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Abstract

Besides a high distinctiveness, robustness (or invariance) to image degradations is very desirable for texture feature
extraction methods in real-world applications. In this paper, focus is on making arbitrary texture descriptors invariant
to blur which is often prevalent in real image data. From previous work, we know that most state-of-the-art texture
feature extraction methods are unable to cope even with minor blur degradations if the classifier's training stage is
based on idealistic data. However, if the training set suffers similarly from the degradations, the obtained accuracies
are significantly higher. Exploiting that knowledge, in this approach the level of blur of each image is increased to a
certain threshold, based on the estimation of a blur measure. Experiments with synthetically degraded data show that
the method is able to generate a high degree of blur invariance without loosing too much distinctiveness. Finally, we
show that our method is not limited to ideal Gaussian blur.
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1 Introduction

For some decades, texture classification [1-16] has been
a fundamental challenge in image processing. On the
one hand, texture descriptors have to capture all intrin-
sic image properties. These are properties that contain
distinctive information (for discrimination) and do not
depend on the image acquisition conditions. On the other
hand, extrinsic properties (i.e., properties that vary with
different acquisition conditions) should not be captured,
in order to maintain invariance to specific properties.

In the following, we focus on blur which is usually
caused by defocus, motion, or chromatic aberrations.
Although in case of good image acquisition conditions
blur can mostly be prevented effectively, in many real-
world scenarios, this degradation still features a present
problem. One specific medical application prone to non-
idealistic images is endoscopy. Firstly, it is quite difficult
to adjust the distance between the lens and the surface,
which is a source for defocus aberrations. Furthermore,
the permanent activity of the bowel in combination with a
difficult handling of the endoscope is a source for motion
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blur. There is significant literature on texture classification
from endoscopic images such as celiac disease diagno-
sis [17, 18], small bowel tumor detection [19], and colon
cancer detection [20].

Currently, there is only limited literature on blur-
invariant texture feature extraction. Most common
approaches exploit either the blur-invariant Fourier phase
information of the image [4, 5] or are based on the
image moment method [3]. Furthermore, previous work
[21] showed that highly distinctive state-of-the-art texture
features [6—9] are in general extremely sensitive to blur.

We have learned from previous work [21] that a system-
atic degradation, prevalent in the evaluation set, in general
affects the classification accuracy by far less if the images
in the training set similarly suffer from the degradation. In
the referenced paper, this knowledge has been exploited
by dividing the image data sets into smaller sets that are
similar with respect to the level of a specific image degra-
dation. This method is referred to as degradation adaptive
texture classification. The main restriction of degradation
adaptive classification is that the distribution of the degra-
dations must be similar in the training and the evaluation
set. For example, if the training set contains only idealis-
tic images and the evaluation set contains majorly strongly
degraded images, the framework does not work as there

© 2016 Gadermayr and Uhl. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-016-0116-7-x&domain=pdf
mailto: Michael.Gadermayr@lfb.rwth-aachen.de
http://creativecommons.org/licenses/by/4.0/

Gadermayr and Uhl EURASIP Journal on Image and Video Processing (2016) 2016:14

are no training images which are similar to the strongly
degraded evaluation set images.

1.1 Contribution and related work

In this work, we propose a general methodology to make
image descriptors invariant to blur. Compared to degra-
dation adaptive classification [21], such invariant texture
features can be utilized more generally, as no assumptions
on the distribution of the degradations in the training
and the evaluation set must be made. Instead of focusing
on a specific descriptor, our approach can be under-
stood as a pre-processing technique and thereby can be
applied to arbitrary texture feature extraction methods.
This makes the approach highly generic as for a certain
problem definition; the most appropriate state-of-the-art
machine learning stage can be applied. A completely
different concept is identified in the case of blur-invariant
methods from literature [3-5]. These approaches apply
specific concepts during feature extraction to ignore
information which changes between differing blur
levels.

From previous work [21], we know that blurring does
not delete much distinctive information but leads to a dif-
ferent image representation (in the case of non-invariant
feature extraction). The method proposed in this paper
exploits this knowledge by equalizing the level of blur,
prior to the actual feature extraction. This is done by
means of an iterative algorithm based on specific blur
metrics from literature.

In a comprehensive experimental evaluation, we focus
on classification tasks with idealistic (blur-free) training
data and distorted (blurred) evaluation data. This spe-
cific scenario is investigated because previous work [21]
showed that non-invariant methods in that case are gen-
erally unable to deliver acceptable outcome. In contrast,
considering classification tasks with similar degradations
in the training and the evaluation set, non-invariant
image descriptors have proven to be mostly quite effec-
tive [21]. Furthermore, the accuracies can be increased
even more using adaptive classification. It has been shown
[22] that the classification model can be adjusted effec-
tively to partly corrupted data (during training) without
noticing a strong impact on the final overall classifica-
tion rates. Focusing on a scenario with idealistic training
data and distorted evaluation data, these effects dur-
ing classification can be eliminated to emphasize on the
feature extraction stage only. Similar strategies are con-
ducted for evaluation of scale-invariant texture descrip-
tors [23, 24]. In real-world applications, the investigated
scenario is applicable for instance if having idealistic
(e.g., manually selected) training data in combination with
partly degraded evaluation set data. This can be the case
in specific medical applications as already mentioned
above [17-20].

Page 2 of 9

1.2 Outline

This paper is structured as follows. In Section 2, the
methodology of making texture image descriptors blur-
invariant is introduced. In Section 3, the classification
improvements are presented and discussed. Section 4
finally concludes this paper.

2 Blur-invariance framework

In the following, we assume that a blurred image can be
modeled by convolution of an ideal image with a Gaussian
kernel. In this case, blur is referred to as Gaussian blur.
The major idea of this work is to adaptively add Gaussian
blur to an image to reach a specific blur level which is
previously specified and is the same for all images (in the
training and the evaluation set). This is done recursively
by the blur-equalizing function E, as shown in Eq. (1):

1 ,if B) > O,

EMD = {E(I* G) ,if BU) < © (1)

The original image I is recursively convolved with a
Gaussian kernel G until the blur measure B based on the
image reaches the threshold ®. The procedure is outlined
graphically in Fig. 1.

Having perfect Gaussian blur in the images and disre-
garding that the desired blur strength © is not achieved
exactly, the method leads to theoretically perfect invari-
ance. For that, we exploit that a convolution of two
Gaussian kernels is another Gaussian kernel and that con-
volution is associative. In the discrete case, besides that ®
is not achieved exactly, an error is furthermore obtained
due to the discrete image sampling.

Figure 2 shows how the blur level of an example texture
image is increased during blur equalization.

2.1 Choosing the threshold

Although the main part of the algorithm is highly simple,
there remain some open issues: One question is, how to
choose the threshold ®. From theoretical point of view,
this threshold adjusts the degree of invariance. If ® is cho-
sen to be smaller than the blur measure of some images in
a database, a perfect equalization cannot be realized. Con-
trarily, if this value is chosen too large, the removal of high
frequency information might affect the distinctiveness of
the final feature vectors. To put it into a nutshell, ® is the
regulating parameter between high distinctiveness and a

Blur
Measurement
B(l)

Output
Image E(I)

Convolution
1:=1xG

Fig. 1 Graphical outline of blur equalization
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Fig. 2 From left to right, the increased blur level during blur equalization is shown using an example texture image [27]. Between two neighboring
images, exactly one convolution cycle (Fig. 1) is applied

high level of invariance. In our experiments, we choose
different ® to investigate this correlation.

2.2 Blur measurement

Another question is how to estimate the blur level (mea-
sured by a function B) in an image. For this purpose, we
rely on previous work on non-reference blur measure-
ment. We investigate two common methods [25, 26] as
well as one method which does not directly estimate blur,
but a related property.

o In the case of the first blur measure (Bp,) which has
been introduced by Marziliano et al. [25], an edge
detector is applied to find the vertical edges. Then,
the local extrema are detected which correspond to
the start and end points of edges. Finally, the blur
metric is achieved by computing the ratio between
the average edge length (i.e. the distance between
start and end pixel) and the average edge magnitude
(ie. the gray value difference). A high average edge
length (and/or a low edge magnitude) indicates that
the edges are blurred. In opposite, short edges
(and/or high edge magnitudes) means that the edges
are sharp.

¢ Another blur measure (Bc;) has been introduced by
Crete et al. [26]. In this case, the intensity variations
between neighboring pixels of the original image are
compared with the intensity variations of a low-pass
filtered version of the image. A high variation
indicates that the original image is sharp, whereas a
low variation means that the original image is already
blurred. Low-pass filtering is done (as proposed [26])
using an averaging filter with a size of 3 x 3 pixels.

e Finally, we will compare the two elaborated blur
measurement techniques with the simple contrast
property B¢, which is computed by summing up the
squared differences of neighboring gray values [13]
(based on horizontal and vertical neighbors). This at
first sight inappropriate method is used in order to
get more insight and to investigate the importance of
a good blur measurement in our approach.

We investigate the behavior with these three different
measures which are not built for our problem definition.
Firstly, blur measures are usually not built to measure

blur in textured images but rather in natural scenes. Fur-
thermore, these metrics are constructed to measure the
perceptual image degeneration and not the Gaussian o.

As it is not clear, which properties of a blur measure
are important in case of our scenario, in a first step, we
investigate them with respect to two prediction rates.
The first one (called “intra-class prediction”) measures the
ability to decide which of two textures of the same class
is stronger blurred with respect to the Gaussian o. The
second one (called “inter-class prediction”) measures the
ability to decide which of two textures of different classes
is stronger blurred, which is supposed to be the more
difficult task. Finally, we compare these two rates with
the final classification performances in order to detect
correlations.

3 Experiments
3.1 Setup
The experiments are based on the Kylberg texture
database [27], consisting of 28 classes with 160 unique
texture patches per class, captured at a single scale. Each
unique database (four of them are available) contains 40
patches per class (i.e., the total number of images per set
is 1120). Blurred images for the main experiments (Figs. 3,
4, and 5) are achieved by simulation, using a Gaussian ker-
nel with varying variances o. We generate images on nine
different Gaussian blur levels, leading from (theoretically)
o = 0, indicating the original image, to ¢ = 4. For addi-
tional experiments (Figs. 6 and 7), images are filtered with
averaging as well as median filters with sizes between 1 x 1
(unfiltered) and 9 x 9 pixels. For training, one Kylberg
database (“A”) is used without any simulated blur. For eval-
uation, we use a separate database (“B”) with simulated
blur of variable strengths (and types). For final classifica-
tion, we utilize the linear support vector classifier [28].
In the experiments, the behavior with ten different blur
measure thresholds (®) are investigated. They are defined
by the first to the tenth ten-quantile of the blur measures
in the original evaluation set (e.g., in the case of the first
threshold, 10 % of the images are less and 90 % are more
blurry).

For blur equalization E (Eq. (1)), we use a Gaussian
kernel with ¢ = 1 and a size of 3 x 3 pixels which
turned out to be appropriate. Using a kernel with a larger
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Fig. 3 Blur measurement performances achieved with the three blur metrics
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variance, execution time can be reduced, but the accuracy
might decrease slightly. A too small variance would lead
to unnecessarily high computational expenses.

We do not apply any preprocessing before blur
estimation. Experimentation (applying noise removal
methods) did not lead to improved outcomes.

For feature extraction, five different well known tech-
niques are investigated:

e Local binary patterns [16] (MRLBP):
describes a texture by utilizing the joint distribution
of pixel intensity differences represented by binary
patterns. We deploy a multi-resolution version of the
uniform patterns (capturing only patterns with at
most 2 bitwise transitions) using the standard
eight-neighborhood with a radius of one and two
pixels. Multi-resolution in this case means that the
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feature vector for LBP with a radius of one and LBP
with a radius of two pixels are concatenated. Due to
its high distinctiveness, this feature is commonly
used, although it is highly sensitive to blur [29].

e Extended local binary patterns (ELBP) [30]:
ELBP is an edge-based derivative of local binary
patterns. This descriptor is utilized with eight
neighbors and a radius of one pixel. This feature is
known to be similarly distinctive compared to LBP
but slightly more robust to blur [29].

e Multi-fractal spectrum [7] (FRA):
The local fractal dimension is computed for each
pixel using three different types of measures for
computing the local density. The feature vector is
built by concatenation of these fractal dimensions.
This feature is investigated because of its high
discriminative power.

e Edge co-occurrence matrix [9] (ECM):
After applying eight differently orientated directional
filters, the orientation is determined for each pixel,
followed by masking out pixels with a gradient
magnitude below some threshold t. Finally, the ECM
is achieved by computing the gray-level
co-occurrence matrix of these data and a specified
displacement v. For the experiments, t is set to 25 %
of the maximum response and the displacement
vector v = (1, 1) is used. This feature is investigated
as it could be, in opposite to the others, interpreted as
a shape feature.

e Local phase quantization (LPQ) [5]:
LPQ is based on the short-term Fourier transform,
computed over a square local neighborhood. As it

extracts (low frequency) phase information, this
feature is declared to be robust to image blur. We
choose a local neighborhood of 15 x 15 pixels, which
turned out to be appropriate for our problem
definition.

3.2 Results

In a first experiment, focus is on the blur measures if
being applied to the image textures. We would like to find
out how effective Gaussian blur can be determined in an
intra-class as well as in an inter-class sense (as defined in
Section 2). The blur step between two compared textures
in both cases is fixed to o 0.5. In Fig. 3, the com-
puted prediction errors for these two cases are presented,
separately for the compared blur strengths (shown on the
horizontal axes) and for all blur measures.

We notice that especially in combination with strongly
blurred images, the dedicated blur measures B¢, and
Bna are unable (50 % error is achieved with guessing)
to effectively measure the applied blur in an inter-class
sense. Interestingly, the rather simple contrast measure
B¢, seems to be even slightly more accurate in case of
our problem definition. Intra-class prediction is (as sup-
posed) easier and the measures By, and Bc, are similarly
competitive. Bc; exhibits the highest error rates. Compar-
ing images with stronger blur (e.g., images with 0 = 3
and ¢ = 3.5) in general is more difficult, which is obvi-
ous as these images are more similar as far as perception
is concerned. We suppose that an accurate intra-class pre-
diction necessarily is required for our problem definition,
because we assume that images of the same class should
be similarly blurred in order to achieve a small feature
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distance. However, we do not know if an accurate inter-
class prediction is necessary. Therefore, now we will focus
on the final classification accuracies, achieved with the
new approach, applying Eq. (1) to all images, and the
different metrics.

In Fig. 4, the main results are presented. Training is done
using original (non-blurred) images and evaluation is
done with different Gaussian blur levels. For varying blur
strengths in the evaluation set (horizontal axes), one sub-
plot shows the traditional classification accuracies (dotted
line) as well as the rates achieved with our approach. The
solid lines indicate the rates obtained with our approach
in combination with varying thresholds where a dark line
indicates a small threshold and vice versa. First, we notice
that all features, apart from LPQ, are highly sensitive to
blur changes considering the traditional classification case
without our pre-processing stage. Even with a small blur
strength (e.g., 0 = 1), the rates drop significantly. Con-
sidering the different solid lines, it can be seen that a
certain degree of invariance definitely can be achieved
with our new pre-processing technique. The invariance is
(as supposed) more distinct with larger thresholds ®. But
(also as supposed) the high degree of invariance in case
of large thresholds faces lower accuracies in case of opti-
mal images without blur. Consequently, in the case of our
pre-processing method, obviously, distinctiveness has to
be sacrificed for the gained invariance. However, this is
not a big surprise as we know that adding significant blur
slightly decreases the distinctiveness of features [21]. It is
much more interesting that the distinctiveness obviously
does not strongly decrease in most cases. Especially, if
considering MRLBP, ELBP, or ECM, the accuracies remain
quite stable with increasing thresholds, especially if com-
pared with the blur-invariant LPQ method. However, we
notice that ® which regulates the invariance should be
carefully chosen depending on the expected blur strengths
as mostly distinctiveness must be sacrificed for a higher
degree of invariance.

In Fig. 5, for each feature extraction method, each blur
metric and each blur strength, the accuracies achieved
with the optimal ©® for the specific blur strengths are plot-
ted and compared with the classification rates achieved
with traditional classification. Thereby, the blur measures
can be effectively compared with each other. Additionally,
we show the (“ideal”) accuracies that could be achieved
if the blur measure would be able to exactly determine
the Gaussian o. These rates cannot be achieved in a
real-world scenario (as the real Gaussian o is unknown);
however, they inform us about the effectiveness of the uti-
lized blur metrics. Quite interestingly, we notice that B¢,
works very effectively in case of moderate degradations
(i.e., o between 1 and 2) and is even able to outperform the
dedicated blur metrics Bpy, and Bcy. Especially in combi-
nation with the MFS feature, the contrast measure seems
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to be highly competitive. This is quite astonishing, as the
Bco measure definitely is not built for blur measurement.
However, our analysis (Fig. 3) already showed that it might
work for our problem definition considering intra-class
and inter-class blur prediction performance. Obviously,
the sophisticated perceptual blur metrics are not opti-
mally suited. Considering stronger blur, apart from the
MES feature, By, is the best or at least highly competi-
tive. Considering the plots in Fig. 3, it could be deduced
that a good intra-class blur prediction is decisive (as B¢y
in general seems to be less appropriate). Moreover, a good
inter-class prediction seems to be also important if con-
sidering B¢, which works effectively (and corresponds to
a good inter-class prediction rate) in the lower blur range.
We suppose that a good inter-class prediction is important
to limit the required threshold ®. If some textures corre-
spond to outlying blur estimations, the threshold must be
set high in order to achieve a certain degree of invariance.
Regarding the “ideal” lines, it can be seen that the best blur
measures are mostly quite competitive. Especially in case
of MRLBP, ECM, and LPQ, the gap is mostly lower than
5 %. However, considering the MFS subplot, we notice that
the new approach could profit even more from a more
appropriate blur metric.

Finally, we investigate the effect of our pre-processing
approach in case of “non-Gaussian” blur. As our method
(see Eq. (1)) is based on the assumption that a blurred
image is obtained by convolution of an ideal image with a
Gaussian kernel, it could be supposed that the prevalence
of a different kind of blur corrupts the invariance. There-
fore, in Figs. 6 and 7, the same experiment as in Fig. 4
with averaging and median filtered images (the filter size
is given on the horizontal axis) and the probably most
appropriate blur metric B¢, are presented. We notice that
the impact of averaging filtered images (Fig. 6) instead of
Gaussian-filtered images is quite small. With all features,
similarly good compromises between a high invariance
and a high distinctiveness can be obtained. The perfor-
mances of traditional classification can be outperformed
significantly in each case. Especially until a size of 4 x 4
pixels, the loss of accuracy compared to idealistic images
(1 x 1) is in general negligible. Is has to be mentioned
that the curves cannot be directly compared to the curves
in Fig. 4, because the degradation is different and thereby
the traditional classification rates (dashed lines) are also
different.

Considering the classification rates in case of median
filtered images (see Fig. 7), it can be seen that the signifi-
cantly different kind of blur (compared to Gaussian blur)
actually has an impact on the invariance. Especially in the
range of large kernel sizes (above 5 x 5 pixels) combined
with lower thresholds, accuracy increases are lower com-
pared to Gaussian or averaging filtered images. This is
supposed to be due to the different properties between
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Gaussian blur and blur due to median filtering. However,
if considering lower blur levels (up to a kernel size of 5 x 5
pixels), which are probably more relevant in practice, the
level of invariance is still worthwhile. From these results, it
can be concluded that our method is definitely not limited
to image databases suffering from Gaussian blur.

4 Conclusions

We have proposed a generic approach to make texture
features invariant to blur. By equalizing the blur level, a
high degree of invariance can be achieved without losing
too much distinctiveness, which is of high relevance for
practical usage. Even the robustness of a dedicated blur-
robust descriptor can be improved furthermore. With all
of the three tested blur measures, competitive results can
be obtained. However, depending on the respective fea-
ture extraction method and the blur strength, either the
contrast-based B¢, mostly in case of lower blur strengths
or the more elaborated technique B, leads to the best
compromise between accuracy and invariance. Further-
more, we showed that the performance could be improved
again if more appropriate blur measures would be avail-
able. Finally, it has been proven that although it assumes
Gaussian-blurred images, our method can be successfully
applied even in case of other kinds of blur.
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