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Abstract

Image super-resolution has wide applications in biomedical imaging, computer vision, image recognition, etc. In this
paper, we present a fast single-image super-resolution method based on deconvolution strategy. The deconvolution
process is implemented via a fast total variation deconvolution (FTVd) method that runs very fast. In particular, due to
the inaccuracy of kernel, we utilize an iterative strategy to correct the kernel. The experimental results show that the
proposed method can improve image resolution effectively and pick up more image structures. In addition, the speed
of the proposed method is fast.
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1 Introduction
The process of estimating a high-resolution (HR) image
from one or multiple low-resolution (LR) images is often
referred to as image super-resolution. According to the
number of low-resolution images, image super-resolution
can be divided into two categories: one is single-image
super-resolution, and the other is multiple-image super-
resolution. Based on image sequence, multiple-image
super-resolution uses overlapping information between
multiple low-resolution images to estimate details of
the high-resolution image [1–3]. Due to multiple-image
super-resolution needs more than one input image, it
cannot deal with the situation when only one image is
inputted. In this paper, we mainly focus on single-image
super-resolution.
Interpolation-based methods are one of classical image

super-resolution methods. To determine pixel values of
each position in the high-resolution image, interpolation-
based methods need to construct a rational interpolation
function. The conventional interpolation-based meth-
ods contain bicubic interpolation method, cubic inter-
polation method [4], cubic spline interpolation method,
nearest-neighbor interpolation method, etc. These meth-
ods usually run very fast but always produce blurring or
jagged artifacts. Recently, many contributions in terms of
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interpolation-based methods have been proposed [5–11].
In [6], Zhang et al. present an edge-guided interpolation
algorithm through directional filtering and data fusion.
This method can preserve sharp edges. In [9], Wang
et al. propose a fast image upsampling method within
a two-scale framework. They use interpolation method
to recover the low-frequency image and reconstruction
technique to recover the local high-frequency structures.
Reconstruction-based methods are another class of

image super-resolution approaches. Through studying the
low-resolution image generating process, reconstruction-
based methods use a certain model to depict the map-
ping relationship between the high-resolution image and
the low-resolution image. There are three main types of
reconstruction-based methods: frequency domain tech-
niques, spatial domain techniques, and other techniques.
Frequency domain techniques [12–14] solve the problem
in frequency domain, and the observation model is based
on displacement characteristics of Fourier transform. Spa-
tial domain techniques, such as non-uniform interpola-
tion within samples method [15], convex set projection
method [16], statistical recovery method (maximum a
posteriori andmaximum likelihood estimation) [2, 17, 18],
solve the problem in spatial domain. In addition, there
are some other reconstruction-based methods [19–24]. In
[22], Shan et al. propose an efficient upsampling method
which lies in a feedback-control framework. This method
runs very fast and can preserve the essential structural
information.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-016-0125-6-x&domain=pdf
http://orcid.org/0000-0001-7766-230X
mailto: tingzhuhuang@126.com
http://creativecommons.org/licenses/by/4.0/


Yu et al. EURASIP Journal on Image and Video Processing  (2017) 2017:3 Page 2 of 11

Learning-basedmethods are the third category of image
super-resolution methods. Learning-based methods
[25–32] need to train two dictionaries for low-resolution
and high-resolution images or patches. When given a
low-resolution image, learning-based methods can get a
high-resolution image through using the learnt mapping
relationship between the two dictionaries. Although these
methods obtain good visual results, they rely on the two
training dictionaries and cannot change the magnification
factor arbitrarily.
In this paper, we propose a new single image super-

resolution method based on deconvolution strategy.
According to Efrat et al. [33], an accurate kernel is more
important than a sophisticated prior for image super-
resolution. Thus, we take into account the error of blur
kernel in our method. We develop an iterative strategy
to adjust the blur kernel and then estimate the final
high-resolution image via a reconstruction method. The
proposedmethod is based on the framework of [22]. How-
ever, it has two main contributions. First, the proposed
method can get faster speed than [22], since we employ
a fast total variation deconvolution (FTVd) method in
our work. Second, the proposed method estimates the
deconvolution kernel iteratively to get better visual and
quantitative results than [22].
The rest of this paper is organized as follows. Section 2

introduces image super-resolution problem, reviews
FTVd method and a fast image upsampling method. In
Section 3, we detail the proposed model and algorithm.
Numerical results are shown in Section 4. Finally, we draw
some conclusions in Section 5.

2 Problem description and related works
2.1 Image super-resolution problem
LetH be a high-resolution image and let f be the camera’s
point spread function (PSF) which is approximated by a
Gaussian filter. According to [1], the low-resolution image
can be modeled as

L = (
f ⊗ H

) ↓d, (1)

where ↓d is a downsampling operator with factor d. This
equation can be broken down into two steps,

B = f ⊗ H , L = B ↓d, (2)

where B is a linearly filtered high-resolution image. Image
super-resolution is to recover the high-resolution imageH
from an input low-resolution image L.

2.2 Image super-resolution problem
FTVd method is a popular way to solve the problem of
image restoration [34]. Image restoration is a process of
recovering images from blurring and noise observation.
This process can be modeled as

g = Au + n, (3)

where g represents the observed image, A represents a
convolution matrix, u is an original image, and n is ran-
dom noise.
A degraded image u can be recovered from the following

simple model:

min
u

∑
i

‖Diu‖ + μ

2
‖Au − g‖22, (4)

where Diu is the discrete gradient of u at pixel i,
∑

i ‖Diu‖
is the discrete total variation (TV) of u, and μ is a regular-
ization parameter.
Actually, similar cases with the above problems have

been studied by many works [34–39]. In particular, FTVd
method [34] is one of effective methods for solving Eq.
(4). In [34], Wang et al. utilize an auxiliary variable wi to
substitute Diu to generate the following problem:

min
w,u

∑
i

‖wi‖2+ β

2
∑
i

‖wi−Diu‖22+ μ

2
‖Au−g‖22, (5)

where β is a penalty parameter.
This model is a half-quadratic model, which can be

applied to total variation discretization with anisotropic
or isotropic form. In [34], Wang et al. use a fast total
variation deconvolution (FTVd) method to solve Eq. (5)
(see Algorithm 1). This algorithm can be applied to image
deblurring with different blurring kernels and different
noise.

Algorithm 1 Fast total variation deconvolution (FTVd)
method

Input: g, A, μ > 0, β0 > 0 and βmax > β0.
Output: w and u.
Initialize: u = g, β = β0
while β ≤ βmax do

while “ not converged " do
Step 1: Computing w by

wi = max
{
‖Diu‖ − 1

β
, 0

}
Diu

‖Diu‖ ; (6)

Step 2: Solving u via(∑
i
DT
i Di + μ

β
ATA

)
u =

∑
i
DT
i wi + μ

β
ATg;

(7)

Note that Eq. (7) can be solved by Fast Fourier
transforms (see more details in [34]).

end while
Step 3: Computing β by

β = 2β ; (8)

end while
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2.3 Fast image upsampling method
In [22], Shan et al. introduce a new single image super-
resolution method. This method can enhance image res-
olution automatically and preserve essential structural
information. A key feature of this method is a feedback-
control framework that contains three parts: deconvolu-
tion, reconvolution, and pixel substitution.
In the deconvolution process, Shan et al. [22] take a

non-blind deconvolution method. The non-blind decon-
volution method is to solve the following energy
function:

E(H) ∝ ‖f ⊗H − B‖22 + λ(‖�(∂xH)‖1 + ‖�(∂yH)‖1),
(9)

where ∂xH and ∂yH are the values of the x and y direc-
tion gradients, respectively. λ is a regularization param-
eter. After the deconvolution process, the output image
is refiltered in the reconvolution stage. In the process
of pixel substitution, pixels of the low-resolution image
are utilized to replace the pixels at the corresponding
locations of the high-resolution image. There are two
advantages for using pixel substitution. First, it can utilize
the accurate low-resolution image pixels. Second, it can
approximate the image, output from the reconvolution
process, as a Gaussian-filtered image with a feedback-
control loop. This method does not depend on the quality
and quantity of the selected examples. Besides, the run-
ning time of this method is very fast.

3 The proposedmethod
3.1 The proposed framework
In this section, we give the proposedmethod which is con-
sisted of four parts: deconvolution, estimating blur kernel,
reconvolution, and pixel substitution.
Figure 1 shows the diagram of our framework. In our

scheme, the input is a low-resolution image L. We first
transform the low-resolution image from RGB color space
to YUV color space. Next, we upsample the low-resolution
image to an ideal size by bicubic interpolationmethod and
only conduct at Y space. We take an iterative strategy to
achieve the image upsampling process (see Algorithm 2).
Our strategy contains four parts: deconvolution, estimat-
ing blur kernel, reconvolution, and pixel substitution. We
take deconvolution process to eliminate the effect of the
linear filtering. For instance, there are some visual arti-
facts around the image “wheel” after bicubic interpolation
in the Y space (see Fig. 1). Besides, because the accu-
rate blur kernel can not be known exactly, the further
estimated high-resolution image will become more inac-
curate. Thus, we take account of the error of blur kernel.
Furthermore, the same as [22], we take reconvolution and
pixel substitution process to control the image upsam-
pling. By applying our strategy iteratively at the initial

high-resolution image B(0), we can obtained the esti-
mated high-resolution image at Y space. The final
estimated high-resolution image H∗ is acquired by trans-
forming the high-resolution image from YUV color space
to RGB color space. We will show more details about the
four steps of the proposed method (deconvolution, esti-
mating blur kernel, reconvolution, and pixel substitution)
as follows.

Algorithm 2 Single image super-resolution via a fast
deconvolution with kernel estimation (see the flow chart
of the framework from Fig. 1)

Input: a low-resolution image: L, upsampling factor: d,
iteration number: τ , an initial kernel: f̃ (0), regularization
parameter: α.
Output: the high-resolution image: H∗.
Step 1: Getting the initial high-resolution image B(0) by
bicubic interpolation with the upsampling factor d:

B(0) = Bicubic(L, d);
Step 2: Computing the estimating high-resolution
image H(i):
for i = 1 : τ do

a. Computing the high-resolution image by FTVd
method (see Algorithm 1):

H(i) = FTVd(B(i−1), f̃ (i−1));
where H(i) is equal to u, B(i−1) is equivalent to g and
the blur kernel f̃ (i−1) can generate A in Algorithm 1.
b. Estimating the error of blur kernel e(i) via Eq. (11):

e(i) = Estimate(H(i),B(0), f̃ (i−1),α);
where H(i) is the intermediate high-resolution image
and f̃ (i−1) is the estimated blur kernel.
c. Updating the blur kernel: f̃ (i) = f̃ (i−1) + e(i);
d. Reconvoluting the image H(i) by the initial kernel
f̃ (0):

Reblur = f̃ (0) ⊗ H(i);
e. Updating the initial high-resolution image by pixel
substitution (see details in Section 3.1):

B(i) = pixelsubs(L,Reblur);
end for
Step 3: Computing the final high-resolution image
H∗ = H(i).

3.1.1 Deconvolution
Let B(i) as a high-resolution that is gotten at iteration
i, i ≥ 0, and B(0) is obtained by bicubic interpolation
method. In particular, B(0) is obtained by bicubic inter-
polation method. The deconvolution process, estimating
the high-resolution imageH(i), can be regarded as solving
the first part of Eq. (2). This problem can be modeled as
‖f ⊗H−B‖, where⊗ is a convolution operator. LetW be a
convolution matrix, then ‖f ⊗H−B‖ can be regarded as a
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Fig. 1 The flow chart of our framework. The low-resolution image L is transformed from RGB color space to YUV color space. The proposed method
includes four steps (deconvolution, estimating blur kernel, reconvolution, and pixel substitution) and is only applied to Y channel. The final result H∗
is obtained via transforming the high-resolution image from YUV color space to RGB color space

multiplication ofW andH . Note that the problem of min-
imizing ‖f ⊗ H − B‖22 is hard to solve because the inverse
ofW does not always exist and sometimesW can be influ-
enced by noise. In particular, taking the high-resolution
image B as a blurred image, the deconvolution process
can be considered as an image restoration problem. In this
paper, we take FTVd method [34] in the deconvolution
process, since FTVd method [34] is an effective way to
deal with image restoration problem. The main steps of
FTVd method are shown in Section 2.1.

3.1.2 Estimating blur kernel
Because the blur kernel is not known exactly in the image
formation process, it may have some errors: f = f̃ + e,
where f is the accurate blur kernel and f̃ is the inaccu-
rate blur kernel containing an error e. In order to get a

reasonable high-resolution image, we need to consider the
error of blur kernel.
We use the method similar to that described in [40]

to estimate the blur kernel. Considering a connected
bounded domain � ∈ R2 with compact Lipschitz
boundary, we take the initial high-resolution image B(0),
acquired by bicubic interpolation, as a blurred image and
the intermediate high-resolution image at i timesH(i) as a
real image. f̃ be the blur kernel and e be the error of blur
kernel. We study the following objective function to get
the error of blur kernel e:

min
e

∫
�

[(
f̃ + e

)
⊗ H − B

]2
dx + α

∫
�

e2dx, (10)

Fig. 2 The pixel substitution process
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Table 1 Parameter selection in terms of blur kernel and
regularization parameter (case 1 is for the low-resolution image
without ground truth; case 2 is for the low-resolution images
acquired by downsampling the ground truth images)

Upscale factor Size Deviation α

Case 1 2 5 × 5 1.25 103

3 7 × 7 1.85 104

4 9 × 9 2.5 105

Case 2 2 3 × 3 1.5 103

3 5 × 5 1.8 104

4 7 × 7 2.3 105

where α is a positive regularization parameter. This prob-
lem can be solved by fast Fourier transform:

e = F−1
(
F−1(H)F(B − f̃ ⊗ H)

F−1(H)F(H) + α

)
, (11)

where F and F−1 are the Fourier transform and the
inverse Fourier transform, respectively. When we com-
pute the error e, then the blur kernel can be estimated by
f = f̃ + e.

3.1.3 Reconvolution
Taking account of reconvoluting the output image H(i)

with the blur kernel f̃ , the result should be close to B(i−1),
where i ≥ 1. If not, there must be some incorrect pixel val-
ues in B. So we need to modify the high-resolution image
using the low-resolution image information, which leads

to pixel substitution in the next step. In particular, in each
reconvolution step, we choose the initial blur kernel f̃ (0)

to reconvolute the high-resolution image. If we choose
the updated blur kernel in the reconvolution process, the
high-resolution image cannot be well estimated due to the
change of blur kernel.
In the pixel decimation process, a low-resolution image

is acquired by subsampling the high-resolution image with
a downsampling factor d. In addition, the subsampling
process only keep one pixel in the high-resolution image.
Thus, the corresponding pixels in the high-resolution
image can be substituted for pixels in the low-resolution
image. In this paper, we take the pixel substitution strategy
the same as [22] (see Fig. 2). If we upscale the low-
resolution image for d times, we use the pixel (i, j) in the
low-resolution image L to replace the pixel (d × i+ 1, d ×
j + 1) in the corresponding high-resolution image Reblur.
Then, we can use the pixel-replaced image to conduct

the next iteration. After several iterations, the estimated
high-resolution imageH∗ can be obtained. Our algorithm
is given in Algorithm 2.

3.2 The difference between [22] and the proposed
method

In [22], Shan et al. introduce a fast image/video upsam-
pling method that involves a feedback-control frame-
work. In particular, the proposed method has the similar
feedback-control framework with the work in [22] (see
Fig. 1). However, there are two main differences compar-
ing with [22].
First, there are two different methods between [22] and

the proposed method in the deconvolution process. Shan
et al. [22] take account of a density distribution prior.

Fig. 3 Visual results of “flower" with the upsampling factor of 4. From top to bottom and from left to right: the low-resolution image “flower,” bicubic
result, “08’TOG” [22], “11’IPOL” [7], “11’SIAM” [8], “14’TIP” [9], and our result
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Fig. 4 Visual results of “yacht” with the upsampling factor of 4. From left to right and then from top to bottom: the low-resolution image “yacht,”
bicubic result, “08’TOG” [22], “14’TIP” [9], and our result

However, the proposed method utilizes FTVd method in
the deconvolution process. Since the main step of FTVd
method is fast Fourier transforms (FFTs) for each itera-
tion, we can control the iterative number to get the faster
speed and more accurate results than the decovolution
method in [22].
Second, due to the inaccuracy of blur kernel in the

deconvolution process, we employ a strategy of iterative
kernel estimation to get more accurate kernel, aiming to
make the resulted high-resolution image better. In con-
trast, Shan et al. [22] only utilize a fixed Gaussian ker-
nel. However, the fixed kernel cannot get better results
obviously.

Table 2 Times of test images (unit: seconds)

Example(factor) Bicubic 08’TOG [22] 14’TIP [9] Ours

Flower(4) 0.063 8.268 0.641 4.512

Yacht(4) 0.145 74.948 3.919 29.716

Wheel(3) 0.052 3.886 0.323 3.529

Comic(3) 0.073 17.136 1.281 5.654

Chilies(3) 0.032 8.053 0.466 3.403

Number(3) 0.055 5.518 0.416 4.255

House(2) 0.069 14.267 0.598 5.472

Starfish(2) 0.072 13.289 0.665 5.706

4 Numerical experiments
In this section, we test the proposed method on two
kinds of images. One is the low-resolution images without
ground truth, and the other is the low-resolution images
acquired by downsampling the ground truth images. All
experiments are conducted in MATLAB(R2010a) on a
laptop of 3.47 GB RAM and Intel(R) Core(TM) i3-2130M
CPU: @3.40 GHz.
We make comparisons between the proposed method

and some state-of-the-art image super-resolution meth-
ods, including bicubic interpolation, a fast upsampling
method (“08’TOG” [22] 1), a two-scale method (“14’TIP”
[9] 2) and two state-of-the-art interpolation methods
(“11’IPOL” [7] 3 and “11’SIAM” [8] 4).
For grayscale image, we apply the proposed algorithm

directly. For colored image, we first transform the low-
resolution image to YUV color space and then only con-
duct our algorithm on the Y channel. Images on the U
and V channels are upsampled by bicubic method. After
acquiring final upsampling image, we transform them
from YUV space to RGB space for visual comparisons.

Parameter selection: There are four parameters in our
algorithm: the size and the deviation of blur kernel, the
regularization parameter α, and the iteration number τ .
In fact, it is really difficult to choose appropriate parame-
ters for many algorithms. Empirical adjustment is one of
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Fig. 5 Visual results of “wheel” with the upsampling factor of 3. From top to bottom and from left to right: the low-resolution image “wheel,” bicubic
result, “08’TOG” [22], “11’IPOL” [7], “11’SIAM” [8], “14’TIP” [9], and our result

favorite ways for determining parameters. Thus, we select
parameters empirically in our experiments. For the size
and the deviation of blur kernel, the regularization param-
eter α, we fix them according to different kinds of test
images and different values of the upsampling factor (see
details at Table 1). In particular, we use the Gaussian ker-
nel similar to that described in “08’TOG” [22]. In addition,
we estimate the errors on many images with different iter-
ation numbers, and find that two or three iterations can
get the best results. In particular, we set the iteration number
τ as 2 in all experiments to reduce the computation time.

4.1 Results on the low-resolution images without ground
truth

In this section, test images are the low-resolution images
without ground truth; thus, it is not available to make
quantitative comparisons. We compare the proposed
method with bicubic interpolation method, “08’TOG”
[22], “11’IPOL” [7], “11’SIAM” [8], and “14’TIP” [9].
The upsampling factors are 2, 3, and 4. In particular, if
the dimensions of the estimated high-resolution images
acquired by “11’IPOL” [7] and “11’SIAM” [8] exceed 800×
800, the images will be cropped. Hence, we do not show
these results in Fig. 4, Fig. 6, Fig. 9, and Fig. 10 for the
consistency of results.
In Figs. 3 and 4, we test the proposed method on the

image “flower” and “yacht.” The upsampling factor is 4.
From Fig. 3, the results of bicubic interpolation, “11’IPOL”
and “11’SIAM” show significant blur effects along the
image edge. Although the result by "08’TOG" preserves
sharp edges, its luminance is not good enough for visual
effects. As shown in this figure, our result can generate
sharp edges, while enjoying a better effect of brightness.
From Fig. 4, the number of our result is clearer than other
results. In addition, after upsampling the image “yacht”
with the factor of 4, the resolution comes to 2048 × 1920.
However, this procedure only takes less than 30 s (see

Table 2). It demonstrates that the proposed method can
deal with large-scale image resolution problem effectively.
Figures 5, 6, 7 and 8 shows four example images with

the upsampling factor of 3. In Fig. 5, there are some
blur in the result of bicubic method and some staircases
in the result of “08’TOG.” In the results of “11’IPOL”
and “11’SIAM,” there are some visual artifacts. Despite
preserving sharp edges and enjoying fast running time,

Fig. 6 Visual results of “comic” with the upsampling factor of 3. From
left to right: the low-resolution image “comic,” bicubic result, “08’TOG”
[22], “14’TIP” [9], and our result
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Fig. 7 Visual results of “chilies” with the upsampling factor of 3. From top to bottom and from left to right: the low-resolution image “chilies,” bicubic
result, “08’TOG” [22], “11’IPOL” [7], “11’SIAM” [8], “14’TIP” [9], and our result

Fig. 8 Visual results of “number” with the upsampling factor of 3. From top to bottom and from left to right: the low-resolution image “number,”
bicubic result, “08’TOG” [22], “11’IPOL” [7], “11’SIAM” [8], “14’TIP” [9], and our result

Fig. 9 Visual results of “house” with the upsampling factor of 2. From top to bottom and from left to right: the low-resolution image “house,” bicubic
result, “08’TOG” [22], “14’TIP” [9], and our result
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Fig. 10 Visual results of “starfish” with the upsampling factor of 2. From top to bottom and from left to right: the low-resolution image “starfish”,
bicubic result, “08’TOG” [22], “14’TIP” [9], and our result

the result of “14’TIP” makes the image over-flat. How-
ever, our result is able to introduce a better visual result.
From Fig. 6, the proposed method provides sharp edges
(see headdress and the green background). From Fig. 7,
the result of the proposed method performs sharper
edges than the results of bicubic method, “08’TOG,”
and “11’IPOL”. In Fig. 8, the results of bicubic method,
“08’TOG”, “11’IPOL,” and “11’SIAM” show blur effects sig-
nificantly in the high-resolution images. For the result
of “14’TIP,” it presents a clear high-resolution image but
introduces significant staircases. In particular, the pro-
posed method performs the best visual result comparing
to other methods. Furthermore, the proposed method is
faster than “08’TOG.” For instance, for the image “comic,”
“08’TOG” requires 17.136 s, while the proposed method
only needs 5.654 s (see Table 2).
In Figs. 9 and 10, we test our method on images “house”

and “starfish” with the upsampling factor of 2. As shown
in these figures, the proposed method preserves sharp
edges and keeps more details. In addition, the running

time of our method is also much faster than “08’TOG.”
For instance, for the image “starfish,” “08’TOG” needs
13.289 s, but our method only need 5.706 s to complete
the image upsampling procedure (see Table 2).

4.2 Results on the low-resolution images acquired by
downsampling the ground truth images

In this section, the low-resolution images are acquired
by downsampling the ground truth images. We provide
quantitative comparisons including root-mean-square
error (RMSE), peak signal-noise ratio (PSNR), and struc-
ture similarity (SSIM) [41].
We mainly compare the proposed method with

one reconstruction-based method “08’TOG” and four
interpolation-based methods, including bicubic method,
“11’IPOL,” “11’SIAM,” and “14’TIP.” In Fig. 11, the test
image is “castle” and the upsampling factor is 3. Note
that the results of bicubic method and “08’TOG” present
blur effects. The results of “11’IPOL” and “11’SIAM” show

Fig. 11 Visual results of “castle” with the upsampling factor of 3. From top to bottom and from left to right: the low-resolution image “castle,” the
ground truth, bicubic result, “08’TOG” [22], “11’IPOL” [7], “11’SIAM” [8], “14’TIP” [9], and our result
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Table 3 Quantitative comparison in terms of RMSE, PSNR and SSIM

Example(factor) Index Bicubic 08’TOG [22] 11’IPOL [7] 11’SIAM [8] 14’TIP [9] Ours

House(2) RMSE 6.4742 6.0985 5.4645 5.3947 7.4008 5.1384

PSNR 31.9071 32.4263 33.3798 33.4915 30.7452 33.9143

SSIM 0.8831 0.8858 0.8961 0.8969 0.8761 0.8958

House(3) RMSE 8.9995 7.2818 7.8816 7.8106 9.1071 7.1034

PSNR 29.0465 30.886 30.1985 30.2771 28.9432 31.1015

SSIM 0.847 0.8655 0.861 0.8615 0.8554 0.872

House(4) RMSE 11.018 9.1549 9.8511 9.7658 11.7308 9.0703

PSNR 27.2887 28.8977 28.2611 28.3366 26.7443 28.9784

SSIM 0.8169 0.8418 0.8302 0.8311 0.8278 0.8444

Race(2) RMSE 11.18 11.2381 10.3093 10.1244 12.5453 10.8124

PSNR 27.1619 27.1169 27.8662 28.0234 26.1612 27.4524

SSIM 0.6912 0.6911 0.7353 0.7386 0.6536 0.692

Race(3) RMSE 13.9661 13.0151 13.0624 12.9765 14.1891 13.1136

PSNR 25.2293 25.8418 25.8103 25.8676 25.0917 25.7764

SSIM 0.6042 0.6078 0.6407 0.6429 0.5955 0.6171

Race(4) RMSE 15.7714 14.6136 14.8819 14.8098 15.7557 14.6909

PSNR 24.1734 24.8357 24.6776 24.7198 24.182 24.7898

SSIM 0.5524 0.562 0.5804 0.5826 0.5575 0.5761

some visual artifacts. Although the result of “14’TIP” can
generate sharp edges, it has worse quantitative results
(see Table 3). Furthermore, in this example, the proposed
method shows the best RMSE, PSNR, and SSIM.
Figure 12 exhibits the results of image “race” with the

upsampling factor of 2. From this figure, we can see
that the results of bicubic method and “08’TOG” show
some blur effects. The results of “11’IPOL” and “11’SIAM”
introduce some artificial contours. The result of “14’TIP”
exhibits sharp edges but smoothens the image details. The
proposed method provides sharp edges and enjoys com-
petitive quantitative results. More quantitative results are
shown in Table 3.

5 Conclusions
In this paper, we presented a simple and effective sin-
gle image super-resolution method. Our method was
motivated by a fast image upsampling method, but we
differently studied the estimated error of the blur ker-
nel in the proposed method. We believed that the point
spread function is not known exactly in the process of
image super-resolution. Through applying a fast total vari-
ation deconvolution (FTVd) strategy, we took an itera-
tive updating strategy to update the blur kernel and the
high-resolution image. In particular, the proposedmethod
could be applied to any upscaling factors without any
extra datasets. In addition, we analyzed the parameter

Fig. 12 Visual results of “race” with the upsampling factor of 2. From top to bottom and from left to right: the low-resolution image “race,” the
ground truth, bicubic result, “08’TOG” [22], “11’IPOL” [7], “11’SIAM” [8], “14’TIP” [9], and our result
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selection and computation time. Extensive experiments
were provided to illustrate the effectiveness of the pro-
posed method.

Endnotes
1http://www.cse.cuhk.edu.hk/~leojia/projects/

upsampling/index.html.
2http://www.escience.cn/people/LingfengWang/

publication.html.
3http://demo.ipol.im/demo/g_image_interpolation_

with_contour_stencils/.
4http://demo.ipol.im/demo/g_interpolation_

geometric_contour_stencils/.
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