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Abstract

During the last two decades, satisfactory results have been obtained for face identification techniques based on
frontal pose. However, face identification from uncontrolled pose remains a challenging open problem in biometric
recognition. Recently, pose invariant techniques that exploit either 3D scans or 2D images of the same face to
generate the corresponding 3D model have emerged. Even if they tolerate pose variability and lead to high
identification scores, they have the drawback to be computationally intensive and/or require the cooperation of the
individual to be identified. Hence, they are not appropriate for the interesting real-time application of video
surveillance. In this paper, we propose a profile face identification method based on correspondence mapping of 2D
frontal face images. Kernel canonical correlation analysis (KCCA) is used to learn changeover from the profile pose to
the frontal one. To show the effectiveness of our approach, tests are performed on FERET database according to a
protocol referred to as leave one out-like protocol (LOOLP). These tests demonstrate that it leads to enhanced scores
comparatively to other 2D-based methods proposed in the literature.
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1 Introduction
Biometric security is an active research area with appli-
cations in several domains such as public space surveil-
lance. Numerous biometric features like fingerprints, iris,
and hand geometry are widely used in the surveillance
systems [1]. These features allow a unique description
of a person. Nevertheless, in public space surveillance
area, a person is hard to be identified from such fea-
tures through video flows and faces are rather used as
“biometric” features to recognize/identify a person. Face
recognition techniques have evolved theoretically and
technologically since the 1970s but still suffer from indi-
viduals’ appearance variability due to lighting conditions,
posture, facial expressions, and aging [2]. Pose variation
in uncontrolled acquisition systems is one of the most
challenging problems for face recognition. The literature
proposes several methods for pose variability problems.
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They can be categorized according to specific criteria: 2D-
based and 3D-based models or single image-based and
multiple image-based methods [3]. In this work, the 2D-
based/3D-based model categorization is considered, and
2D images are used for face recognition in our approach. A
profile-frontal face recognition method using a regression
based on a canonical correlation analysis of face compo-
nents is proposed. These components are represented by
the local binary pattern (LBP) descriptor [4]. The trans-
formation between profile face image (90◦ angle pose)
and frontal face image (0◦ angle pose) is known to be
nonlinear, and this nonlinearity is taken into account by
introducing kernel functions. For the evaluation of the
proposed approach, we use a leave one out-like proto-
col (LOOLP) on the FERET [5] and SCface [6] databases.
The present paper is organized as follows. In Section 2,
we present a state of the art in face recognition with pose
variability methods. We introduce our overall approach
in Section 3. In Section 4, we describe the preprocessing
steps required by the geometric normalization of faces.
Section 5 is devoted to the LBP descriptor used for fea-
ture extraction. In Section 6, the method used to carry
out the correspondence between profile and frontal poses
is developed. In Section 7, we present the dataset used
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for learning and tests and summarize the scores of val-
idation tests of the proposed approach. Comparisons of
the method with those of the literature are provided by
Section 8.

2 Face recognition with pose variability
This paper deals with the problem solving of pose variabil-
ity using a 2D/3D-based method. Before introducing our
approach, an overview of 2D-based methods proposed in
the literature is first given and then short description of
3D-based methods is presented.

2.1 2D image techniques
The techniques using 2D images are subdivided into three
categories [3]: real view-based matching, pose transfor-
mation in image space, and pose transformation in feature
space.

1. Real view-based matching: Consists of representing
the individuals in the gallery with different rotations
and look for the individual to be identified in this
gallery, once his pose has been determined. In [7], a
method with a gallery of 15 images per individual
which covers pose variability with ±40◦ in yaw and
±20◦ in tilt has been proposed. Identification process
is typically a template matching algorithm with
templates around the eyes, nose, and mouth, where
the only difference is that it matches a probe face
image with gallery face images in similar poses.
These methods are easy from an algorithmic point of
view but are difficult to exploit practically since they
need images of faces in several orientations.

2. Pose transformation in image space: One way to
overcome the shortcoming of collecting numerous
images per person, in order to cover different
orientations, is to create artificial sights from existing
images. Beymer and Poggio [8] proposed parallel
deformation to generate virtual sights from a single
example view using feature-based 2D warping [9].
Their algorithm allows generating new faces,
covering −30◦ to 30◦ rotations in yaw and −15◦ to
15◦ rotations in tilt. Another approach based on
Active Shape Models (ASM) [10] has been proposed
in [11] to generate new poses of faces. However, this
technique performs well only with small angles
shifting. As extension to ASM-based approach, the
Active Appearance Models (AAM) [12] have been
used to take simultaneously account of shape and
texture variations of the face. Numerous techniques
for pose invariance identification based on AAMs
have been proposed in the literature [13–15]. It is
stated that even if they give better results than those
based on ASM, their performance is proven only for
small orientations shifts.

3. Pose transformation in feature space: Tolerance to
pose variation can also be achieved in feature space.
The most known techniques use kernel functions to
map the images of faces in a space of higher
dimension. Thus, non-separable distributions
because of pose variations may become linearly
separable. We can cite the works of Liu [16] and Xie
and Lam [17] where kernel principal components
analysis (KPCA) is used and the works of Huang et al.
[18] and Yang et al. [19] where kernel Fisher
discriminant analysis (KFDA) is used. The idea of
using a regression model to extract frontal views
from non-frontal ones has been exploited. For
instance, Chai et al. [20] proposed a local linear
regression (LLR) to create virtual frontal view from
single horizontally rotated views. Prince et al. [21]
proposed a linear statistical model referred to as tied
factor analysis model, to describe pose variations on
face images. The main point in this approach is to
find features which are invariant to orientation. It
provided high scores, even for large variations in the
angle of view, outperforming methods proposed
earlier.

2.2 3Dmodel techniques
3D-based face recognition techniques can be subdivided
into two categories: firstly, methods based on 3D scans
of the face [22, 23] that perform well regardless the pose
variation but require very specific and expensive devices
together with a large amount of time to generate the 3D
model of the face. In this case, the cooperation of the per-
son to be identified is needed. Consequently, they are not
adequate for real-time recognition like in video surveil-
lance. Secondly, methods that use 2D images for a 3D
recognition where the cooperation of individuals is not
needed. Among these methods, we have:

1. Generic shape-based approaches: They use 3D
shapes to represent the face. For instance, the
method proposed in [24] uses a cylinder to map the
face in different orientations, and then the frontal
pose of the face is generated. Another method [25]
uses an ellipsoid to warp the texture of the face.
These techniques are fast but perform well only if
pose varies in a small range.

2. 3D face reconstructions: They can be subdivided into
two subcategories, feature-based methods and image-
based methods. Features extracted from 2D images
(e.g., edges and corners), or intensity of pixels, can be
used to construct the 3D shapes. Among methods
which use features extracted from face, we can find
the Lee and Ranganath method [26] that presents a
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composite 3D deformable face model for pose
estimation and face synthesis based on a template
deformation which maintains connectedness and
smoothness. Jiang et al. [27] used facial features to
efficiently reconstruct personalized 3D face models
from a single frontal face image for recognition. Their
method is based on the automatic detection of facial
features on the frontal views using Bayesian shape
localization. Image-based 3D face reconstructions
carefully study the relationship between image pixel
intensities and its corresponding shape/texture
properties. In this context, Blanz and Vetter [28, 29]
proposed a suitable face recognition system using 3D
morphable model and Georghiades et al. [2] proposed
illumination cone models which successfully
performs face recognition under pose and lighting
variations, using the techniques of photometric
stereo. Finally, stereo vision [30] techniques where
3D face models are reconstructs from 2D face images
in different poses can also be applied.

2.3 2Dmodel versus 3D technique
It is worth recalling that 3D-based techniques of face
recognition outperform their 2D-based counterparts and
may cover large variations of pose, since the human head
is a 3D object and the changes of its appearance lay in a
3D space. However, this score enhancement is achieved at
the expense of more processing overheads. Moreover, the
recognition results of 2D techniques, given the variation
of pose, vary from a technique to another, and the liter-
ature does not propose a unified protocol of evaluation
for such techniques. In this paper, the proposed method
is based on 2D images and is evaluated with respect to
LOOLP.

3 Description of the approach
The proposed approach for face identification relies on
the idea of learning a transformation which maps the
profile faces onto their corresponding frontal faces using
canonical correlation analysis (CCA). We recall that the
researchers who introduced the use of the CCA in face
identification across pose differences are A. Li, S. Shan,
X. Chen, and W. Gao [31]. In their work, the mapping
between different orientations (20◦, 40◦, and 60◦) and
frontal pose is built using gray level patches of faces. For
60◦ orientation, which is close to the orientation consid-
ered in our contribution (90◦), a true identification score
of 65 % has been obtained on a gallery of forty faces. How-
ever, we can improve this score considerably by taking
into account the nonlinear nature of the mapping between
poses. This can be achieved through appropriate kernel
functions leading to kernel-CCA. The choice of the kernel
is not straightforward where several tests have to be per-
formed in order to choose the appropriate kernel model
and then tune its parameters.
Moreover, instead of raw pixels, we describe the face

using LBP face components: eye, nose, mouth, and chin.
In the sequel, our contribution is presented in more
details.
In this work, the CCA learns the mapping between

frontal and profile faces represented by their main com-
ponents: eye, nose, mouth, and chin. Given the fact that
the transformation from frontal to profile face is not lin-
ear, faces are not described by the whole image, but rather
by only their components.
To describe the face main components, the local binary

pattern descriptor is chosen because of its high perfor-
mance in frontal face identification and its invariance
against illumination changes [32–34]. Figure 1 shows the

Fig. 1Main parts of the face considered for the CCA mapping between frontal and left profile. The figure shows the components describing the
faces to be used for the learning of the CCA-based mapping between frontal and left profile poses
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components describing the faces to be used for the learn-
ing of the CCA-based mapping.
In our study, we have considered the transformation to

be learned for frontal-left profile. However, if the trans-
formation frontal-right profile is required instead, compo-
nents represented in Fig. 2 are used, and then we operate
a flip to transform the right profile into a left profile.
Face components are split into regions as illustrated

in Fig. 1. For each region, a histogram is calculated on
the extracted LBP descriptor. Then, the obtained his-
tograms are concatenated in a unique vector of features
that describes frontal or profile faces.
Generally, face identification methods use patches cor-

responding to regions of the same size but with different
weights. The more relevant is the region, the higher is its
weight. For instance, the eye region is assigned a higher
weight than that of the chin. Inspired by this idea, in our
work the relevance of a region is represented by the size
of its patch given the fact that two patches with different
sizes lead to histograms with the same number of bins.
Hence, the weight of a patch is inversely proportional to
its size. As shown in Fig. 1, the patches around the eye are
smaller than those surrounding the chin since the former
contains more relevant information than the latter.
Once the vectors are constructed, the CCA transforms

the feature space where profile faces lay into the feature
space where frontal faces lay.
As the derived vector of features is of high dimension, a

dimensionality reduction helps to make the CCA applica-
ble [35]. In this paper, the principal components analysis
(PCA) is used for dimensionality reduction. Therefore,
we use a kernel-PCA [16] followed by a CCA, resulting
in a kernel canonical correlation analysis (KCCA) [36]
which allows us to consider the nonlinearity of the trans-
formation between the components of frontal and profile
faces.

In order to evaluate our method, we experiment it on
FERET database. Indeed, this database contains subsets
for different orientations. We used the fa subset to consti-
tute the dataset of the frontal images of faces (0◦ orienta-
tion) and the pl subset for profile images (90◦ orientation).
Figure 3 illustrates examples of images taken from a pose
subsets of FERET database.
The effectiveness of the transformation between frontal

and profile poses is demonstrated through a leave one out-
like protocol (LOOLP). We recall that in the conventional
leave one out (LOO) procedure [37], with a dataset of size
n in hand, at each validation step, n − 1 individuals are
used to train a classifier and the remaining nth individual
is used for its test and henceforth until all the individuals
have been considered for test. The testing protocol of our
approach is inspired by the LOO with a slight difference.
For the learning step, two subsets of sizem from fa and pl
for the same individuals are considered. In each iteration,
m−1 faces (from both datasets) are used to learn the CCA
transformation frontal-profile. However, for the remain-
ing mth individual, only its frontal pose is considered and
added to the frontal gallery (another subset of fa), and
then the profile face of this mth individual together with
the frontal faces of the augmented gallery are projected
onto the canonical space for comparison. The Euclidean
distance is then used to measure the proximity of this
individual to those of the frontal faces. This operation is
repeated until all the m individuals have been considered
for test. This validation approach leads to a more reliable
estimate of the generalization error of identification than
those proposed in the previous works. Indeed, in these
approaches, the learning and testing datasets are fixed in
prior, which can lead to a biased estimate of the general-
ization error. However, in our evaluation, all examples are
assigned the same weights and have the same contribu-
tion to both of learning and testing steps. It is also worth

Fig. 2Main parts of the face considered for the CCA mapping between frontal and right profile. The figure shows the components describing the
faces to be used for the learning of the CCA-based mapping between frontal and right profile poses
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Fig. 3 Examples of images from FERET database corresponding to different poses. The figure illustrates examples of images taken from a pose
subsets of FERET database

noting that these approaches have been tested on galleries
of small sizes (about 100 faces). It is stated that the diffi-
culty of pose-independent identification task grows with
the size of the gallery [21]. In the present work, the valida-
tion is conducted on a gallery of 600 individuals. Figure 10
summarizes the way our approach is evaluated. The pro-
cedure is repeated until all the individuals of the learning
dataset are considered.

4 Geometric normalization
Before feature extraction step, a geometric normalization
is performed in order to ensure that faces are in a similar
scale, orientation, and position. Normalization procedure
differs from frontal to profile faces. In the case of frontal
pose, we detect the eyes in face image, whereas for pro-
file images, we detect the nose and chin since the relative
positions of these parts are generally stable versus vary-
ing facial expression [38]. Face component detection is
achieved manually. We annotate these face components
for each database image. Having annotated eyes in the
frontal dataset and nose and chin in the profile dataset, we
perform the geometric normalization as described below
[38, 39]:

Normalization for 0◦ orientation: Images are automat-
ically normalized thanks to the following steps:

1. Each image is rotated until the line joining the
centers of eyes becomes horizontal.

2. Images are rescaled in order to get the same distance
between the centers of eyes for all images.

Figure 4 shows the normalization for the 0◦ orientation.

Normalization for 90◦ orientation: For 90◦ orienta-
tion, according to the tangent-based profile normalization
technique [39], normalization consists of tilting by an
angle α the line joining the tip of the nose and the chin,
from the vertical axis (Fig. 5).
In the case where the profile faces are not at the same

scale, an operation of rescaling is necessary. Since this
operation cannot be performed on 90◦ orientation, the
learning normalized frontal database is used to maintain
the distance between the eye and the chin in profile pose
for all persons, as illustrated in Fig. 6. This step is added to
be sure that the obtained scores are not biased by eventual
normalization inaccuracies.

Fig. 4 Image normalization for faces with 0◦ orientation. Geometric normalization is performed as described in figure for the 0◦ orientation
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Fig. 5 Image normalization for faces with 90◦ orientation. Geometric normalization is performed as described in figure for the 90◦ orientation

Rotation angle α is determined empirically on the base
of a series of preliminary tests where α is varied between
18◦ and 22◦ with a step of 1◦. These tests revealed that
α = 20◦ is an appropriate choice for this task. Effectively,
for this value of α, all the rotated faces are in normalized
profile pose.
To identify a profile face in practical situations, the

image is tilted such that the tangent joining the tip of the
nose and the chin, forms an angle α = 20◦ with the verti-
cal axis. Then, to put it at the same scale as the profile faces
of the learning database, the reference distance between
the eyes and chin, used for rescaling, is calculated on the
average face of the normalized frontal learning database
(Fig. 7).

5 Local binary pattern
The LBP have been proposed by Ojala et al. [4] to charac-
terize textures in images. For a pair (c, n), with c a central
pixel, n = (n1, . . . , ns) a set of pixels sampled from the
neighborhood of c, the LBP operator assigns a 0 to each
neighbor pixel in n that is smaller than the central pixel
c, a 1 to each neighbor larger than c, and interpreting
the result as a number in base 2 (Fig. 8). Consequently,
if a neighborhood of S pixels is considered, there are 2S
possible LBP values.

b =
s∑

i=1
2i−1I(c, ni) (1)

and

I(c, ni) =
{
1 if c < ni
0 otherwise (2)

6 Kernel canonical correlation analysis
In our work, KCCA is obtained using KPCA followed by
CCA.

6.1 Canonical correlation analysis
Canonical correlation analysis (CCA) is suited to put in
correspondence two sets of measurements. CCA takes
advantage of the correlations between the response vari-
ables to improve predictive accuracy [40]. GivenN pairs of
samples (xi, yi) of (X,Y ), i = 1, . . . ,N , where X ∈ �m, Y ∈
�n. The mean of both X and Y is zero. The goal of CCA
is to learn a pair of directions wx and wy to maximize the
correlation between the two projections wT

x X and wT
y Y ,

where T denotes the transpose, i.e., to maximize:

ρ = E[wT
x XYTwy]√

E[wT
x XXTwx]E[wT

y YYTwy]
(3)

Fig. 6 Scaling for frontal and profile faces. This step consists to set frontal and profile faces to the same scale. Explicitly, the distance between the eye
and the chin in profile face must be equal to the distance between the eyes and the chin in the frontal face



Nadil et al. EURASIP Journal on Image and Video Processing  (2017) 2017:2 Page 7 of 13

Fig. 7 Reference distance between the eyes and chin used for profile
rescaling. The reference distance between the eyes and chin
calculated on the average face of the normalized frontal learning
database, used for rescaling profile faces in practical identification
situations

where E[ f (x, y)] denotes the empirical expectation of the
function. The covariance matrix of (X,Y ) is

C(X,Y ) = E
((

X
Y

) (
X
Y

)T
)

= E
((

Cxx
Cxy

) (
Cyx
Cyy

)T
)

(4)

where Cxx and Cyy are within-sets covariance matrices;
Cxy and Cyx are between-sets covariance matrices. Hence,
ρ can be rewritten as:

ρ = wT
x Cxywy√

wT
x CxxwxCyywy

(5)

Let :

A =
(

0 Cxy
Cxy 0

)
,B =

(
Cxx 0
0 Cyy

)
(6)

It can be shown that the solution W = (wT
x ,wT

y )

amounts to the extremum points of the Rayleigh
quotient [41]:

r = WTAW
WTBW

(7)

The solution wx and wy can be obtained as solutions of
the generalized eigen-problem:

AW = BWλ (8)

As a subspace learningmethod, CCA is inclined to over-
fit to the training data, especially when the sample size
is small [35]. Here, we add a dimensionality reduction
step (like PCA) before applying the CCA. To introduce a
nonlinear generalization of CCA based on a kernel formu-
lation to take account the nonlinearity of transformation
between the profile face image and frontal one, KPCA is
used instead of PCA. The transformation of input data
(frontal or profile faces) is performed by a mapping from
the original input space to a high-dimensional feature
space.

6.2 Kernel principal component analysis
Standard PCA only allows linear dimensionality reduc-
tion. However, if the data hasmore complicated structures
which cannot be well represented in a linear subspace,
standard PCA will not be very helpful. Fortunately, kernel
PCA allows us to generalize standard PCA to nonlinear
dimensionality reduction [42].
Assume we have a nonlinear transformation φ(x)

from the original D-dimensional feature space to an M-
dimensional feature space, where usually M � D. Then
each data point xi in dataset {xi}, where i = 1, 2, . . . ,N ,
is projected to a point φ(xi). We can perform standard
PCA in the new feature space, but this can be extremely
costly and inefficient. To simplify the computation, kernel
methods can be used [43].
First, we assume that the projected new features have

zero mean:

1
N

N∑
i=1

φ(xi) = 0 (9)

Fig. 8 LBP operator
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The covariance matrix of the projected features is M ×
M, calculated by

C = 1
N

N∑
i=1

φ(xi)φ(xi)T (10)

Its eigenvalues and eigenvectors are given by

Cvk = λkvk (11)

where k = 1, 2, . . . ,M. From Eqs. (10) and (11), we have

1
N

N∑
i=1

φ(xi)
{
φ(xi)Tvk

}
= λkvk (12)

which can be rewritten as

vk =
N∑
i=1

akiφ(xi) (13)

Now by substituting vk in Eqs. (12) with (13), we have

1
N

N∑
i=1

φ(xi)φ(xi)T
N∑
j=1

akjφ(xj) = λk

N∑
i=1

akiφ(xi) (14)

Left multiplying φ(xi)T to both sides of the equation
above, we get

1
N

N∑
i=1

k(xi, xi)
N∑
j=1

akjk(xi, xj) = λk

N∑
i=1

akik(xi, xi)

(15)

where

k(xi, xj) = φ(xi)Tφ(xj) (16)

We can use the matrix notation

k2ak = λkNkak (17)

where

ki,j = k(xi, xj) (18)

and ak is the N-dimensional column vector of aki:

ak = [ak1 ak2 . . . akN ]T (19)

ak can be solved by

kak = λkNak (20)

and the resulting kernel principal components can be
calculated using

yk(x) = φ(x)Tvk =
N∑
i=1

akik(x, xi) (21)

The power of kernel methods is that we do not have
to compute φ(xi) explicitly. We can directly construct the
kernel matrix from the training dataset {xi} [44]. Two
commonly used kernels are the polynomial kernel

k(x, y) = (xTy)d (22)

and the Gaussian kernel

k(x, y) = exp
(

−||x − y||2
2σ 2

)
(23)

7 Experiments
To evaluate our approach according to LOOLP, we test
it on FERET database considered as a reference in face
identification area. Since it contains faces in different ori-
entations, it is used for pose-invariant identification. It is
known to be difficult because the faces with different ori-
entations have not necessarily been acquired during the
same time.
We take from fa subset, 800 frontal faces subdivided

into 200 for learning and 600 for testing. Profile faces

Fig. 9Main regions of the face selected for the CCA mapping. The figure shows the regions describing the faces to be used for the learning of the
CCA-based mapping
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Fig. 10 General evaluation procedure (LOOLP) for face identification from profile pose. Evaluation of our approach according to the leave one
out-like protocol (LOOLP), 199 individuals are used to learn the CCA transformation frontal-profile (estimate wx , wy ) and the remaining individual of
the profiles set together with the frontal faces of the test set are projected onto the canonical space using wy and wx , respectively, for comparison.
This operation is repeated 200 times

of the same individuals used for learning (200) are taken
from the subset pl. Consequently, we get 200 pairs of faces
(frontal and profile) for learning step and 600 frontal (as
gallery) to evaluate the approach. We recall that 2D-based
pose-invariant identification methods proposed in the lit-
erature do not follow a rigorous protocol of testing, as
is the case for frontal identification. In fact, each author
adopts his own protocol and uses reference datasets
(gallery) that contain about 100 individuals. Unlike the
previous works, we have augmented the gallery to 600
faces with one image per individual, in order to give more
credibility to our tests. For the frontal parts of each face,
we manually annotate (click on) the eyes, the nose, the
mouth, and the chin and for the profile, we click on the
nose, one eye, the mouth, and the chin. These parts are
used for geometric normalization of the faces and for fea-
ture extraction where 64-bin histograms are calculated
for each region of interest in the LBP images, and then
histograms of the 14 regions (Fig. 9) of the face are con-
catenated in a vector to describe it. Hence, we get a

descriptor of size p = 896 (64×14) for frontal faces and
also q = 896 (64×14) for profile faces.
It is well known that a condition for CCA applicability

is to have (p + q) < 199 which is the number of faces in
both of the frontal and the profile bases in the learning
step. This condition is necessary, because if (p+q) > 199,
a slight perturbation in the two bases (frontal and pro-
file) will affect drastically the results of identification. In

Table 1 Comparison of identification scores provided by CCA
based on different kernel types

Kernel Score (over 200)

Linear 109

Polynomial degree 2 120

Polynomial degree 3 120

Polynomial degree 4 118

Polynomial degree 5 116

Gaussian σ1 = σ2 = 0.5 140
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Table 2 Selection of the relevant features

Components (regions) Score (/200)

Eye, nose, mouth, chin (1, . ., 14) 140

Eye, nose, mouth (1, . .,12) 90

Eye, nose, chin (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14) 111

Eye, mouth, chin (1, 2, 3, 4, 5, 6, 11, 12, 13, 14) 84

Nose, mouth, chin (7, 8, 9, 10, 11, 12, 13, 14) 54

Part of eye, nose, mouth, chin
(2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

150

Eye, left part of nose, , mouth, chin
(1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14)

112

Eye, right part of nose, mouth, chin
(1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14)

115

Eye, nose, left part of mouth, chin
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14)

125

Eye, nose, right part of mouth, chin
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14)

127

Eye, nose, mouth, left part of the chin
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

119

Eye, nose, mouth, right part of the chin
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14)

126

our work, we conform to this condition by a dimension-
ality reduction based on the KPCA for both poses with
linear, polynomial, or Gaussian kernel. To proceed with
the LOOLP, 199 individuals are used to learn the CCA
transformation frontal-profile (estimate wx, wy) and the
remaining individual of the profiles set together with the
frontal faces of the test set are projected onto the canon-
ical space using wy and wx, respectively, for comparison.
Euclidean distance is used tomeasure the proximity of this

individual to those of the frontal faces. This operation is
repeated 200 times (Fig. 10).
Scores of correct identification are summarized in

Table 1. It can be noticed that the Gaussian kernel pro-
vides the best score with a correct identification rate of
70 % (140/200).
In order to improve the identification score, the Gaus-

sian kernel with σ = 0.5 is used for both frontal and
profile faces, associated to a feature selection that con-
sists of testing the discriminative power of a subset of the
regions of interest. Table 2 gives the list of the retained
components for our experiments according to Fig. 9.
We get the best score while we use the components of

the face from which we remove regions 1 and 4 of the eye.
In order to select the optimal values of the Gaussian kernel
parameters σ1 and σ2 for frontal and profile, respectively,
we vary them between 0.01 and 1, with a 0.01 step size.
The highest score of 153/200 is obtained for σ1 = 0.41 and
σ2 = 0.39.
Figure 11 representing the cumulated match scores for

different kernels, shows that the Gaussian kernel over-
classes the others.
Figure 12 depicts the identification rate versus the

selected canonical space dimensionality for a gallery of
200 individuals, and Fig. 13 shows the identification rate
versus the size of the gallery used for test.

8 Discussion
Table 3 sums up the scores obtained bymethods proposed
in the literature for 90◦ pose deviation from the gallery of
frontal faces.
It can be noticed that galleries used to test these meth-

ods contain at most 200 individuals (column 2 of Table 3
gives size in brackets). Indeed, the highest score (92 %

Fig. 11 Cumulative match curve for profile face identification. The figure shows that the Gaussian kernel overclasses the others
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Fig. 12 Identification rate versus canonical space dimension

of correct identification) is obtained by Prince et al. [21],
on a gallery of only 100 individuals. However, the authors
underline the fact that if there are more than 100 indi-
viduals, there are more people to confuse the probe with,
and the task becomes harder [21]. In our study, we obtain
100 % of correct identification even for a gallery of much
larger size (200 individuals). The score decreases to 76.5 %
for a gallery of 600 individuals. Unlike the approach pro-
posed by Prince et al. [21], which requires 14 landmarks,
our technique needs only four landmarks. It is worth not-
ing that though these four landmarks may be detected
automatically, the manual annotation is adopted to be

sure that identification errors are inherent to choices of
the approach rather than to eventual erroneous landmark
detection. Reducing the number of landmarks from 14
to 4, allows not only a gain in execution time but an
increase in the identification rate, which is advantageous
for a practical use.
In order to confirm the results obtained for FERET

database, the approach is also tested on another recent
database according to LOOLP. This database is SCface
[6] which contains static images of human faces taken in
uncontrolled indoor environment using five video surveil-
lance cameras of various qualities. Database contains

Fig. 13 Identification rate versus the size of the gallery used for test
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Table 3 Comparison of profile face identification studies (90◦)
Study Database % Correct

Zhang and Samaras [45] CMU PIE (68) 55

Wallhoff et al. [46] Mugshot (100) 60

Wallhoff and Rigoll [47] FERET+ Mugshot (200) 42

Kanade and Yamada [48] CMU PIE (34) 40

Prince et al. [21] FERET (100) 92

Prince et al. [21] XM2VTS (100) 91

Proposed method FERET (200) 100

Proposed method FERET (600) 76.5

130 individuals pictured in different orientations. In the
present paper, the 0◦ and 90◦ orientations are considered.
One hundred pairs of images (frontal and profile) are

used to learn the transformation and the remaining 30
frontal images as gallery for test. For feature extraction,
the same steps as for FERET database are performed. The
condition for CCA applicability is (p + q) < 99 which is
the number of faces in both of the frontal and the pro-
file bases of the learning step (p and q are the components
to retrieve for frontal and profile faces). The best score is
52 %, obtained with a Gaussian kernel. The decrease of
the score may be explained by the fact that only 49 com-
ponents are retrieved for both the frontal and the profile
databases. If one considers as good identification, the sit-
uation where the individual to be identified ranks among
the five first individuals found, the score increases to reach
73 %.
We consider that this score is satisfactory given the fact

a reduced number of components has been retrieved.

9 Conclusions
In this paper, we proposed a method for identification of
profile faces using frontal faces as references. It is based
on a KCCA and consists of learning the transformation
between frontal and profile faces. Since most of the exist-
ing databases of faces contain only frontal faces, and it
is often difficult to have simultaneously the frontal and
the profile face of any individual, this transformation may
have a central role in practice. In fact, if a face is detected
in a scene, it will be represented in the frontal space,
thanks to the transformation learned by CCA, and then,
compared to the frontal faces. Due to the nonlinearity
of the transformation between the frontal and the pro-
file pose, we were constrained to not represent the global
face but to restrict to its main components (eyes, nose,
mouth, chin) and to use kernel functions. The validation
of our method has been achieved according to a leave one
out-like protocol (LOOLP), based on a gallery of 600 indi-
viduals. This way of validation guaranties a more accurate
estimate of the generalization error of the approach. For

the transformation between 0◦ and 90◦, a score of 100 %
on a 200-face gallery that overpasses those published in
the literature, is obtained. This score decreases to 76.5 %
for a gallery of 600 faces. In a future work, we will gen-
eralize the method to other orientations (other than 90◦)
in order to get a totally pose-invariant face identification
system.
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