)

where f̂ is the reconstructed image from the triangu-
lar mesh, and p is the sample precision in bits/sample.
Larger value of PSNR indicates better mesh quality (or
representation).

3.1 Framework
In this paper, we apply the AMA methods for image rep-
resentation, in which a triangular mesh with fewer points
is used to represent the original image f. Given the orig-
inal image f, we use the free C++ code BAMG [27] to
generate an initial triangular mesh with number of ver-
tices Nv that is much smaller than |�|. Then the values on
the vertices are interpolated from f, and the metric ten-
sor M is computed for each triangle in the initial mesh.
With the computed metric tensor, BAMG generates the

desired anisotropic mesh using the procedures described
in Section 2. Finally, the image is reconstructed from the
final mesh using finite element interpolation.
It is difficult to generate a mesh that satisfies condi-

tions (2) and (3) exactly. Moreover, the initial mesh, in
general, may not contain the important information from
the original image. Therefore, the mesh can be adapted
multiple times in order to obtain a final mesh that is
close to be anM-uniformmesh, or the so-called quasi-M-
uniform mesh. The iteration can be terminated if further
adaptation does not significantly improve image quality
(measured by PSNR) and can be image dependent in order
to obtain the best representation of a particular image.
However, numerical results show that 2 to 5 iterations
are sufficient to provide a quasi-M-uniform mesh with
good quality, and further adaptation does not improve the
quality significantly.
More specifically, the AMA representation framework

consists of the following four steps.
Step 1: Generate an initial mesh based on the desired

sample density.
Step 2: Assign function values to mesh vertices (and

interpolation nodes) from original image using linear
finite element interpolation and compute the user-defined
metric tensorM on the mesh.
Step 3: Adapt the mesh to be a quasi-M-uniform mesh

that almost fits the provided metric tensorM.
Step 4: Reconstruct the image using the final quasi-

M-uniform mesh with finite element interpolation for
triangles.
During the reconstruction step (step 4), for a particular

image pixel, we first locate the triangle that the pixel lies
on or in. Then, we compute the coordinates of the pixel
in the reference element (see Fig. 1) and the correspond-
ing basis functions at the interpolation nodes. Finally,
we interpolate the function value from the interpola-
tion nodes using the basis functions as the weights. For
linear interpolation, only the three vertices are needed,
while for quadratic interpolation, the midpoints are also
needed. For reader’s convenience, a brief summary of

a3

a1

a 2

a 6

a 4

a 5

a 1 a 2

a 3

a 4

a 5a 6

Fig. 1 Sketch of triangular element K and its reference element K̂ for finite element interpolation, where K̂ is an isosceles right triangle with vertices
â1(0, 0), â2(1, 0), and â3(0, 1)



Li EURASIP Journal on Image and Video Processing  (2016) 2016:26 Page 5 of 16

iteration

Generate
initial mesh

Interpolate from

image, compute

metric tensor

Adapt mesh

based on

Reconstruct
image from

final mesh

Fig. 2 Procedures for AMA representation method based on metric
tensorM

finite element interpolation for triangular elements is
provided in the Appendix.
The above procedures are shown in Fig. 2 where steps

2 and 3 can be repeated multiple times in order to obtain
better results. For convenience, we denote the number of
iterations for steps 2 and 3 by k and the corresponding
mesh as Mk . For example, for metric tensor MH , the rep-
resentation is denoted as MH ,k if there are k iterations of
steps 2 and 3. For metric tensorManiso, the corresponding
mesh is denoted asManiso,k . When k = 1, the mesh is only
adapted from initial mesh once and no further adaptation
is performed. As mentioned before, we take k ∈[ 2, 5] in
our computations.
Note that we can start with a random initial mesh that

has more number of vertices than desired (Nv > |S|)
in Step 1, then iterate steps 2 and 3 to obtain a mesh
with desired sample density. By this way, more informa-
tion from the original image could be reserved by the
mesh. Another approach is to obtain an initial mesh with
Nv > |S| for steps 1 to 3, then reduce the number of mesh
vertices to the desired number |S| using the GPR algo-
rithm before Step 4. The particular representation using
GPR before step 4 is denoted as GPRAMA and will be
discussed in Section 4.
Note that in step 4, we can choose different orders of

finite element interpolation methods. However, in this
paper, we only consider linear finite element interpola-
tion for triangular elements and the effects of higher order

interpolation on representation quality is currently under
investigation. In fact, quadratical interpolation provides
higher representation quality; however, the sample den-
sity is also higher since it uses the midpoints on the edges
of the triangles. There is no need to sample the midpoints
because their coordinates can be computed; however, the
function values at the midpoints need to be assigned
in Step 2. A fair comparison is needed between higher
order interpolation and linear interpolation with the same
sample density.

3.2 Results
For evaluation purpose, we take the two widely used
images, “Lena” and “peppers,” available from USC-SIPI
Image Database [29]. Figure 3 shows the initial images
of Lena and peppers with pixel resolution 512 × 512,
while the RGB components of each pixel are converted to
greyscale luminance using the weighted sum 0.2989 · R +
0.5870 · G + 0.1140 · B. Three more images with differ-
ent resolutions and features are also tested for comparison
purpose, including “roof,” “lighthouse,” and “saturn.” Image
roof has resolution 1024 × 1024 and is obtained from
USC-SIPI Image Database [29]. “lighthouse” has resolu-
tion 480 × 640 and “saturn” has resolution 1500 × 1200;
both are taken from MATLAB R2016a image data folder.
All images are converted to greyscale images as done for
images Lena and peppers.
Figure 4 shows the representation of the image Lena

at SD = 3 % using isotropic mesh according to Miso,3,
and the quality of representation is PSNR = 28.26.
Figure 5 shows the Maniso,1 and Maniso,2 meshes and
the corresponding sample points of the image Lena at
SD = 3 %. The representation quality for Maniso,1 is
PSNR = 29.81, and is PSNR = 30.81 for Maniso,2. After
three iterations, the quality increases to PSNR = 31.00 for
Maniso,3 as shown in Fig. 6. Further adaptation does not

Fig. 3 Images from USC-SIPI Image Database [29] with pixel resolution 512 × 512: a Lena; b peppers. The RGB components of each pixel are
converted to luminance using the weighted sum 0.2989 · R + 0.5870 · G + 0.1140 · B
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Fig. 4 Representation of image Lena at sample density of 3 % usingMiso,3: a triangular meshMiso,3; b reconstructed image, PSNR=28.47

improve the representation quality for this case. It is clear
that image representation based on Maniso is better than
the one based onMiso.
Figure 6 also shows the representation and recon-

struction of the image Lena at SD = 3 % using ED
scheme denoted as ED. For the ED scheme, we have
applied the strategies recommended in [17], including

B(3) smoothing for image data, zero extension for bound-
ary points, and serpentine scan order for the error diffu-
sion. The representation quality is PSNR=28.41 for ED.
Figure 7 shows similar results for the image peppers

at SD = 3 %. The quality for Maniso,3 is PSNR=30.89
and is PSNR=28.05 for ED. As can be seen from Figs. 6
and 7, the Maniso,3 meshes preserve key features of the

Fig. 5Meshes and sample points of image Lena at sample density of 3 % usingManiso: aManiso,1 mesh; b sample points from the mesh in a; c
Maniso,2 mesh; d sample points from the mesh in c
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Fig. 6 Representations of image Lena at sample density of 3 % using different methods: a triangular meshManiso,3; b reconstructed image from a,
PSNR=31.00; cmesh obtained using ED scheme; d reconstructed image from c, PSNR=28.41

original image by concentrating more triangular elements
around the edges and texture regions. The quality of
Maniso,3 representation is much better than that of the ED
representation.
The representation qualities for both image Lena and

peppers using different AMA methods are shown in
Table 1. The results obtained using ED scheme are also
presented for comparison purpose. As can be seen, the
quality of Miso,3 representation is comparable to ED but
not as good as the anisotropic ones.
The results confirm thatmore iterations of steps 2 and 3,

that is, increasing the values of k, do improve the mesh
quality. For example, for image Lena at SD = 3 %, PSNR
increases from 29.67 forMH ,1 to 30.45 forMH ,3 and from
29.81 for Maniso,1 to 31.00 for Maniso,3. Similar results
are observed for image peppers. The reason is that after
each mesh adaptation, better information are preserved
from the original image and the mesh is closer to the
M-uniform mesh. However, for the two images we are
investigating, k = 3 already provides a mesh with good
quality and further adaptation does not make significant
improvement. The results of PSNR values usingMH ,k and

Maniso,k at different k values are presented in Table 2 for
different images at sample density of 3 %. The optimal
value of k depends on the given image. For example, k = 2
is the best for image saturn, k = 3 works the best for
images Lena, and peppers. For image lighthouse,MH ,k and
Maniso,k have different optimal k values and k = 3 is a good
balance.
Comparing MH ,1 and Maniso,1 in Table 1 and 2, we

see that the absolute Hessian |H| is not an optimal
metric tensor, and the performance of Maniso,1 is bet-
ter than MH ,1 for all cases, although the difference is
not significant. By adapting both MH and Maniso meshes
three times,Maniso,3 performs better thanMH ,3 for image
Lena while the opposite occurs for image peppers. The
results of MH ,3 and Maniso,3 for the other three images
are presented in Table 3. The qualities of the repre-
sentation depend on the specific image but overall per-
formance is comparable for MH and Maniso. In this
paper, we choose Maniso,3 as the representative from the
AMA framework and propose a new image represen-
tation method based on AMA and GPR in the next
section.



Li EURASIP Journal on Image and Video Processing  (2016) 2016:26 Page 8 of 16

Fig. 7 Representations of image peppers at sample density of 3 % using different methods: a triangular meshManiso,3; b reconstructed image from
a, PSNR=30.89; cmesh obtained using ED scheme; d reconstructed image from c, PSNR=28.05

4 GPRAMA representationmethod
In this section, we apply the greedy-point removal scheme
to AMA representation and propose a new method
denoted as GPRAMA. Adams has proposed the GPRFS
method in [17] that is based on the GPR scheme while
replacing the initial triangular mesh of all image points
with a subset S0 ⊆ �. The GPRFS method starts with
|S0| = γ |S| for γ ∈[ 4, 5.5] and then uses GPR scheme
to reduce the number of points from |S0| to the desired
number |S|. Adams employs ED method to choose S0 and
denotes the method as GPRFS-ED in his paper.
As discussed in the previous section, our AMA repre-

sentationmethods provide better quality than ED scheme.
Therefore, it is reasonable to consider the vertices of an
AMA mesh as the initial subset S0 for the GPR scheme.
In this sense, the GPRAMA method is a specific example
of the GPRFS method. However, GPRFS method relies on
Delaunay triangulation of the sample points that does not
have the anisotropic feature as in AMA meshes. In fact,
the mesh quality obtained via Delaunay triangulation may
not be optimal for a given set of sample points, measured
by PSNR value of the reconstructed image. Figure 8 shows
one example, where the mesh is obtained by Delaunay tri-
angulation of the provided sample points and the mesh

quality is PSNR=28.57; however, for the same set of sam-
ple points, theManiso,3 mesh (see Fig. 6a) has better quality
with PSNR=31.00.

4.1 Mesh patching technique
In order to preserve the anisotropic feature of the AMA
meshes when applying GPR scheme, we have developed
a mesh patching technique that attaches a local mesh
to the AMA mesh. This patching technique also works
for any other triangular meshes. Let i be the index of a
general vertex in the mesh, we denote the region cov-
ered by triangles sharing vertex i including the bound-
ary edges by ωi and call it the patch of i. The poly-
gon surrounding i formed by the boundary edges, is
denoted as ∂ωi, and the inner region of the patch, that
is, excluding the boundary edges, is denoted as ωi. Before
removing the vertex i, the patch ωi is partitioned by
the triangular elements from the initial mesh, and lin-
ear finite element interpolation are used on those tri-
angles for image reconstruction. If vertex i is chosen to
be removed, ωi is triangulated again without vertex i.
The new triangulation of ωi is then added to the global
mesh structure. Figure 9 provides an illustration of the
mesh patching technique with two different triangulation
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Table 1 Comparison of mesh qualities obtained with various
methods

Sample PSNR (dB)
Image Density (%) ED Miso,3 MH,1 Maniso,1 MH,3 Maniso,3

1.0 21.38 24.13 25.42 25.57 26.32 26.51

2.0 26.36 26.55 28.08 28.38 28.93 29.35

Lena 3.0 28.41 28.26 29.67 29.81 30.45 31.00

4.0 29.77 29.42 30.71 30.83 31.82 31.99

6.0 31.46 31.06 32.09 32.26 33.22 33.31

1.0 20.66 23.50 25.01 25.69 26.31 25.80

2.0 25.30 26.10 28.16 28.55 29.34 29.36

Peppers 3.0 28.05 28.31 29.65 30.01 31.05 30.89

4.0 29.57 29.14 30.74 30.94 31.86 31.86

6.0 31.03 31.11 31.90 32.01 33.10 32.95

methods of the patch—one is the constrained Delaunay
triangulation (CDT) [30] and the other is the ear clipping
(EC)method [31]. Both CDT and ECwork well for general
polygons including concave ones. The specific procedures
for the mesh patching of ωi are as follows.
Step 1: Save the global indices of the vertices of the

polygon ∂ωi.
Step 2: Triangulate ωi without vertex i (using CDT or

EC) and save the mesh connectivity that lists the local
indices of the vertices of each triangle.
Step 3: Map the local indices in Step 2 to the global

indices from Step 1, and add the updated connectivity
information of ωi to the global mesh.

4.2 GPRAMAmethod
With the mesh patching technique described above
and the AMA representation framework introduced in
Section 3, the GPRAMAmethod consists of the following
four steps.

Table 2 PSNR (dB) ofMH,k andManiso,k representations at
sample density of 3 %

Image Mesh PSNR (dB)

k = 1 k = 2 k = 3 k = 4 k = 5

Lena MH,k 29.67 29.97 30.45 30.19 30.18

Maniso,k 29.81 30.48 31.00 30.01 29.80

Lighthouse MH,k 26.54 26.68 26.76 26.85 26.68

Maniso,k 26.69 26.85 26.78 26.62 26.19

Peppers MH,k 29.65 30.16 31.05 29.93 29.48

Maniso,k 30.01 29.74 30.89 29.92 29.69

Roof MH,k 27.40 28.07 28.43 28.66 28.79

Maniso,k 27.55 28.16 28.48 28.62 28.79

Saturn MH,k 48.89 49.93 48.74 46.05 45.91

Maniso,k 48.97 49.89 49.77 48.87 47.91

Table 3 Comparison of mesh qualities obtained withMH,3 and
Maniso,3

Sample PSNR (dB)
Image density (%) ED MH,3 Maniso,3

1.0 20.16 23.49 23.51

2.0 24.10 25.40 25.58

Lighthouse 3.0 25.69 26.76 26.78

4.0 26.79 27.69 27.84

6.0 28.49 29.15 29.22

1.0 19.19 24.90 25.31

2.0 23.39 27.07 27.42

Roof 3.0 26.61 28.43 28.48

4.0 28.02 29.33 29.33

6.0 29.24 30.41 30.38

1.0 42.14 47.72 47.99

2.0 46.18 49.07 49.32

Saturn 3.0 47.33 48.74 49.77

4.0 48.18 48.94 49.74

6.0 48.48 47.92 47.74

Step 1: Generate an AMA representation based on a
metric tensor M with number of vertices Nv = γ |S| for
γ ≥ 1. Let V be the set of all vertices in the mesh and let
Vp = V .
Step 2: For any vertex vi ∈ Vp, compute the significance

measure δei defined as the difference between the local
mean square error of ωi after and before removing vi, as
shown below.

δei =
∑

j∈�∩ωi

| f̂a(j) − f (j)|2 −
∑

j∈�∩ωi

| f̂b(j) − f (j)|2, (13)

where f̂a is the reconstructed value using the new triangu-
lation of the patch without vertex i and f̂b is the one with
vertex i.
Step 3: For the vertex vi ∈ V having minimal δei, reset

Vp as the set of vertices of the polygon ∂ωi, remove vi
and apply the mesh patching technique for ωi. Reset V =
V\{vi} and Nv = Nv − 1.
Step 4: IfNv ≤ |S|, output the mesh and stop; otherwise,

go to step 2 with the updated Vp and V.
In our computations, we choose metric tensor Maniso,3

in the above procedures for GPRAMA due to its good
representation quality as described in Section 3. In each
iteration of Step 2, except the first, we only need to
compute the significance measures for the neighboring
vertices of vi after it is removed. Other vertices in themesh
outside of ωi are not affected. For efficient implementa-
tion, we do not need to delete the information at vertex
vi such as coordinates, function value and neighboring
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Fig. 8 Representation of image Lena at sample density of 3 %: a sample points; b Delaunay mesh, PSNR=28.57

triangles from the mesh data then triangulate the patch
using the updated mesh data. We just need to replace the
old triangulation of the patch containing vi with the new
one without vi by updating the corresponding entries in
the mesh data directly. A sorted index array for the signifi-
cancemeasures can be used in step 3 for efficient selection
of the vertex to be removed.

4.3 Results
According to the different triangulation methods for
the mesh patching technique in step 3, the final mesh
and the corresponding representation are denoted as
GPRAMA(γ )-CDT if constrained Delaunay triangulation
is used and GPRAMA(γ )-EC if ear clipping method is
used, where γ specifies the number of initial points

Fig. 9 Illustration of mesh patching technique: a original mesh with the highlighted patch of the point to be removed; bmesh with polygon of the
empty patch; cmesh patching using constrained Delaunay triangulation (CDT) for b; dmesh patching using ear clipping (EC) method for b



Li EURASIP Journal on Image and Video Processing  (2016) 2016:26 Page 11 of 16

Fig. 10Meshes of different GPR-related representations for image Lena at sample density of 3 %: a GPRED(4)-CDT, PSNR=33.49; b GPRED(4)-EC,
PSNR=33.85; c GPRAMA(4)-CDT, PSNR=33.18; d GPRAMA(4)-EC, PSNR=34.51

|S0| = γ |S|. Figure 10 shows the meshes obtained using
GPRED and GPRAMAmethods for image Lena at sample
density 3 % with γ = 4, and Fig. 11 presents two of the
reconstructed images.
GPRED(4)-CDT has quality PSNR=33.49 while

GPRED(4)-EC has PSNR=33.85. GPRAMA(4)-CDT

has quality PSNR=33.18 while GPRAMA(4)-EC has
PSNR=34.51. The GPRED-CDT method is essentially
the GPRFS-ED method in Adam’s paper [17] while
GPRED-EC is an improved version of GPRED-CDT
due to the different triangulation of the local patch. For
GPRAMA, using constrained Delaunay triangulation

Fig. 11 Reconstructed images using different GPR-related representations for image Lena at sample density of 3 %: a GPRED(4)-EC, PSNR=33.85;
b GPRAMA(4)-EC, PSNR=34.51
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for mesh patching does not preserve the anisotropy of
the initial mesh, especially when significant amount
of points are removed. Therefore, ear clipping method
works better for GPRAMA, and GPRAMA-EC gives the
best quality among the four GPR-related representations.
Similar results are observed for image peppers as shown
in Figs. 12 and 13.
The mesh qualities at different sample densities for both

Lena and peppers using GPR-related representations are
shown in Table 4, where mesh patching with ear clipping
is used for GPR and GPRAMA methods. GPRAMA(4)
provides better quality than the traditional GPR method
for both images except at sample density of 1 % for image
peppers. Furthermore, GPRAMA(3) performs better than
GPRED(5)-CDT and is comparable with GPRED(5)-EC
for both images. Therefore, GPRAMA can achieve better
quality than GPREDwhile starting with smaller |S0|which
indicates less computational cost, especially for high-
resolution images. The computational costs for different
methods are provided in the next subsection.
Figure 14 shows a picture of the Golden Gate Bridge of

pixel resolution 4000×3000 and its GPRAMA representa-
tion at sample density 1 % with γ = 4. The reconstructed

image is shown in Fig. 15 and the representation quality
is PSNR=34.30. Some results using different representa-
tion methods are provided in Table 5, where ear clipping
is used in the mesh patching for all the GPR-related meth-
ods. As can be seen, GPRAMA(2) has quality as good as
GPRED(4) but starts with only half of the initial points.
The results are consistent with our previous observations
for other images.

4.4 Computational complexity
Here, we compare the computational complexity of the
various image representation methods considered in this
paper. The computational complexity is measured in
terms of CPU execution time in seconds (converted from
clock ticks) and varies for different hardware and software
environment. Our computations in this paper are per-
formed in a MacBook Pro laptop with 2.6 GHz Intel Core
i7 CPU, 8GB 1600MHz DDR3 memory, and OSX 10.9.5
operating system.
Note that our program code was developed with basic

level of efficiency and has not been optimized for execu-
tion speed. Thus, the absolute CPU time for each method
may be reduced by using highly optimized code. However,

Fig. 12Meshes of different GPR-related representations for image peppers at sample density of 3 %: a GPRED(4)-CDT, PSNR=33.65; b GPRED(4)-EC,
PSNR=33.74; c GPRAMA(4)-CDT, PSNR=33.44; d GPRAMA(4)-EC, PSNR=34.23
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Fig. 13 Reconstructed images using different GPR-related representations for image peppers at sample density of 3 %: a GPRED(4)-CDT,
PSNR=33.65; b GPRAMA(4)-EC, PSNR=34.23

our focus here is to compare the computational com-
plexity among the different methods. The CPU times for
representations of images Lena and peppers with and
without GPR are provided in Table 6, where ear clipping
mesh patching technique is used in all the GPR-related
methods.
It is clear that ED method is the fastest (with low

quality) and GPR is the most computationally expensive
method (with good quality), and the result is consistent
with the existing literatures. For example, at sample den-
sity of 3 % for image Lena, ED representation takes only
0.026 s, while GPR method takes 248 s. For image pep-
pers at sample density of 3 %, ED method takes 0.027 s
while GPR takes 318 s. The smaller sample density, the
longer time GPR needs because more points need to be
removed before reaching the desired sample density. For
all other methods, the computational cost is lower for
smaller sample density.
For representation methods without greedy-point

removal technique,MH ,3 andManiso,3 provide better qual-
ity (see Table 1) but have higher computational cost than

ED method (see Table 6). For example, at sample density
of 3 % for image Lena, theMH ,3 representation takes 0.45 s
and Maniso,3 takes 0.47 s, which are about 16 times more
than EDmethod but only 0.2 % of the time needed by GPR
method. Similar results are observed for image peppers.
Therefore, MH ,3 and Maniso,3 are good balances between
ED and GPR. In the meantime,Maniso,3 takes about 0.02 s
longer than MH ,3 which is due to the extra time needed
to computeManiso (8) in addition toMH (5). However, the
extra cost is negligible (less than 5 %).
For GPR-related representation methods, both

GPRED(5) and GPRAMA(3) provide comparable quality
with GPR (see Table 4) but take much less time (see
Table 6). For example, at sample density of 3 % for image
Lena, GPRED(5) takes 10.5 s and GPRAMA(3) takes
4.93 s. GPRAMA(3) only takes 2 % of the time needed by
GPR and less than half of the time needed by GPRED(5).
Therefore, GPRAMA method can provide comparable
quality with GPRED but with lower computational cost,
which makes it another good balance between ED and
GPR. The results for image peppers are also similar.

Table 4 Comparison of mesh qualities obtained with various GPR-related methods

Sample PSNR (dB)
Image density (%) GPR GPRED(5) -CDT GPRED(5) -EC GPR- AMA(2) GPR- AMA(3) GPR- AMA(4)

1.0 29.15 29.33 30.19 29.48 30.48 30.84

2.0 31.81 32.03 32.69 32.13 32.90 33.23

Lena 3.0 33.35 33.52 34.12 33.50 34.21 34.51

4.0 34.43 34.60 35.14 34.45 35.11 35.39

1.0 31.12 30.22 30.65 29.31 30.53 31.06

2.0 33.10 32.61 32.86 32.18 32.86 33.24

Peppers 3.0 34.01 33.75 33.96 33.41 33.98 34.23

4.0 34.61 34.47 34.73 34.08 34.61 34.88
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Fig. 14 GPRAMA representation for a image of Golden Gate Bridge at
sample density of 1 %: a original image, 4000 × 3000; b GPRAMA(4),
PSNR=34.30

Fig. 15 Reconstructed image of GPRAMA(4) representation for
Golden Gate Bridge in Fig. 14a at sample density of 1 %, PSNR=34.30

Table 5 Comparison of mesh qualities for an image of Golden
Gate Bridgea

Sample PSNR (dB)
density (%) ED Maniso,3 GPRED(4) GPRAMA(2) GPRAMA(4)

0.5 23.84 29.13 31.39 31.67 32.56

1.0 27.22 31.03 33.66 33.61 34.30

aThe image pixel resolution is 4000 × 3000

5 Conclusions
Adaptive sampling has become popular in image repre-
sentation, among which triangular meshes have gained
much interest. One common approach is to develop
schemes to choose proper sample points then connect
the points to form a triangular mesh. Another approach
is to generate and adapt the mesh directly to represent
the image. In this paper, we have introduced a frame-
work of anisotropic mesh adaptation methods to image
representation. The AMA methods take the M-uniform
mesh approach and use a metric tensor M to control
the triangular mesh. Firstly, an initial Delaunay trian-
gular mesh is generated based on the desired sample
density. Then, the mesh is adapted using the software
BAMG according to the provided metric tensor. Lastly,
finite element interpolation is used to reconstruct the
image from the mesh. The anisotropic metric tensor
Maniso in (8) provides the best representation in this
framework among the considered metric tensors. Note
that the method proposed by Courchesne et al. [13]
(with minor modification) is a special case within this
framework.
Within the AMA representation framework, we have

developed a GPRAMA method based on the greedy-
point removal scheme and a mesh patching technique.
The local polygon (may be concave) surrounding a mesh
vertex can be triangulated using constrained Delaunay tri-
angulation or ear clipping method. When choosing the
initial points using the error-diffusion scheme and CDT is
chosen for mesh patching, the corresponding representa-
tion method is denoted as GPRED-CDT that is essentially
the same as the GPRFS-ED method proposed by Adams
[17]; while choosing EC for mesh patching leads to an
improved version denoted as GPRED-EC. When start-
ing the initial points from an AMA mesh, in particular,
an Maniso mesh, and EC is chosen for mesh patching,
we obtain the GPRAMA representation method that pro-
vides better quality than the GPRFS-ED method but with
lower computational cost. Overall, mesh patching with
EC provides better quality for GPR-related representa-
tion methods than mesh patching with CDT. Numerical
results on two standard test images, Lena and peppers,
are presented, as well as on an image of the Golden Gate
Bridge that has higher resolution. The observations are
confirmed by the results from three other images. All the
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Table 6 Comparison of CPU time (in s) for different representations

Sample Without GPR GPR-related
Image density (%) ED MH,3 Maniso,3 GPR GPRED(5) GPR- AMA(3)

1.0 0.022 0.43 0.40 251 5.23 3.28

2.0 0.024 0.42 0.44 249 6.97 3.97

3.0 0.026 0.45 0.47 248 10.5 4.93

Lena 4.0 0.030 0.49 0.51 247 14.2 6.54

6.0 0.033 0.54 0.57 245 28.9 11.06

9.0 0.042 0.65 0.69 243 54.6 20.52

12.0 0.049 0.76 0.80 240 82.8 37.36

1.0 0.023 0.38 0.40 321 4.89 2.97

2.0 0.024 0.40 0.42 319 6.73 3.70

3.0 0.027 0.44 0.47 318 9.92 4.54

Peppers 4.0 0.029 0.47 0.51 317 14.0 6.00

6.0 0.039 0.53 0.60 315 25.7 10.6

9.0 0.043 0.63 0.68 313 53.6 15.4

12.0 0.050 0.72 0.76 309 93.0 34.7

results demonstrate that AMA representation is superior
than ED representation, and GPRAMA performs better
than the GPRFS-ED method.
AMA representation methods have clear mathematic

framework and provides flexibility for both adaptation
using different metric tensors and reconstruction using
different interpolation methods, although we have only
focused on linear finite element interpolation in this
paper. The AMA representation of the image and the
mesh adaptation strategy will be useful for image scaling
and PDE-based image processing such as image smooth-
ing and edge enhancement using anisotropic diffusion
filters, which are topics under our current investigation.

Appendix
Finite element interpolation for triangles
This appendix provides a brief introduction to the linear
and quadratic finite element interpolation for triangles.
The interpolation for quadrilateral elements are similar.
Figure 1 shows a triangular element K and an isosceles
right triangle K̂ as the reference element. The vertices
of K are denoted as a1, a2, and a3, and the midpoints
of the corresponding sides are denoted by a4, a5, and
a6. The vertices of the reference element K̂ are located
at â1(0, 0), â2(1, 0), and â3(0, 1). The midpoints in K̂ are
located at â4(0.5, 0), â5(0.5, 0.5), and â6(0, 0.5) .
Denote the coordinates of the vertices of K as

a1(x1, y1), a2(x2, y2), and a3(x3, y3). The corresponding
function values are denoted by f1 = f (x1, y1), f2 =
f (x2, y2), and f3 = f (x3, y3). For any point a(x, y) in the
element K, the corresponding point â(ξ , η) in the refer-
ence element K̂ is given by

[
ξ

η

]
=

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]−1
×

[
x − x1
y − y1

]
. (14)

For linear interpolation, only the values at the three ver-
tices are needed, and the function value at any point (ξ , η)

is interpolated as follows

f (ξ , η) =
3∑

i=1
fi · Ni(ξ , η), (15)

where Ni(ξ , η) is the basis functions at âi and is defined as
follows

N1(ξ , η) = 1 − ξ − η; N2(ξ , η) = ξ ; N3(ξ , η) = η.
(16)

For quadratic interpolation, the midpoints of the sides
are needed. Denote the function values at midpoints
a4, a5, and a6 as f4, f5, and f6, respectively. Then, the func-
tion value at any point (ξ , η) in K̂ is interpolated as follows

f (ξ , η) =
6∑

i=1
fi · Ni(ξ , η), (17)

where the basis functions are defined as follows

N1 = (1 − ξ − η)(1 − 2ξ − 2η); N2 = ξ(2ξ − 1);
N3 = η(2η − 1); N4 = 4ξ(1 − ξ − η);
N5 = 4ξη; N6 = 4η(1 − ξ − η). (18)
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