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Abstract

Accidental fall is the most prominent factor that causes the accidental death of elder people due to their slow

body reaction. Automatic fall detection technology integrated in a health-care system can assist human monitoring
the occurrence of fall, especially in dusky environments. In this paper, a novel fall detection system focusing mainly
on dusky environments is proposed. In dusky environments, the silhouette images of human bodies extracted from
conventional CCD cameras are usually imperfect due to the abrupt change of illumination. Thus, our work adopts a
thermal imager to detect human bodies. The proposed approach adopts a coarse-to-fine strategy. Firstly, the downward
optical flow features are extracted from the thermal images to identify fall-like actions in the coarse stage. The horizontal
projection of motion history images (MHI) extracted from fall-like actions are then designed to verify the incident by the
proposed nearest neighbor feature line embedding (NNFLE) in the fine stage. Experimental results demonstrate that the

situations.

proposed method can distinguish the fall incidents with high accuracy even in dusky environments and overlapping
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1 Introduction

Accidental fall is the most prominent factor that causes
the accidental death of elder people due to their slow
body reaction. Fall accidents usually occur at night with
nobody except the elder people if they live alone. It is
usually too late to remedy the tragedy when the body is
discovered hours or days after with the occurrence of ac-
cidental fall. In the occurrence of fall incident, humans
usually lie flat on the ground. However, we cannot
merely use the images to perceive whether this person is
lying on the ground. Hence, we have to detect and avoid
the risk caused by fall action. According to the survey, a
sudden fainting or body imbalance is the main reason to
cause a fall. No matter what reasons, fall is a warning
that the subject may be in danger. Moreover, the silhou-
ette images of human bodies are hard to be extracted
from conventional CCD cameras in dusky environments
due to the illumination constraint. If the incidents occur
in a dusky and unattended environment, people usually
miss the prime time for rescue. To remedy this problem,
a fall detection system using a thermal imager (see Fig. 1)
to capture the images of human bodies is proposed in
this paper. By using the thermal imager, the human
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bodies can be accurately located even in a dusky environ-
ment. For comparison, Fig. 2a shows the images obtained
by a CCD camera in a dusky environment, whereas Fig. 2b
shows the images obtained by a thermal imager in the
same environment. It is obvious that the thermal imagers
can extract more clear and intact human bodies in the
dusky environments than CCD cameras.

Moylan [1] illustrated the gravity of falls as a health
risk with abundant statistics. Larson [2] described the
importance of falls in elderly. The National Center for
Health Statistics showed that more than one third of
ages 65 or older fall each year. Moreover, 60 % of lethal
falls occur at home, 30 % occur in public region, and
10 % happen in health-care institutions for ages 65 or
older [3]. In the literatures of fall detection, Tao et al. [4]
applied the aspect ratio of the foreground object to de-
tect fall incidents. Their system firstly tracks the fore-
ground objects and then analyzes the sequences of
features for fall incident detection. Anderson et al. [5]
also applied the aspect ratio of the silhouette to detect
fall incidents. The rationale based mainly on the fact that
the aspect ratio of the silhouette is usually very large
when the fall incidents occur. On the contrary, the as-
pect ratio is much smaller when the fall incidents do not
occur. Juang [6] proposed a neural fuzzy network
method to classify the human body postures, such as
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Fig. 1 The thermal imager
A

standing, bending, sitting, and lying down. In [7], For-
oughi et al. proposed a fall detection method using an
approximated eclipse of human body silhouette and
head pose as features for multi-class support vector ma-
chine (SVM). Rougier et al. [8] applied the motion his-
tory image (MHI) and variations of human body shape
to detect falls. In [9], Foroughi et al. proposed a modified
MHI integrating the time motion image (ITMI) as the
motion feature. Then, the eigenspace technique was
used for motion feature reduction and fed into individ-
ual neural network for each activity. Liu et al. [10] pro-
posed a nearest neighbor classification method to
classify the ratio of human body silhouette of fall inci-
dents. In order to differentiate between the fall and
lying, the time difference between fall and lying was used
as a key feature. Liao et al. [11] proposed a slip and fall
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detection system based on Bayesian Belief Network
(BBN). They used the integrated spatiotemporal energy
(ISTE) map to obtain the motion measure. Then, the
BBN model of the causality of the slip and fall was con-
structed for fall prevention. Olivieri et al. [12] proposed
a spatiotemporal motion feature to represent activities
termed motion vector flow instance (MVFI) templates.
Then, a canonical eigenspace technique was used for
MVFI template reduction and template matching.

In this paper, a novel fall detection mechanism based on
coarse-to-fine strategy which is workable in dusky envi-
ronments is proposed. In the coarse stage, the downward
optical flow features are extracted from the thermal im-
ages to identify fall-like actions. Then, the horizontal pro-
jected motion history image (MHI) features of fall-like
actions are used in the fine stage to verify the fall by the
nearest neighbor feature line embedding.

The contributions of this work are listed as follows: (1)
using the thermal imager instead of CCD camera to cap-
ture intact human body silhouettes; (2) proposing a
coarse-to-fine strategy to detect fall incidents; (3) propos-
ing a nearest neighbor feature line embedding method for
fall detection which improves the original nearest feature
line embedding method; (4) proposing a scheme to detect
fall incidents even though occlusion occurs.

The rest of this paper is organized as follows. In Sec-
tion 2, the concept of nearest feature line embedding
(NFLE) algorithm presented in our previous work [13]
will be briefly reviewed. Then, the fall detection based
on coarse-to-fine strategy and the nearest neighbor fea-
ture line embedding (NNFLE) algorithm are presented
in Section 3. Experimental results are illustrated in Sec-
tion 4 to demonstrate the soundness and effectiveness of
the proposed fall detection method. Finally, conclusions
are given in Section 5.

2 Nearest feature line embedding (NFLE)

The NFLE transformation is a linear transformation
method based on a nearest feature space (NES) strategy
[13] originating from an nearest linear combination
(NLC) methodology [14]. Since the points on the nearest
feature line (NFL) are linearly interpolated or extrapo-
lated from each pair of feature points, the performance
is better than those of point-based methods. In addition,
the NFL metric is embedded into the transformation
through the discriminant analysis phase instead of in the
matching phase.

Consider Nd-dimensional samples X =[x, %5, ... 2]
constituting N, classes, the corresponding class label of
x; is denoted as [,,€{1,2,3,...N.} and a specified point
y;=w'x; in the transformed space. The distance from
point y; to the feature line is defined as lly; - f2(y)ll, in
which f? is a function generated by two points, and
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(a)

Fig. 2 Image extraction results captured by (a) CCD camera and (b) thermal imager

(b)

/2y, is the projected point of the line. A number of
CY™! possible lines for point y; will be generated. The
scatter computation of feature points to feature lines can
be obtained and embedded in the discriminant analysis.
In consequence, this approach is termed as NFLE.

In NFLE, the objective function in the equation

(s

is minimized.
The weight values w(z)(y,v) (being 1 or 0) constitute a

vt )| w2 ) )

connected relationship matrix of size N x Cy~' for N
feature points to their corresponding projection points

#2(y,). Consider the distance ) ¥~ iﬁ)n ;)
feature line L,,, that passes through two points y,, and y,;

‘ for point y; to a

the projection point f ;(j)n (y;) can be represented as a linear

combination of points y,, and y, by f Ef)n 9;) =Y + b
(yn_ym) , in which £,,,, = (yi _ym)T(ym - yn)/(ym _yn)T(ym -
9,). The mean square distance for all training samples to
their corresponding NFLs is minimized and its representa-
tion is given by the following lemma.

Lemma 2.1: The mean square distance from the train-
ing points to the NFLs can be represented in the form of
a Laplacian matrix.

See Fig. 3 for illustration. For a specified point y;, the

vector from point y; to the projection point nf Efn)ﬂ)(yl’) of

the NFL NL,,,, which passes through points y,, and y,
can be obtained as follows:

2
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Here, t,,,,=1-t,,,, and i # m # n. Two values in the ith
row in matrix M are set as M;,, =¢,,, and M;,, =¢,,,. The
other values in the ith row are set as M;;=0 if j = m = n.

S m/

y .\
/
/
// x]‘
ll.f N

(2) .,
m.n {-1 I)
f \
// N

Fig. 3 Projection of NFL
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In general, the mean square distance for all training points
to their NFLs is obtained as follows:

(Sl ) =3 le,y,)

- tr(YT(I M) (1-
=tr(YT(D-W) Y)
= tré TXLXTw)
(3)

in which ¥;M; ;=1 and L = D — W. From the conclusions
of [15], matrix W is defined as W;;= (M+MT—MTM)i,,»
when i # j and zero otherwise. The function in (3) can thus
be represented by a Laplacian matrix.

Moreover, when the K NFLs are chosen from C)™
possible combinations, the objective function in (1) is
also represented as a Laplacian matrix as stated in the
following theorem.

Theorem 2.1: The objective function in (1) can be rep-
resented as a Laplacian matrix that preserves the locality
among samples.

The objective function F in (1) is first decomposed into
K components. Each component denotes the mean square
distances for point y; to the kth NFL. The first component
matrix M;;(1) denotes the connectivity relationship matrix
between point x; and the NFL L,,, for i,m,n=1,...
N and iz m = n. Two non-zero terms, M;,(1) =t,,, and
M;,,(1) = t,,,, exist at each row of matrix M;;(1) and sat-
isty X;M;;(1) =1. According to Lemma 2.1, it is repre-
sented as a Laplacian matrix w’XL(1)X"w. In general,
M; (k) =t,,, and M;,,(k) =t,,, for izm=n if line L,,,, is
the kth NFL of point x; and zero otherwise. All compo-
nents are derived in a Laplacian matrix representation,
wIXL()X w, for k=1,2,...,K. Therefore, function F in
(1) becomes

el
=22

J’z_tn,mym_tmﬁyn)
i m=zn 9 9
= Z (yi—ZMi,/(l)y;) + Z ()’i—ZMi,i(Z)J’;>
i j L ]
2
ot (y,.—z Mi,,»(K)y/.)
i j

= tr(YT(I-M(1))" (I-M(1))Y)

+ YT (1-M(2))" (1-M(2))Y

+ o+ YT(I-M(K))" (I-M(K))Y)
=tr(YT(D-W(1))Y) + YI(D-W(2))Y

+ .. + YI(D-W(K))Y)
=tr(YT(L(1)Y + YT(L(2))Y +..YT(L(L))Y)
=tr(YTLY) = tr(w'XLX w)

2
) Wf'rzl,)n (yz)

E’Vl)}’l( l)

yi_f}('rzt}n(yi

(4)
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where W;(k) = (M(k) + M(k)" - M(k)"M(k));; and L(k) =
D(k) - W(k), for k=1,2,...,K, and L=L(1)+L(2) + ... +
L(K). Since the objective function in (4) can be repre-
sented as a Laplacian matrix, the locality of the samples
is also preserved in the low-dimensional space. More de-
tails are given in [13].

Consider the class labels in supervised classification,
the two parameters, K; and K, are manually determined
for the computation of the within-class scatter S,, and
the between-class scatter S, respectively

2

<xi—f @ (x,-)) (xi—f @ (’ﬁ')) '

(5)
Ne N, T
s=> (> X (wPw) (@) | (6)
r=1 | [=1 x€Cp

155
f(z)eF (%, C1)

in which F§<21) (x:,Cp) indicates the K; NFLs within the
same class C, of point x; and Fg (%1, Cy) is a set of the
K, NFLs belonging to the different classes of point x;.
The Fisher criterion tr(Sg/Sy) is then maximized to find
the projection matrix w which is composed of the eigen-
vectors with the corresponding largest eigenvalues. A
new sample in the low-dimensional space can be ob-
tained by the linear projection y=w’x. After that, the
NN (one-NN) matching rule is applied to classify the
samples. The training algorithm for the NFLE trans-
formation proposed in our previous work [13] is de-
scribed in Fig. 4.

Although the point-to-line strategy is successfully
adopted in the training phase instead of the classification
phase for the nearest feature line-based transformation,
some drawbacks still remained and limited its perform-
ance. The problems are as follows: (1) extrapolation/
interpolation inaccuracy: NFLE may not preserve the lo-
cality precisely when prototypes are far away from the
probes (the probes are the training samples that would
be projected on the NFL, and the prototypes are the
training samples that generate the NFL); (2) high com-
putation complexity: a large number of feature lines are
generated when there are too many training samples;
and (3) singular problem: the NFLE needs the inverse
procedure to find the final transformation matrix w,
which is troubled by the problem of singularity espe-
cially when the sample size is small. Motivated from the
three problems of NFLE, we propose a modified NFLE
algorithm to avoid the above three problems. Meanwhile,
the algorithm is optimized for detecting fall incidents. The
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Training algorithm for the NFLE transformation

Input:

Step 1.

Step 2.

Step 3.

Output:

dxN
A training set X = [Xl »X> ,...,.X__,\,]E R and two

parameters K | and K,.
The projection transformation W .

o ; ’ " 4
PCA projection: Sample data are transformed from space R’
. . . n
into a low-dimensional subspace R". Let Wy denote the
transformation matrix of PCA.
Computation of the within-class scatter: The possible feature
lines are first generated from the samples within the same class of
a specified point X . Find the projection points and calculate the
corresponding distances. Select Kl vectors with the smallest

distances and compute the within-class scatter S“_ by Equation

(5).

Computation of the between-class scatter: Generate the possible
feature lines from the samples that belong to the different class of
point X . Find the projection points and calculate the
corresponding distances. Select K, discriminant vectors with

the smallest distances from point X to the feature lines. The

Step 5.

between-class scatter Sh is obtained from Equation ( 6 ).
Step 4. Fisher  criterion  maximization: The Fisher criterion
*
w =argmax Sb /S ,» 1s maximized to obtain the best
&
transformation matrix, which is composed of ¥ eigenvectors
with the largest eigenvalues.

Output the final transformation matrix: W = Wy W

*

Fig. 4 Training algorithm for the NFLE transformation

reason why we apply the modified NFLE is stated as fol-
lows: NFLE generates virtual training samples by linearly
interpolating or extrapolating each pair of feature points.
By doing so, the generalization and data diversity are in-
creased. However, three drawbacks are shown as well. For
the completeness and no repetition, the details of the
three problems of NFLE and the proposed modified NFLE
(NNFLE) algorithm are elaborated in Section 3.4.

3 The proposed fall detection mechanism

The proposed fall detection mechanism consists of
two modules including human body extraction and
fall detection. In human body extraction module,
temperature frames obtained from the thermal
imager are processed with image processing tech-
niques to obtain intact human body contours and
silhouettes. In fall detection module, a coarse-to-fine
strategy is devised to verify fall incidents. In the
coarse stage, the downward optical flow features are
extracted from the temperature images to identify

possible fall down actions. Then, the 50-dimensional
temporal-based motion history image (MHI) feature
vectors are projected into the nearest neighbor fea-
ture line space to verify the fall down incident in the
fine stage. Figure 5 depicts the proposed system flow
diagram. The details associated with each step in-
cluding the human body extraction, the analysis of
optical flows in the coarse stage, the extraction of
MHIs in the fine stage, and the nearest neighbor
feature line embedding for fall verification are de-
scribed in the following contexts.

3.1 Human body extraction

To improve fall detection accuracy, complete silhou-
ettes of human body must be extracted to obtain ac-
curate bounding box of human body. To this end,
the temperature images captured from a thermal
imager are binarized by Otsu’s method firstly. Then,
the morphological closing operation is employed to obtain
a complete human silhouette. Finally, a labeling process is
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Fig. 5 Flow diagram in training and testing the fall detector

Classification
—

performed to locate each human body in the image
and filter out background noises. The process of hu-
man body extraction is depicted in Fig. 6. Figure 6a
shows the temperature images captured from the
thermal imager, Fig. 6b shows the Otsu’s binarization
results, and Fig. 6¢c shows the results of morpho-
logical closing operation. The bounding box of the
human silhouette can be successfully generated after
the morphological closing operations.

3.2 Optical flow in the coarse stage

After the bounding box of human body has been deter-
mined, a coarse-to-fine strategy is utilized to verify fall
incidents. The purpose of the coarse stage is to identify

possible fall actions. Wu [16] had shown that a fall could
be described by the increase in horizontal and vertical
velocities. Moreover, this work observes that the histo-
gram of vertical optical flows has also demonstrated the
significant difference between walking and falling (see
Fig. 7). In our work, a multi-frame optical flow method
proposed by Wang [17] is adopted to extract the down-
ward optical flow features inside the extracted bounding
box (see Fig. 8) in this stage. A possible fall action can
be identified by two heuristic rules:

(1) Rule 1: Given 20 consecutive frames, the average
vertical optical flows exhibit downward more than
75 % of frames.
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(a) (b)

Fig. 6 Human body extraction. a Temperature gray level images. b Binarization results. ¢ Morphological closing operation results

(¢)

(2) Rule 2: The sum of the average vertical optical flows
in 20 consecutive frames is larger than a threshold,
say 10 in this study.

As shown in Fig. 8a, a fall incident may not be identi-
fied if the subject is overlapped by the other. To solve
this problem, the bounding box is divided into two equal
boxes if overlapping occurs. The width of the silhouette
is used to identify whether the overlapping occurs or
not. The optical flow features are then extracted in each
divided box. The one which has larger average down-
ward optical flow is used to identify possible fall action.
As a result, the fall incidents can be extracted correctly
as shown in Fig. 8b, and Fig. 8a demonstrates the result
without using the bounding box division strategy.

3.3 Motion history image in the fine stage

In the coarse stage, most non-fall actions can be filtered
out via the downward optical flow features. However, some
fall-like actions are identified as fall incidents due to the
swing of arms. To solve this problem, we devise a feature
vectors which are formed by projecting the MHI horizon-
tally to verify fall incidents in the fine stage. MHI proposed
by Bobick [18] is a template which condenses a deter-
mined number of silhouette sequences into a gray scale
image (as shown in Fig. 9a) which is capable of preserving
dominant motion information. Since the main difference
between fall and other actions is the vertical component

changes, our work projects the MHI horizontally to obtain
a 50-dimensional feature vectors using equation (7):

Q(i) :uing_% X iJ,j), i=1,2,..,50 (7)
woi=1

where U, U,, and g(i,j) are the height, the width, and
the pixel value of the motion energy in row i and col-
umn j, respectively. Q(i) is the obtained 50-dimensional
feature vectors. Figure 9c, f illustrates the comparison
between the feature vectors of walk and fall in this study.
The distributions of the walk action and the fall action
are significantly different. As can be seen, the vertical
motion information of the fall action is encoded directly
with the horizontal projections, which can be viewed as
extracting from MHI but not the silhouette. Therefore,
the MHI features of fall-like actions will be fed into the
constructed NNFLE verifier to identify fall incidents
after the coarse stage.

3.4 Nearest neighbor feature line embedding (NNFLE)

Because the projection of MHI is a high-dimensional
feature vector, a dimensional reduction scheme is
employed to extract more salient features for fall detec-
tion. In our previous work [13], NFLE has demonstrated
its effectiveness in pattern recognition. However, three
problems of the NFLE have also been indicated in Sec-
tion 2. To mitigate the three problems of NFLE, a
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Fig. 7 The histogram of vertical optical flow of (a) walking and (b) falling down

150 200 250

modified NFLE termed Nearest Neighbor Feature Line
Embedding (NNFLE) is proposed as a fall verifier in the
fine stage. Here, given a feature vector «x; which is
extracted from MHI, the proposed NNFLE method is
formulated as the following optimization problem:

N
max J(w) = Z ||W xi-wTx ?Etween||2_z ”wal__wa;,vithinHz
i=1
(8)
where x““th‘“ indicates the projected point of x; on the

nearest neighbor feature lines (NNFLs) formed by the
samples with the same labels, and ™" indicates the
projected point of x; on NNFLs formed by the samples
with different labels from x; Here, it has to be men-
tioned that in the NFLE, each NFL is formed by the
samples with the same class. However, in the proposed
NNFLE, the NNFLs on which the projected point

xllpetween

of the x; could be formed by the samples with

different labels from each other. In other words, all the
other classes are treated as one class while calculating
the projected point xPetveen,

With some algebraic operation, the J(w) can be simpli-
fied to the following form:

ZHW X WT between ZHW x; WT wlthm”
i=1

— Ztr |:WT (x‘_ between) (xi_x?etween) T:|

—Ztr{

tr[ T(SB—SW) w]

z

J(w)

z

wlthm) ( X x;vithin) T]

©)

Then, we impose a constraint w'w=1 on the pro-
posed NNFLE. The transformation matrix w can thereby
be obtained by solving the eigenvalue problem:
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Fig. 8 Fall incident in overlapping situation. The first row is the silhouettes, the second row is the corresponding optical flow results, and the third
row is the histograms of vertical optical flows. a The results generated by original method. b The results generated by using dividing method

(SB—S\V)W =Aw (10)

Since the proposed NNFLE method does not need the
inverse of any matrix, it can solve the singular problem of
NFLE. However, the extrapolation and interpolation errors
existing in NFLE may decrease the performance of locality
preserving as shown in Fig. 10. Let us consider two feature
line points L, 3 and Ly 5 generated from two prototype pairs
(%9, x3) and (x4, x5), respectively. Points f5 3(x;) and f3 5(x1)
are two projection points L, 3 of lines L,z and Lys for a
query point x;. From Fig. 11, it is clear that point x; is close

to points x, and x3 but far away from points x, and xs.
However, the distance [lx; — f3, 5(x1)ll for line Ly 5 is smaller
than that for line L, 3, i.e, llx; - f5, 3(x1)ll. The discriminant
vector for line L5 to point x; is hence selected instead of
the other one. In addition, a great deal of computational
time is needed due to the vast number of feature lines in
the classification phase, e.g., Cé\[ -1 possible lines.

To overcome the inaccuracy problem resulted from
extrapolation and interpolation, feature lines for a query
point are generated from the k nearest neighborhood
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Fig. 9 Fine stage feature vector extraction. a MHI of walk. b Horizontal projection of walk MHI. ¢ The obtained fine stage feature vector from walk
MHI. d MHI of fall. e Horizontal projection of fall MHI. f The obtained fine stage feature vector from fall MHI
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Fig. 10 a An extrapolation error. b An interpolation error
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Training algorithm for the NNFLE transformation+

Input:

Output:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

dxN
A training st X = [II,I?',.-.X__V] €ER and four parameters

kl= k2= K];and K2 o

The projection transformation W

d
PCA projection: Sample data are transformed from space R" intoa

. . Rn W
low-dimensional subspace . Let PC4 denote the

transformation matrix of PCA .«
Computation of the within-class scatter: The possible NNFLs are

generated from the k1 nearest neighbor samples within the same class
of a specified point X . Find the projection points and calculate the

corresponding distances. Select Kl vectors with the smallest distances

and compute the within-class scatter Srr by Equation (11).¢

Computation of the between-class scatter: Select k 2 nearest neighbor

samples in different classes from a specified point X . Generate the
possible NNFLs, find the projection points and calculate the

corresponding distances. Select Kz discriminant vectors with the
smallest distances from point X to the feature lines. The

between-class scatter S p is obtained from Equation (12).¢
Objective function maximization: w =ar 2 max (Ss—Sw) is
W

maximized to obtain the best transformation matrix, which is composed

of 7" eigenvectors with the largest eigenvalues.~

*

Output the final transformation matrix: W= Wp- W o

Fig. 11 Training algorithm for the NNFLE transformation

prototypes. More specifically, when two points x,, and
%, belong to the nearest neighbors of a query point x;, a
straight line passing through points x,, and x,, is NNFL.
The discriminant vector x;—f,,,(x;) is chosen for the

scatter computation. The selection strategy for discrim-
inant vectors in NNFLE is designed as follows:

(2) The between-class scatter Sg: Select k, nearest
neighbor samples in different classes from a specified
point x; ie., a set Fy (%), to generate the NNFLs
and calculate the between-class scatter matrix.

s N
(1) The within-class scatter Sy The‘NNFLs are Sy = Z Z (xi_f(xi))(xi—f(xi))T (11)
generated from the k; nearest neighbor samples =i xeC
i€bp

within the same class for the computation of the
within-class scatter matrix, i.e., a set F}{ (x;).

S (2)€FZ (x:)
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Np
=) Z Z (i () (=S (%))
r I=1 x,»eCp
lzp feFy, (x;)
(12)

The training algorithm for the NNFLE transformation
proposed in this study is described in Fig. 11.

The proposed NNFLE method is a simple and effective
method to alleviate the extrapolation and interpolation
errors. In addition, the scatter matrices are also gener-
ated based on the Fisher’s criterion and represented as a
Laplacian matrix. Moreover, the complexity of NNFLE is
more efficient than that of NFLE. Consider N training
samples, CY~! possible feature lines will be generated
and C)' distances have to be calculated for a specified
point. The Kj nearest feature lines are chosen from all
possible lines to calculate the class scatter. The time
complexity is O(N?) for line generation and O(2N? log N)
for distance sorting. At the same time, the time com-
plexity for selecting the K; nearest feature lines is O(K?)
+ O(2/* log k) when nearest prototypes are chosen for
line generation. Extra overhead O(Nlog N) is needed for
finding the k nearest prototypes. When N is large, trad-
itional method needs longer time to calculate the class
scatter.

4 Experimental results

In this section, experimental results conducted on fall
incident detection are illustrated to demonstrate the ef-
fectiveness of the proposed method. This work compares
the proposed method with two state-of-the-art methods.
Results are evaluated by using the simulated video data
set captured from outdoor scenes. The data set is
formed by 320 videos. In each video, the environment is
in the dusky environments as shown in Fig. 2. Only the
thermal imager can effectively capture the human sil-
houette under the environments. Table 1 tabulates the
data sets used in the experiments. In this study, videos
used for training are different from that used for testing.
More specifically, training videos and testing videos were
captured under different conditions (different places at
different time). Among these data sets, video sequences
which contain only one subject are utilized to compare

Table 1 The data sets used in the experiments

Number of
testing videos

50 (17,125 frames)

Number of
training videos

30 (5135 frames)

Actions

Walk (one person)

Fall (one person) 30 (545 frames) 50 (1822 frames)
Walk (multiple persons) 30 (5069 frames) 50 (16,130 frames)
Fall (multiple persons) 30 (460 frames) 50 (1810 frames)
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the performance of the proposed method with other
state-of-art fall detection methods and the results will be
illustrated in Section 4.1. The identification capability of
coarse-to-fine verifier is evaluated and illustrated in Sec-
tion 4.2. In Section 4.3, the performance of the proposed
method is evaluated by using video sequences which
contain multiple subjects. Different from the other re-
searches, the experimental results in Section 4.3 demon-
strate that the proposed method can effectively detect
fall incidents even when multiple persons overlap.

4.1 Performance comparisons of various fall detection
algorithms

The data sets used in this subsection contain only one
subject in each video sequence. Two state-of-the-art
methods, BBN [11] and CPL [12], are implemented for
comparison. The CPL takes a sequence as a sample,
whereas the BBN and our proposed method take a frame
as a sample. Therefore, the performance comparison of
these three methods is based on each video sequence. In
the experiments, 60 video sequences of one person are
used as training sets and 100 video sequences of one
person are used for testing. In addition, the projection
matrix w of the proposed NNFLE is constructed from
the eigenvectors of S, - S,, with the largest correspond-
ing eigenvalues when the objective function J is maxi-
mized. In our work, the dimensionality of feature
vectors is reduced by the PCA transformation to remove
noises. More than 99 % of the feature information is
kept in the PCA process. After the PCA transformation,
the optimal projection transformations are obtained for
the proposed NNFLE method. All of the testing frames
are matched with the trained prototypes using the NN
matching rule. The performance comparisons of these
three methods are tabulated in Table 2. From Table 2,
we can notice that the proposed coarse-to-fine strategy
of fall detection outperforms the other two methods. It
implies that the proposed method is much more effect-
ive than the other two methods.

Table 2 The fall detection performance on the data set (%)

Method Classification Reference action (videos)
fjgggs) Fal Walk
CPL Fall 92.00 (46/50) 8.00 (4/50)
Walk 10.00 (5/50) 90.00 (45/50)
BBN Fall 80.00 (40/50) 20.00 (10/50)
Walk 12.00 (6/50) 88.00 (44/50)
NFLE Fall 94.00 (47/50) 6.00 (3/50)
Walk 6.00 (3/50) 94.00 (47/50)
Ours Fall 98.00 (49/50) 2.00 (1/50)
Walk 0.00 (0/50) 100.00 (50/50)
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Table 3 The identification capability of coarse stage and fine
stage of the proposed method

Classification ~ Reference actions in coarse Reference actions in fine

actions stage (frames) stage (frames)
Walk Fall Walk Fall
Walk 17,079/17125  46/17,125 46/46 0/46
Fall 68/1822 1754/1822 153/1754 1601/1754

4.2 The identification capability of coarse-to-fine verifier
In this subsection, the discriminability of the proposed
coarse-to-fine strategy is analyzed as tabulated in Table 3.
The identification capability is evaluated by the total num-
ber of frames of those video sequences which contains only
one person. Among these 18,947 frames, there are 1822
and 17,125 frames of “fall” and “walk” actions predefined,
respectively. As depicted in Table 3, the proposed method
can identify most of the walk actions in the coarse stage.
Only a small amount of fall-like actions are needed to be
verified in the fine stage. In other words, almost all of the
fall actions can pass through the coarse stage filter. Hence,
the proposed coarse stage is very useful for pre-filtering
non-fall actions so that the performance of the NNFLE
classifier in the fine stage is less affected by the noisy data
in both training and testing phases.

4.3 Performance evaluation of fall detection under
overlapping situations

In this subsection, the performance evaluation of fall de-
tection in overlapping situations is illustrated. Video se-
quences which contain multiple persons are used for
evaluation. Similar to the comparison described in Sec-
tion 4.1, the NN matching rule is adopted to identify each
testing frames in the fine stage. In the experiments, the
performance evaluation of fall detection under overlap-
ping situations is conducted based on each video se-
quence. Here, 30 video sequences are used for training
and 100 video sequences are used for testing. The detec-
tion results are tabulated in Table 4. The proposed
method utilizing coarse-to-fine strategy can effectively de-
tect fall incidents while two persons are overlapping each
other, and the performance is almost the same as that of
the “one person fall” data sets described in Section 4.1.

Table 4 The performance evaluation of fall detection under
overlapping situations (%)

Method Classification Reference action (videos)
(avﬁgzgs) Fall Walk

NFLE Fall 92.00 (46/50) 10.00 (5/50)
Walk 6.00 (3/50) 90.00 (45/50)

Ours Fall 96.00 (48/50) 4.00 (2/50)
Walk 0.00 (0/50) 100.00 (50/50)
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5 Conclusions

In this paper, a novel fall detection mechanism based on
a coarse-to-fine strategy in dusky environment is pro-
posed. The human body in dusky environment can be
successfully extracted using the thermal imager, and
fragments inside the human body silhouette can also be
significantly reduced as well. In the coarse stage, the op-
tical flow algorithm is applied on thermal images. Most
of walk actions are filtered out by analyzing the down-
ward flow features. In the fine stage, the projected MHI
is used as the features followed by the NNFLE method
to verify fall incidents. The proposed NNFLE method,
which adopts a nearest neighbor selection strategy, is
capable of alleviating extrapolation/interpolation inac-
curacies, singular problem, and high computation com-
plexity. Experimental results demonstrate that the
proposed method outperforms the other state-of-the-art
methods and can effectively detect fall incidents even
when multiple subjects are moving together.
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