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Abstract

We consider the task of image decomposition, and we introduce a new model coined directional global three-part
decomposition (DG3PD) for solving it. As key ingredients of the DG3PD model, we introduce a discrete
multi-directional total variation norm and a discrete multi-directional G-norm. Using these novel norms, the proposed
discrete DG3PD model can decompose an image into two or three parts. Existing models for image decomposition
by Vese and Osher (J. Sci. Comput. 19(1–3):553–572, 2003), by Aujol and Chambolle (Int. J. Comput. Vis. 63(1):85–104,
2005), by Starck et al. (IEEE Trans. Image Process. 14(10):1570–1582, 2005), and by Thai and Gottschlich are included as
special cases in the new model. Decomposition of an image by DG3PD results in a cartoon image, a texture image,
and a residual image. Advantages of the DG3PD model over existing ones lie in the properties enforced on the
cartoon and texture images. The geometric objects in the cartoon image have a very smooth surface and sharp
edges. The texture image yields oscillating patterns on a defined scale which are both smooth and sparse. Moreover,
the DG3PD method achieves the goal of perfect reconstruction by summation of all components better than the
other considered methods. Relevant applications of DG3PD are a novel way of image compression as well as feature
extraction for applications such as latent fingerprint processing and optical character recognition.

Keywords: Image decomposition, Variational calculus, Cartoon image, Texture image, Image compression, Feature
extraction, Latent fingerprint image processing, Optical character recognition, Fingerprint recognition

1 Introduction
Feature extraction, denoising, and image compression are
key issues in computer vision and image processing. We
address these main tasks based on the paradigm that
an image can be regarded as the addition or montage
of several meaningful components. Image decomposi-
tion methods attempt to model these components by
their properties and to recover the individual components
using an algorithm. Relevant component images include
geometrical objects which have piece-wise constant val-
ues or a smooth surface like the characters in Fig. 1b or
components which are filled with an oscillating pattern
like the fingerprint in Fig. 1c.
Based on these observations, we define the following

goals:
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Goal 1: the cartoon component u contains only geometri-
cal objects with a very smooth surface, sharp boundaries,
and no texture.
Goal 2: the texture component v contains only geomet-
rical objects with oscillating patterns and v shall be both
smooth and sparse.
Goal 2: three-part decomposition and reconstruction f =
u + v + ε.

How does achieving these goals serve the tasks of fea-
ture extraction, denoising, and compression?
Extremely efficient representations of the cartoon image

u and texture image v exist. These two component images
are highly compressible as discussed with full details in
Section 7.3. Depending on the application, u or v or
both can be considered as feature images. For the appli-
cation to latent fingerprints, we are especially interested
in the texture image v as a feature for fingerprint seg-
mentation and all subsequent processing steps. Example
results for the very challenging task of latent finger-
print segmentation are given in Section 7.1. In optical
character recognition (OCR), pre-processing includes the
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Fig. 1 The simulated latent fingerprint (a) is composed by adding the fingerprint (c) to image (b) which is a detail from a photo of a printed
document. DG3PD decomposition of a obtains a smooth cartoon image u (d) and a smooth and sparse texture image v (e). All positive coefficients
of v are visualized as white pixels in f. The region of interest shown in g is estimated from vbin using morphological operations [57]. Image i is
composed from b and h and decomposed by DG3PD into cartoon (j), texture (k), and residual (l)

removal of complex background and the isolation of char-
acters. After three-part decomposition and depending on
the scale of the characters, the cartoon image u con-
tains the information of interest for OCR (see Fig. 1j),
and the background is separated into v and ε simultane-
ously in the minimization procedure. As a consequence
of the requirements imposed on u and v, noise and
small scale objects are driven into the residual image
ε during the decomposition of f. Therefore, the image
u + v can be regarded as a denoised version of f and
the degree of denoising can be steered by the choice of
parameters.
The paper is organized as follows. In Section 2, we

begin by describing notation and preliminaries. After hav-
ing established these prerequisites, we define the DG3PD
model in Section 3 and in Section 4; we explain its
relation to existing models in the literature for two-
part and three-part decomposition. In Section 5, we
describe an iterative, numerical algorithm which solves
the DG3PD model for practical applications to dis-
crete, two-dimensional images. In Section 6, we per-
form a detailed comparison of the DG3PD method to
state-of-the-art decomposition approaches. Applications
of DG3PD, especially feature extraction and image com-
pression, are the topics in Section 7. Discussion and
conclusions are given in Section 8. An overview of the
algorithm and an additional comparison is given in the
Appendix.

2 Notation and preliminaries
For simplification, we use a bold symbol to denote
the coordinates of a two-dimensional signal, e.g., x =
(x1 , x2) , k =[ k1 , k2] ,ω = (ω1 ,ω2), and ejω =[
ejω1 , ejω2

]
. A two-dimensional image f [k] : � → R+, the

discretization of the continuous version f (x) (i.e. f [k]=
f (x) |x=k∈�), is specified on the lattice:

� = {(k1 , k2) ∈[ 0 ,m − 1]×[ 0 , n − 1]⊂ N
2
0
}
.

Let X be the Euclidean space whose dimension is given
by the size of the lattice �, i.e., X = R

|�|. The 2D discrete
Fourier transform F acting on f [k] is

f [k] F←→ F(ejω) =
∑
k∈�

f [k] ·e−j〈k ,ω〉�2 ,

where ω is defined on the lattice:

I =
{
(ω1 ,ω2) =

(
2πn′

n
,
2πm′

m

)
| (n′ ,m′) ∈

[
−n
2
,
n
2

)
×
[
−m

2
,
m
2

)
⊂ Z

2
}
,

i.e., ω ∈[−π ,π ]2 .
Forward and backward difference operators: Given the

matrix

Dm =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1
1 0 0 . . . −1

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

m×m,

the forward and backward difference operators with peri-
odic boundary condition in convolution and matrix forms
and their Fourier transform are explained in Table 1.
Discrete directional derivative: Let ∇+ =

[
∂+
x , ∂+

y

]
be the discrete forward gradient operator with ∂+

x and
∂+
y defined in Table 1. The discrete derivative operator
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Table 1 Forward/backward difference with periodic boundary condition in convolution/matrix form and their Fourier transform

Forward difference Backward difference

Convolution ∂+
x f [k]= f [k1, k2 + 1]−f [k1, k2] ∂−

x f [k]= f [k1, k2]−f [k1, k2 − 1]

form ∂+
y f [k]= f [k1 + 1, k2]−f [k1, k2] ∂−

y f [k]= f [k1, k2]−f [k1 − 1, k2]

Matrix
[
∂+
x f [k]

]
k∈�

= f DT
n

[
∂−
x f [k]

]
k∈�

= −f Dn

form
[
∂+
y f [k]

]
k∈�

= Dmf
[
∂−
y f [k]

]
k∈�

= −DT
mf

Fourier
(
ejω2 − 1

)
F
(
ejω
) − (e−jω2 − 1

)
F
(
ejω
)

transform
(
ejω1 − 1

)
F
(
ejω
) − (e−jω1 − 1

)
F
(
ejω
)

DT
n and DT

m are the transposed matrices of Dn and Dm , respectively

following the direction
−→
d =

[
cos π l

L , sin π l
L

]T
with l =

0 , . . . , L − 1 is defined as

∂+
l =

〈−→
d ,∇+〉 = cos

(
π l
L

)
∂+
x + sin

(
π l
L

)
∂+
y .

Thus, the discrete directional gradient operator is

∇+
L = [∂+

l
]
l∈[0,L−1] . (1)

2.1 Discrete directional TV norm
The continuous total variation norm has been defined in
[1]. Due to the discrete nature of images, we define its
discrete version with forward difference operators as∥∥∇+u

∥∥
�1

=
∑
k∈�

√(
∂+
x u[k]

)2 + (∂+
y u[k]

)2.
We extend it into multi-direction L with the discrete

directional gradient operator (1):

∥∥∇+
L u
∥∥

�1
=
∑
k∈�

√√√√L−1∑
l=0

(
∂+
l u[k]

)2

=
∥∥∥∥∥∥
√√√√L−1∑

l=0

(
cos

π l
L
uDT

n + sin
π l
L
Dmu

)2
∥∥∥∥∥∥

�1

.

The discrete anisotropic total variation norm in amatrix
form is
∥∥∇+

L u
∥∥

�1
=

L−1∑
l=0

∥∥∥∥cos π l
L
uDT

n + sin
π l
L
Dmu

∥∥∥∥
�1

. (2)

2.2 Discrete directional G-norm
Discrete G-norm: Meyer [2] has proposed a space G
of continuous functions to measure oscillating functions
(texture and noise). The discrete version of the G-norm
has been introduced by Aujol and Chambolle in [3]. We
rewrite it with the matrix form of the forward difference
operators as

‖v‖G = inf
{∥∥∥∥√g21 + g22

∥∥∥∥
�∞

, v = g1DT
n + Dmg2,

[
gl
]
l∈[1,2] ∈ X2

}
.

(3)

Discrete directional G-norm: We extend (3) into multi-
directions S ∈ N+ with the directional difference operator
to obtain the discrete directional G-norm as

‖v‖GS = inf

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥∥
√√√√S−1∑

s=0
g2s

∥∥∥∥∥∥
�∞

, v =
S−1∑
s=0

[
cos

πs
S
gsDT

n + sin
πs
S
Dmgs

]
︸ ︷︷ ︸

⇔ v[k]=
S−1∑
s=0

∂+
s gs[k] ,∀k∈�

,

[
gs
]S−1
s=0 ∈ XS

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(4)
3 DG3PD
We define the DG3PD model for discrete directional
three-part decomposition of an image into cartoon, tex-
ture, and residual parts as

min
(u ,v ,ε)∈X3

{∥∥∇+
L u
∥∥

�1
+ μ1‖v‖GS + μ2‖v‖�1

s.t. sup
(i,l,k)∈K

∣∣Ci,l {ε} [k] ∣∣ ≤ δ , f = u + v + ε

}
,

(5)

where C is the curvelet transform [4, 5] with the index
set K. Please note that by setting the parameter δ = 0
in (5), we obtain a two-part decomposition which can
be considered as a special case of the DG3PD model.
Next, we discuss how the DG3PDmodel relates to existing
decomposition models.

4 Related work
In this section, we give an overview of prior work in two-
part and three-part image decomposition in chronological
order and we explain how it relates to the proposed
DG3PD model.
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Mumford and Shah: In 1989, Mumford and Shah [6]
have proposed piecewise smooth (for image restoration)
and piecewise constant (for image segmentation) models
by minimizing the energy functional. This approach
can be considered as a precursor for subsequent image
decomposition models with texture components. How-
ever, due to the Hausdorff one-dimensional measure H1

in R
2, it poses a challenging or even NP-hard problem in

optimization to minimize the Mumford and Shah func-
tional. Later, based on the Mumford and Shah model,
Chan and Vese [7] have proposed an active contour for
image segmentation which they solved by a level set
method [8].
Rudin, Osher, and Fatemi: In 1992, Rudin et al. [1] pio-

neered image decomposition with a two-part model for
denoising.
Meyer: The model defined by Meyer in 2001 [2] for a

two-part decomposition in the continuous setting is com-
prised in the DG3PD model for the special case of L =
S = 2 and μ2 = δ = 0 in the discrete domain.
Vese and Osher: In 2003, Vese and Osher [9] solved

Meyer’s model for two-part decomposition in the con-
tinuous setting and they proposed to approximate the
L∞-norm in the G-norm by the L1-norm and to apply the
penaltymethod for reformulating the constraint. For prac-
tical application to images, they discretized their solution.
This approach is extended in [10].
Aujol and Chambolle: Aujol and Chambolle in 2005 [3]

adapted the work by Meyer for discrete two-part decom-
position (see (5.49) in [3]), and they used the penalty
method for the constraint. Their model is included in the
DG3PD model with parameters L = S = 2, μ1 = μ2 = 0
and applying the supremum norm to the wavelet coeffi-
cients of the oscillating pattern, i.e., ‖W{·}‖�∞ , instead of
the curvelet coefficients ‖C{·}‖�∞ as in the DG3PDmodel.
Moreover, Aujol and Chambolle proposed amodel for dis-
crete three-part decomposition (see (6.59) in [3]) which
measures texture by the G-norm and noise by the supre-
mumnorm of wavelet coefficients and the penaltymethod
for the constraint. Different from Vese and Osher as well
as our approach explained later, they describe the G-norm
for capturing texture using the indicator function defined
on a convex set and they obtain the solution by Cham-
bolle’s projection onto this convex set. Their model is
included in the DG3PD model for parameters L = S = 2,
μ2 = 0 and using wavelets instead of curvelets for the
residual as before.
Starck et al.: Starck et al. [11] introduced a model for

two-part decomposition based on a dictionary approach.
Their basic idea is to choose one appropriate dictio-
nary for piecewise smooth objects (cartoon) and another
suitable dictionary for capturing texture parts.
Aujol et al.: In 2006, Aujol et al. [12] proposed a two-part

decomposition of an image into a structure component

and a texture component using Gabor functions for the
texture part.
Gilles: Gilles [13] proposed a three-part image decom-

position method in 2007 which is similar to the Aujol-
Chambolle model [3], but G-norm is used as a measure-
ment of the residual (or noise) instead of Besov space
Ḃ∞−1,∞ with a local adaptability property. Their argument
is that the more a function is oscillatory, the smaller is the
G norm. Then, they propose a new “merged-algorithm”
with a combination of a local adaptivity behavior and
Besov space.
Maragos and Evangelopoulos: In 2007, Maragos and

Evangelopoulos [14] have proposed a two-part decompo-
sition model which relies on energy responses of a bank
of 2D Gabor filters for measuring the texture component.
They discuss the connection between Meyer’s oscillat-
ing functions [2], Gabor filters [15], and AM-FM image
modeling [16, 17].
Buades et al.: In 2010, Buades et al. [18] derived a non-

linear filter pair for two-part decomposition into cartoon
and texture parts. Further models for two-part decompo-
sition are listed in Table 1 of [18].
Maurel et al. and Chikkerur et al.: In 2011, Maurel et al.

[19] proposed a decomposition approach which models
the texture component by local Fourier atoms. For finger-
print textures, Chikkerur et al. [20] proposed in 2007 the
application of local Fourier analysis (or short-time Fourier
transform, STFT) for image enhancement. However, the
usefulness of local Fourier analysis for capturing texture
information depends on and is limited by the level of noise
in the corresponding local window, see Figure 2c in [21]
for an example in which STFT enhances some regions
successfully and fails in other regions.
Ono et al.: In 2014, Ono et al. [22] proposed a cartoon-

texture decomposition using the block nuclear norm (an
generalized version of [23]) which interprets the texture
component as the combination of overlapped and sheared
blockwise low-rank matrices in different directions. The
underlying assumption is that “texture, in general, is glob-
ally dissimilar but locally well patterned.” Similar to our
directional G-norm, the shear helps to handle patterns in
non-horizontal or vertical. However, their cartoon com-
ponent still contains some texture and their texture is not
highly sparse, i.e., the non-zero coefficients are only due to
texture component, see Fig. 4a and d, respectively. More-
over, they use �1 or �2 norm for the data-fidelity term.
However, according to [2, 24], “oscillatory components do
not have small norms in L2(�) or L1(�).” In our case,
we use the Banach ‖C{·}‖ which is more suitable than
the Banach space E = B−1∞,∞ in equation (1.3) [3] for
measuring small-scale objects, e.g., noise.
G3PD: A model for discrete three-part decomposition

of fingerprint images has recently been proposed by Thai
and Gottschlich in 2015 [25] with the aim of obtaining a
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texture image v which serves as a useful feature for esti-
mating the region of interest (ROI). The G3PD model
is included in the DG3PD model by choosing L = 2
and replacing the directional G-norm in the DG3PD
model by the �1-norm of curvelet coefficients (multi-scale
and multi-orientation decomposition) to capture texture.
However, a disadvantage of the �1-norm of curvelet coef-
ficients is a tendency to generate the halo effect on the
boundary of the texture region due to the scaling factor
in curvelet decomposition (see Figure 3d in [25]), whereas
the directional G-norm in the DG3PD model is capable
to capture oscillating patterns (see [2]) without the halo
effect.
Directional total variation and G-norm: In Section 2.1,

we introduced the discrete directional total variation
norm, and in Section 2.2, we introduced the discrete direc-
tional G-norm. Please note the aspect of summation over
multiple directions in Eqs. (2) and (4).
The term “directional total variation” has previously

been used by Bayram and Kamasak [26, 27] for defining
and computing the TV norm in only one specific direc-
tion. They have treated the special case of images with
one globally dominant direction and addressed those by
two-part decomposition and for the purpose denoising.
Zhang and Wang [28] proposed an extension of the work
by Bayram and Kamasak for denoising images with more
than one dominant direction.

5 Solution of the DG3PDmodel
Now, we present a numerical algorithm for obtaining the
solution of the DG3PD model stated in (5). Given δ > 0,
denote G∗ ( ε

δ

)
as the indicator function on the feasible

convex set A(δ) of (5), i.e.,

A(δ) = {ε ∈ X : ‖C {ε}‖�∞ ≤ δ
}
and G∗ (ε

δ

)
=
{
0 , ε ∈ A(δ)

+∞ , ε /∈ A(δ)
.

By analogy with the work of Vese and Osher, we con-
sider the approximation of G-norm with �1 norm and
the anisotropic version of directional total variation norm.
The minimization problem in (5) is rewritten as

To simplify the calculation, we introduce two new
variables:{
rb = cos

(
πb
L

)
uDT

n + sin
(

πb
L

)
Dmu , b = 0 , . . . , L − 1,

wa = ga , a = 0 , . . . , S − 1 .

Equation (6) is a constrained minimization problem.
The augmented Lagrangian method (ALM) is applied to
turn (6) into an unconstrained one as

min(
u ,v ,ε ,[rl]L−1

l=0 ,[ws]S−1
s=0 ,[gs]S−1

s=0

)
∈XL+2S+3

L
(
u , v , ε , [rl]L−1

l=0 ,

[ws]S−1
s=0 ,

[
gs
]S−1
s=0 ; [λ1l]L−1

l=0 , [λ2s]S−1
s=0 ,λ3 ,λ4

)
,

(7)

where the Lagrange function is

L(· ; ·) =
L−1∑
l=0

‖rl‖�1 + μ1

S−1∑
s=0

‖ws‖�1 + μ2‖v‖�1 + G∗ ( ε

δ

)

+ β1
2

L−1∑
l=0

∥∥∥∥rl − cos
(

π l
L

)
uDT

n − sin
(

π l
L

)
Dmu

λ1l
β1

∥∥∥∥2
�2

+ β2
2

S−1∑
s=0

∥∥∥∥ws − gs + λ2s
β2

∥∥∥∥2
�2

+ β3
2

∥∥∥∥∥v −
S−1∑
s=0

[
cos
(πs
S

)
gsDT

n + sin
(πs
S

)
Dmgs

]
+ λ3

β3

∥∥∥∥∥
2

�2

+ β4
2

∥∥∥∥f − u − v − ε + λ4
β4

∥∥∥∥2
�2

.

Due to the minimization problem with multi-variables,
we apply the alternating directional method of multipli-
ers to solve (7). Its minimizer is numerically computed
through iterations t = 1 , 2 , . . .(

u(t) , v(t) , ε(t) ,
[
r(t)l

]L−1

l=0
,
[
w(t)
s

]S−1

s=0
,
[
g(t)
s

]S−1

s=0

)
=

argmin L
(
u , v , ε , [rl]L−1

l=0 , [ws]S−1
s=0 ,

[
gs
]S−1
s=0 ;[

λ
(t−1)
1l

]L−1

l=0
,
[
λ

(t−1)
2s

]S−1

s=0
,λ(t−1)

3 ,λ(t−1)
4

)
(8)

and the Lagrange multipliers are updated after every step
t with a rate γ . We initialize u(0) = f , v(0) = ε(0) =[
r(0)l

]L−1

l=0
=
[
w(0)
s
]S−1

s=0
=
[
g(0)
s
]S−1

s=0
=
[
λ

(0)
1l

]L−1

l=0
=

(
u∗ , v∗ , ε∗ ,

[
g∗
s
]S−1
s=0

)
= argmin(

u ,v ,ε ,[gs]S−1
s=0

)
∈XS+3

{L−1∑
l=0

∥∥∥∥cos
(

π l
L

)
uDT

n + sin
(

π l
L

)
Dmu

∥∥∥∥
�1

+ μ1

S−1∑
s=0

∥∥gs∥∥�1
+ μ2‖v‖�1 + G∗ (ε

δ

)
s.t.

⎧⎨
⎩
f = u + v + ε

v =
S−1∑
s=0

[
cos
(

πs
S
)
gsDT

n + sin
(

πs
S
)
Dmgs

]
⎫⎬
⎭ .

(6)
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[
λ

(0)
2a

]S−1

a=0
= λ

(0)
3 = λ

(0)
4 = 0. In each iteration, we first

solve the following six subproblems in the listed order and
then we update the four Lagrange multipliers:
The “[rl]L−1

l=0 -problem”: Fix u, v, ε, [ws]S−1
s=0 ,

[
gs
]S−1
s=0 and

min
[rl]L−1

l=0 ∈XL

{L−1∑
l=0

‖rl‖�1 + β1
2

L−1∑
l=0

∥∥∥∥rl − cos
(

π l
L

)
uDT

n

− sin
(

π l
L

)
Dmu + λ1l

β1

∥∥∥∥2
�2

}

(9)

Due to its separability, we consider the problem at
b = 0 , . . . , L − 1. The solution of (9) is

r∗b = Shrink
(
cos
(

πb
L

)
uDT

n + sin
(

πb
L

)
Dmu − λ1b

β1
,
1
β1

)
.

The operator Shrink(· , ·) is defined in [25].
The “[ws]S−1

s=0 -problem”: Fix u, v, ε, [rl]L−1
l=0 ,

[
gs
]S−1
s=0 and

min
[ws]S−1

s=0 ∈XS

{
μ1

S−1∑
s=0

‖ws‖�1 + β2
2

S−1∑
s=0

∥∥∥∥ws − gs + λ2s
β2

∥∥∥∥2
�2

}

(10)

Similarly, the solution of (10) for each separable problem
a = 0 , . . . , S − 1 is

w∗
a = Shrink

⎛
⎜⎜⎜⎝ga − λ2a

β2︸ ︷︷ ︸
:= twa

,
μ1
β2

⎞
⎟⎟⎟⎠ . (11)

The “[gs]S−1
s=0 -problem”: Fix u, v, ε, [rl]L−1

l=0 , [ws]S−1
s=0 and

min
[gs]S−1

s=0 ∈XS

{
β2
2

S−1∑
s=0

∥∥∥∥ws − gs + λ2s
β2

∥∥∥∥2
�2

+ β3
2

∥∥∥∥∥v −
S−1∑
s=0

[
cos
(πs
S

)
gsDT

n

+ sin
(πs
S

)
Dmgs

]
+ λ3

β3

∥∥∥∥2
�2

}

(12)

For the discrete finite frequency coordinates ω =
[ω1 ,ω2]∈ I , let be z =[ z1 , z2]=

[
ejω1 , ejω2

]
. We

denote by Wa(z) ,
2a(z) ,V (z) ,Gs(z), and 
3(z) the dis-
crete Fourier transforms of wa[k] , λ2a[k] , v[k] , gs[k] and
λ3[k], respectively. Due to the separability, the solution of
(12) is obtained for a = 0 , . . . , S − 1 as

g∗
a = Re

[
F−1 {A(z) · B(z)}] (13)

with

A(z) =
[
β2 + β3

[
sin

πa
S

(
z−1
1 − 1

)
+ cos

πa
S

(
z−1
2 − 1

)]
[
sin

πa
S

(z1 − 1) + cos
πa
S

(z2 − 1)
]]−1

,

B(z) = β2

[
Wa(z) + 
2a(z)

β2

]
+ β3

[
sin
(πa

S

) (
z−1
1 − 1

)
+ cos

(πa
S

)
(z−1

2 − 1)
]
×⎡

⎣V (z) −
∑

s=[0 ,S−1]\{a}

[
cos
(πs
S

)
(z2 − 1) + sin

(πs
S

)
(z1 − 1)

]

Gs(z) + 
3(z)
β3

⎤
⎦ .

The “v-problem”: Fix u, ε, [rl]L−1
l=0 , [ws]S−1

s=0 ,
[
gs
]S−1
s=0 and

min
v∈X

{
μ2‖v‖�1 + β3

2

∥∥∥∥∥v −
(S−1∑

s=0

[
cos
(πs
S

)
gsDT

n

+ sin
(πs
S

)
Dmgs

]
− λ3

β3

)∥∥∥∥2
�2

+β4
2

∥∥∥∥v −
(
f − u − ε + λ4

β4

)∥∥∥∥2
�2

}
(14)

The solution of (14) is defined as

v∗ = Shrink
(
tv ,

μ2
β3 + β4

)
, (15)

with

tv := β3
β3 + β4

(S−1∑
s=0

[
cos
(πs
S

)
gsDT

n + sin
(πs
S

)
Dmgs

]
− λ3

β3

)

+ β4
β3 + β4

(
f − u − ε + λ4

β4

)
.

(16)

The “u-problem”: Fix v, ε, [rl]L−1
l=0 , [ws]S−1

s=0 ,
[
gs
]S−1
s=0 and

min
u∈X

{
β1
2

L−1∑
l=0

∥∥∥∥rl − cos
(

π l
L

)
uDT

n − sin
(

π l
L

)
Dmu + λ1l

β1

∥∥∥∥2
�2

+ β4
2

∥∥∥∥f − u − v − ε + λ4
β4

∥∥∥∥2
�2

}

(17)

We denote F(z) , E(z) ,
4(z) ,Rl(z), and 
1l(z) as the
discrete Fourier transforms of f [k] , ε[k] , λ4[k] , rl[k],
and λ1l[k], respectively. This (17) is solved in the Fourier
domain by

u∗ = Re
[
F−1 {X (z) · Y(z)}] (18)
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with

X (z) =
[
β4 + β1

L−1∑
l=0

[
sin
(

π l
L

)(
z−1
1 − 1

)
+ cos

(
π l
L

)(
z−1
2 − 1

)] [
sin
(

π l
L

)
(z1 − 1) + cos

(
π l
L

)
(z2 − 1)

]]−1

,

Y(z) = β4

[
F(z) − V (z) − E(z) + 
4(z)

β4

]
+ β1

L−1∑
l=0

[
sin
(

π l
L

)(
z−1
1 − 1

)
+ cos

(
π l
L

)(
z−1
2 − 1

)] [
Rl(z) + 
1l(z)

β1

]
.

The “ε-problem”: Fix u, v, [rl]L−1
l=0 , [ws]S−1

s=0 ,
[
gs
]S−1
s=0 , and

min
ε∈X

{
G∗ (ε

δ

)
+ β4

2

∥∥∥∥ε −
(
f − u − v + λ4

β4

)∥∥∥∥2
�2

}
(19)

Let C∗ be the inverse curvelet transform [4]. The mini-
mization of (19) is solved by (see [3])

ε∗ =
(
f − u − v + λ4

β4

)

− C∗
{
Shrink

(
C
{
f − u − v + λ4

β4

}
, δ
)}

︸ ︷︷ ︸
:= CST

(
f−u−v+ λ4

β4
,δ
)

or by the projection method with the component-wise
operators

ε∗ = C∗
⎧⎨
⎩

δ C
{
f − u − v + λ4

β4

}
max

(
δ ,
∣∣∣C {f − u − v + λ4

β4

}∣∣∣)
⎫⎬
⎭ .

Update Lagrange multipliers
(
[λ1l]L−1

l=0 , [λ2a]S−1
a=0 ,

λ3 ,λ4) ∈ XL+S+2:

λ
(t)
1b = λ

(t−1)
1b + γβ1

(
rb − cos

(
πb
L

)
uDT

n

− sin
(

πb
L

)
Dmu

)
, b = 0 , . . . , L − 1

λ
(t)
2a = λ

(t−1)
2a + γβ2 (wa − ga) , a = 0 , . . . , S − 1

λ
(t)
3 = λ

(t−1)
3 + γβ3

(
v −

S−1∑
s=0

[
cos
(πs
S

)
gsDT

n

+ sin
(πs
S

)
Dmgs

])

λ
(t)
4 = λ

(t−1)
4 + γβ4 (f − u − v − ε)

Choice of parameters
Due to the �1-norms in the minimization problem (7)

which corresponds to the shrinkage operator with param-
eters μ1 and μ2, these are defined as

μ1 = cμ1β2 · max
k∈�

(∣∣twa [k]
∣∣) and

μ2 = cμ2 (β3 + β4) · max
k∈�

(|tv[k] |) , (20)

where twa [k] and tv[k] are defined in (11) and (16), respec-
tively. Note that the choice of cμ1 and cμ2 is adapted to
specific images.
In order to balance between the smoothing terms and

the updated terms for the solutions of the g-problem in
(13), the v-problem in (15), and the u-problem in (18), we
choose

β2 = c2β3 ,β3 = θ

1 − θ
β4 , θ ∈ (0, 1) and β1 = c1β4.

The choice of δ mainly impacts the smoothness and
sparsity of the texture v. The first row of Fig. 2 shows the
effect of selecting the threshold δ = 0 which corresponds
to a two-part decomposition, i.e., the residual image ε = 0
in (d). This case also demonstrates the limitation of all
two-part decomposition approaches: for this choice of δ,
very small scale objects are assigned to the texture image v
in Fig. 2b which is obvious in its binarization vbin shown in
(c). In order to remove these and to yield a smoother and
sparser texture v, one can increase the value of δ, say, e.g.,
by choosing δ = 10. The effect of this choice can be seen in
the binarized version vbin in Fig. 2g and small-scale objects
are moved to the residual image ε in (h). Therefore, the
value of δ defines the level of the residual ε.

6 Comparison of DG3PDwith prior art
As stated before, the main objective of the DG3PD model
is to achieve the following three goals (see Section 1):

• Goal 1: u contains only geometrical objects with a
very smooth surface, sharp boundaries, and no
texture.

• Goal 2: v contains only objects with sparse oscillating
patterns and v shall be both smooth and sparse.

• Goal 3: Perfect reconstruction of f, i.e., f = u + v + ε.
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Fig. 2 Visualization of the decomposition results by DG3PD with δ = 0 (a–d) and δ = 10 (e–h) after 20 iterations. The convergence rates for these
decompositions with δ = 0 and δ = 10 are depicted in Fig. 6m, i, respectively, which plots the relative error (y-axis) as defined in [25] versus the
number of iterations (x-axis). The parameters are β4 = 0.04 , θ = 0.9 , c1 = 1 , c2 = 1.3 , cμ1 = cμ2 = 0.03 , γ = 1 , and S = L = 9. Error images are
illustrated in j after 20 iterations and in k after 60 iterations with δ = 10

Based on these criteria, we compare the proposed
DG3PD model in this section with the state-of-the-art
methods using the original Barbara image. We high-
light selected regions for an improved conspicuous-
ness of the differences between the considered methods;
see Fig. 3:

• Images without noise: Rudin, Osher, and Fatemi
(ROF) [1], Vese and Osher (VO) [9], Starck, Elad, and
Donoho (SED) [11], and TV Gabor (TVG) by Aujol
et al. [12] models.

• Images corrupted by i.i.d. Gaussian noiseN (0 , σ):
the Aujol and Chambolle (AC) model [3].

For better visibility of differences between the various
models, we show decomposition results for the ROF, VO,
SED, TVG, and DG3PD models for two magnified parts
of the original image (see Fig. 3b, c) in Figs. 4 and 5.
We observe two main differences between the compared
models and the proposed DG3PD model:

• Two-part decomposition instead of three-part
decomposition.

• Quadratic penalty method (QPM) for solving the
constrained minimization instead of ALM.

Goal 1: cartoon u. Regarding the cartoon u, we observe
that the VO and SED models still contain texture on the
scarf (see Fig. 4b, c, respectively). For the SED, the car-
toon u is blurred and there are some small-scale objects
under the table (see Fig. 5c). Comparing all five meth-
ods, VO and SED are furthest away from achieving the
first goal, whereas ROF and TVG generate better cartoon
images in terms of smoother surfaces without texture and
sharper boundaries. Recently, Schaeffer and Osher [23]
suggested a two-part decomposition approach. Note that
the cartoon image by their decomposition which is shown
in Figure 7a of [23] also contains texture and does not
meet the first goal. The cartoon images produced by the
DG3PD method come closest to the first goal, see Fig. 4i,
m and Fig. 5e.
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Fig. 3 The original Barbara image (a) and highlighted details (b, c)

Goal 2: texture v. Concerning the texture v, among the
state-of-the-art methods, the decomposition by the SED
model results in the sparsest texture (see Figs. 4g and 5h),
while the texture images of the ROF, VO, and TVG have
more coefficients different from zero. In addition, the
texture component obtained by the ROF model also con-
tains some geometry information which should have been
assigned to the cartoon component, see Figs. 4e and 5f.
The DG3PDmodel yields an even sparser texture than the
SED model due to the ‖v‖�1 in the minimization (5), see
the binarized versions with threshold “0” for visualization
in Fig. 4o or Fig. 2g.
Goal 3: reconstruction by summation of all components.

Figures 6 and 7 illustrate the effects of QPM and ALM.
The decomposition by the ROF model results in a rela-
tively large error (f − u) which contains geometry and
texture information; see [9] and Fig. 6i. In the VO model,
the error (f− u− v) is reduced in comparison to the ROF
model, but some information still remains in the error
image; see Fig. 6n. In case of the DG3PD model with the
ALM-based approach for solving the constrained mini-
mization, the error (f− u− v− ε) is significantly reduced
and numerically the error tends to 0 as the number of iter-
ations increases. For a comparison to ROF and VO using
the same detail, see Fig. 6o for a visualization of the error
after 20 iterations and (p) after 60 iterations. The error for
the whole image after 20 and 60 iterations is displayed in
Fig. 2j, k, respectively. To the best of our knowledge, this
effect can be explained by using ALM for solving the con-
strained minimization instead of QPM. For more details
about QPM and ALM, we refer the reader to [29, 30] and
Chapter 3 in [31].
Comparison with Aujol and Chambolle. Figure 8 illus-

trates a situation in which the image is corrupted by

i.i.d. Gaussian noise N (0 , σ) with σ = 20 and com-
pares DG3PD with the AC model [3] for three-part
decomposition. It shows that under “heavy” noise, our
DG3PD model still meets the criteria for cartoon u and
texture v, i.e.,

• Our cartoon u contains smooth surfaces with sharp
edges and no texture; see Fig. 8e. However, the
cartoon u from the AC model is blurry with texture
on the scarf; see Fig. 8a.

• Our texture v is sparse and smooth; see Fig. 8f and its
binarization (h). However, the texture from the AC
model is not sparse; see Fig. 8b.

However, there is a limitation for both methods: the noise
image ε contains some pieces of information due to the
value of δ which defines the level of the noise. Similar to
[3], we modify the classical threshold for curvelet coef-
ficients, i.e., σ

√
2 log |K|, with a weighting parameter η

as follows δ = ησ
√
2 log |K| and |K| is total number of

curvelet coefficients.
Summary. We observe that the DG3PD method meets

all three requirements much more closely than the
other methods for images without noise, like the orig-
inal Barbara image. And in particular, for images with
additive noise, the DG3PD method still achieves all
three goals as shown in the comparison with Aujol and
Chambolle.

7 Applications
Here, we limit ourselves to consider three important
applications of the DG3PD method: feature extraction,
denoising, and image compression.
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Fig. 4 a–p The images in the first row depict the comparison of the cartoon u for different methods in the literature on the original highlighted
region (see Fig. 3c). The images in the second row show their corresponding texture v. Note that the ROF is reported in [12]. The images in the third
row are obtained by the DG3PD model with δ = 0 and δ = 10 in the fourth row (see Fig. 2 for the whole image in these two cases)

7.1 Feature extraction
Depending on the specific field of application, the cartoon
or texture, or both can be viewed as feature images. For
the application of DG3PD to fingerprints, we are espe-
cially interested in the texture image v as a feature for
subsequent processing steps like segmentation, orienta-
tion field estimation [32] and ridge frequency estimation
[15], and fingerprint image enhancement [15, 21]. The
first of these processing steps is to separate the foreground
from the background [25, 57]. The foreground area (or
region of interest) contains the relevant information for a
fingerprint comparison. Segmentation is still a challeng-
ing problem for latent fingerprints [33] which are very
low-quality fingerprints lifted from crime scenes. Both
the foreground and background area can contain “noise”
on all scales, from small objects or dirt on the surface

to written or printed characters (on paper) and large-
scale objects like an arc drawn by the forensic examiner.
Standard fingerprint segmentation methods cannot cope
with this variety of noise, whereas the texture image by
decomposition with the DG3PD method crops out to be
an excellent feature for estimating the region of interest.
Figure 9 depicts a detailed example of the latent fin-
gerprint segmentation by the DG3PD decomposition. In
Fig. 10, we show further examples of segmentation results
obtained using the texture image extracted by the DG3PD
method and morphological postprocessing as described
in [25, 57].

7.2 Denoising
The DG3PD model can be used for denoising images
with texture because noise and small-scale objects are



Thai and Gottschlich EURASIP Journal on Image and Video Processing  (2016) 2016:12 Page 11 of 20

Fig. 5 a–j The images in the first row depict the comparison of the cartoon u for different methods on the original highlighted region (see Fig. 3(b)).
The images in the second row show their corresponding texture v

moved into the residual image ε during the decomposition
of f due to the supremum norm of the curvelet coeffi-
cients of ε. Therefore, the image fdenoised = u + v can
be regarded as a denoised version of f and the degree
of denoising can be steered by the choice of parameters,
especially δ. For δ = 0 which is equal to two-part
decomposition, we obtain the original image again. As
we increase δ, more noise is driven into ε and thereby
removed from fdenoised. Denoising images with texture,
in particular with texture parts on different scales, is
a relevant problem which we plan to address in future
works.
Jung and Kang [34] proposed a variational minimiza-

tion for vector-valued (color) image decomposition and
restoration. Different from our directional total varia-
tion, their energy function involves a weighted second-
order regularization for the cartoon component also
to reduce the staircase effect and to provide image
restoration of higher quality. Similar to the Vese-Osher
model, they use the L2 norm for measuring the residual
which is different from our proposed ‖C{·}‖∞. More-
over, their reconstructed texture is not sparse due to

a lack of the assumption on its sparsity in their mini-
mization model; see Figure 14 b in [34]. In a different
view of convex minimization for image reconstruc-
tion, Tschumperle [35] proposed a curvature-preserving
method for anisotropic smoothing of multi-valued images
while preserving natural curvature constraints (or the
edges). Then, line integral convolutions are applied for
a numerical scheme to this tensor-driven diffusion PDE
with two main advantages: namely, it preserves the
orientation of thin image structure and the cost of com-
putation is smaller in comparison to the classical explicit
scheme. This two-part decomposition scheme is applied
for denoising, inpainting, and resizing of vector-valued
images.

7.3 Compression
Based on the DG3PD model, we propose a novel
approach to image compression. The core idea is to
perform image decomposition by the DG3PD method
first and subsequently to compress the three compo-
nent images by three different algorithms, each particu-
larly suited for compressing the specific type of image.
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Fig. 6 a–l Comparison of QPM and ALM for the ROF, VO, and DG3PD models: The images for ROF and VO models are obtained from [9]. The
parameters for the DG3PD model are δ = 0 and 20 iterations for the third and 60 for the fourth column, and the other parameters are the same as in
Fig. 2. The relative error (y-axis) versus the number of iterations (x-axis) is illustrated inm. The first row shows that the VO and the DG3PD models can
achieve good reconstructed images, see b, c, d, in comparison with the original magnified image (a). As mentioned in [9], the error image from the
VO model (n) contains much less geometry and texture than the one from the ROF model. However, the error image from our model is much
further reduced in comparison to the VO model. After 20 iterations some pieces of information still remain in the error image, see (o). As the number
of iterations increases, the error numerically tends to 0; see p after 60 iterations

This scheme can be used for lossy as well as lossless
compression.

7.3.1 Cartoon image compression
As stated in our definition of goals, the cartoon image
consists of geometric objects with a very smooth or
piecewise constant surface and sharp edges. This special
kind of images is highly compressible, and a very effec-
tive approach is based on diffusion. Anisotropic diffusion
[36] is useful for many purposes in image processing,
e.g., fingerprint image enhancement by oriented diffusion
filtering [21].
The basic idea of diffusion-based compression is store

information for only a few sparse locations which encode
the edges of the cartoon image. The surface areas are
inpainted using a linear or non-linear diffusion pro-
cess. Please note that the cartoon image obtained by the
DG3PD method is much better suited for this type of
compression due to the property of sharper edges between
geometric objects in comparison to the cartoon images
of the other decomposition approaches. Moreover, some
difficulties and drawbacks of diffusion-based compression
for arbitrary images do not apply to this special case. In
general, it is a challenging question how and where to

select locations for diffusion seed points. In our case, this
task is easily solvable because of the sharp edges between
homogeneous regions in the DG3PD cartoon image. This
allows for an extremely sparse selection of locations on
corners and edges.
Image compression with edge-enhancing anisotropic

diffusion (EED) has been studied by Galic et al. [37] and
has been improved by Schmaltz et al. [38]. Compression
of cartoon-like images with homogeneous diffusion has
been analyzed by Mainberger et al. [39].
A viable alternative to diffusion-based compression of

cartoon images is a dictionary-based approach [40] in
which the dictionary is optimized for cartoon images.
Another very promising possibility to compress the
DG3PD cartoon component is the usage of linear splines
over adaptive triangulations which has been proposed in
the work of Demaret et al. [41].

7.3.2 Texture image compression
Tailor-made solutions are available for texture image com-
pression and especially for compressing oscillating pat-
terns like fingerprints.
Larkin and Fletcher [17] achieved a compression rate

of 1:239 for a fingerprint image using amplitude and
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Fig. 7 The comparison of ALM (a–i) and QPM (j–q) for the DG3PDmodel with the same parameters and 20 iterations: β4 = 0.025 , θ = 0.9 , c1 = 10 ,
c2 = 1.3 , cμ1 = cμ2 = 0.03 , γ = 1 , S = L = 32 , δ = 5. We observe that the error image of QPM still contains geometry and texture information;
see after 20 iterations in p and after 60 in q. Using QPM for constrained minimization is similar to decomposing the original image into four parts,
namely cartoon (j), texture (k), residual (m), and error (p). The amount of information in the error image by QPM strongly depends on the choice of
parameters (β1 ,β2 ,β3 ,β4). However, for ALM, the updated Lagrange multipliers (λ1 , λ2 , λ3 , λ4) compensate for the choice of (β1 ,β2 ,β3 ,β4).
Thus, the error numerically tends to 0 as the number of iterations increases, see the error image after 20 iterations in h and after 60 iterations in i

frequency modulated (AM-FM) functions. They decom-
pose a fingerprint image into four parts, and this idea can
be applied to the texture image v obtained by the DG3PD
method:

v ≈ a+[ b · cos(�C + �S)]

Each of the four components is again highly compress-
ible and can be stored with only a few bytes (see Figure
5 in [17]). This is remarkable and we would like to
offer another perspective on the AM-FM model. Storing
a minutiae template can be viewed as a lossy form of

fingerprint compression. The minutiae of a fingerprint
are locations where ridges (dark lines) end or bifur-
cate, and a template stores the locations and direc-
tions of these minutiae. Several algorithms have been
proposed for reconstructing the orientation field (OF)
from a minutia template [42]. The continuous phase
�C can be derived from the unwrapped reconstructed
OF and the spiral phase �S directly constructed from
the minutiae template. Choosing appropriate values for
a and b leads to a fingerprint image. A survey of fur-
ther methods for reconstructing fingerprints from their
minutiae template is given in [43]. An alternative way
of lossy fingerprint image compression is wavelet scalar
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Fig. 8 The Barbara image (d) with additive Gaussian white noise (σ = 20) is decomposed by the Aujol and Chambolle model (a–c) and the DG3PD
model (e–h) with δ = 16 and the other parameters are the same as in Fig. 2. Comparing a and e, we observe that the cartoon image u obtained by
the DG3PD model (e) has a smoother surface and sharper edges than a. Comparing the texture images v, we note that f is smoother and sparser
than b. In order to highlight the sparseness of the DG3PD texture, all positive coefficients are visualized as white pixels in h. For visualization, we add
150 to the value of the residual ε in g. The residual in g still contains some texture, but mainly the Gaussian noise which is obviously shown in the QQ
plot (i). There are some differences at the end of the tail in i probably due to the remaining texture and the numerical simulation of Gaussian noise

Fig. 9 DG3PD decomposition of a latent fingerprint for segmentation (a) with δ = 60. b–e The ROI is obtained from the binarized texture vbin and
morphological postprocessing as described in [57]



Thai and Gottschlich EURASIP Journal on Image and Video Processing  (2016) 2016:12 Page 15 of 20

Fig. 10 Latent fingerprint images from NIST SD27. The boundary of the foreground estimated by the DG3PD method is drawn in yellow (a–d)

quantization (WSQ) [44] which has been a compres-
sion standard for fingerprints used by the Federal Bureau
of Investigation in the USA. See Fig. 11f–h for appli-
cation example of WSQ to the texture of the Barbara
image.
A third, very good compression possibility is dictionary

learning [40] with optimization of the dictionary for the
texture component v. For fingerprint images, this problem
has recently been studied by Shao et al. [45].

7.3.3 Residual image compression
For image compression using DG3PD, we propose the
following steps in this order: First, image decomposi-
tion f = u + v + ε. Second, a tailor-made, lossy, high

compression of the cartoon component u and the tex-
ture component v. Third, decompressing u and v in order
to compute the compression residual image s = f −
ud − vd, where ud is the cartoon image and vd the
texture image after decompression. Fourth, compression
of s.
In steps two and four, the term “compression” denotes

the whole process including coefficient quantization and
symbol encoding (see [46] for scalar quantization, Huff-
man coding, LZ77, LZW, and many other standard
techniques).
Let be eu = u − ud, the difference between the car-

toon component before and after compression, i.e., the
compression error, and ev = v − vd, then we can rewrite

Fig. 11 The cartoon component u (a) and texture component v (e) of the Barbara image obtained by DG3PD. Images b–d display the
reconstruction of u from the 2000, 5000, and 8000 largest wavelet coefficients (from a total of 262,144 coefficients). f–h show the decompressed
images after compression of v by WSQ at compression rates between 1:15 and 1:85
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r = f − ud − vd = u + v + ε − ud − vd = ε +
eu + ev. Hence, the residual image s computed in step
four contains the residual component ε plus the compres-
sion errors of the other two components. Now, lossless
compression can be achieved by lossless compression of
s. If the goal is lossy compression with a certain target
quality or target compression rate, this can be achieved
by adapting the lossy compression of s accordingly. See
Fig. 11 for the effects of different compression rates
on the decompressed cartoon ud and the decompressed
texture vd.
An additional advantage of decompression beginning

with ud, followed by vd and finally sd is the fast gen-
eration of a preview image which mimics the effects
of interlacing. In a scenario with limited bandwidth for
data transmission, e.g., sending an image to a mobile
phone, the user can be shown a preview based on the
compressed, transmitted, and decompressed u image.
During the transmission of the compressed v and s,
the user can decide whether to continue or abort the
transmission.

8 Conclusions
The DG3PD model is a novel method for three-part
image decomposition. We have shown that the DG3PD
method achieves the goals defined in the introduction
much better than other relevant image decomposition
approaches. The DG3PD model lays the groundwork for
applications such as image compression, denoising, and
feature extraction for challenging tasks such as latent fin-
gerprint processing. We follow in the footsteps of Aujol
and Chambolle [3] who pioneered three-part decomposi-
tion and DG3PD generalizes their approach. We believe
that three-part decomposition is the way forward to
address many important problems in image processing
and computer vision. Buades et al. [18] asked in 2010:
“Can images be decomposed into the sum of a geo-
metric part and a textural part?” Our answer to that
question is no if an image contains other parts than
cartoon and texture, i.e., noise or small-scale objects.
Consider, e.g., the noisy Barbara image in Fig. 8d. If
the sum of the cartoon and texture images shall recon-
struct the input image f, a two-part decomposition has
to assign the noise parts either to the cartoon or to
the texture component. In principle, not even the best
two-part decomposition model can fully achieve both
goals regarding the desired properties of the cartoon
and texture component simultaneously. The solution is
that noise and small-scale objects which do not belong
to the cartoon or texture have to be allotted to a third
component.
In our future work, we intend to optimize the

DG3PDmethod for specific applications, especially image
compression and latent fingerprint processing. Issues

for improvement include the data-driven, automatic
parameter selection, and the convergence rate (can the
same decomposition be achieved in fewer iterations?) Fur-
thermore, we plan to explore and evaluate specialized
compression approaches for cartoon, texture, and residual
images.
Additionally, a very interesting application for the

residual component can be biometric liveness detection.
Recently, Gragnaniello et al. [47] have concluded that
high-pass filtering before computing local image descrip-
tors improves the accuracy of their proposed iris live-
ness detection algorithm. The residual image obtained
by DG3PD contains the high-frequency components of
the input image. Applications of DG3PD to iris or fin-
gerprint liveness detection [48, 49] are therefore very
promising. A survey of local image descriptors for fin-
gerprint, iris, and face liveness detection can be found
in [50].
Optimal solutions of transportation problems are the

key to compute the earth mover’s distance (EMD) or
Wasserstein distance [51]. Recently, Brauer and Lorenz
[52] discussed an interesting connection between Meyer’s
G-norm and transportation problems. Solving trans-
portation problems for images of dimension 512 × 512
pixels or larger can be a computationally extremely
challenging problem (depending on the number of
producers and consumers, and their distribution over
the image domain) even for state-of-the-art methods
such as the shortlist method [51]. However, in the
special case of p = 1, the Kantorovich-Rubinstein
duality provides a loophole which allows it to avoid
solving the associated transportation problem. Based
on this property, Brauer and Lorenz [52] proposed a
three-part image decomposition with transport norms.
Lellmann et al. [53] proposed the use of transport norms
for image denosing and two-part image decomposi-
tion. We believe that the commonalities between the
Vese-Osher model [9], Meyer’s G-norm, and the recently
proposed models using transport norms deserve further
research.
Moreover, our experiments have shown that the

curvelet transform as part of the DG3PD model is
very suitable for capturing the residual component in
three-part image decomposition in terms of i.i.d. (or
weakly correlated) Gaussian (or non-Gaussian) noise.
In principle, it is also conceivable to apply the shear-
let transform [54], the contourlet transform [55], or
the steerable wavelet transform [56] instead of the
curvelet transform, and we deem it worth investigat-
ing if especially for specific types of images one of
these transforms performs considerably better than the
others—as part of a DG3PD model with directional total
variational norms, directional G-norms, or transport
norms.
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Appendix

Fig. 12 a–f Comparison of decomposition results by the ROF [1], VO [9], SED [11], TVG [12], and DG3PD models. Parameters for DG3PD are
β4 = 0.04 , θ = 0.9 , c1 = 1 , c2 = 1.3 , cμ1 = cμ2 = 0.03 , γ = 1 , S = L = 9
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Algorithm 1 The Discrete DG3PDModel

Initialization: u(0) = f , v(0) = ε(0) =
[
r(0)l

]L−1

l=0
=
[
w(0)
s
]S−1

s=0
=
[
g(0)
s
]S−1

s=0
=
[
λ

(0)
1l

]L−1

l=0
=
[
λ

(0)
2a

]S−1

a=0
= λ

(0)
3 = λ

(0)
4 = 0.

for t = 1 , . . . ,T do
1. Compute([

r(t)b

]L−1

b=0
,
[
w(t)
a
]S−1

a=0
,
[
g(t)
a
]S−1

a=0
, v(t) ,u(t) , ε(t)

)
∈ XL+2S+3:

r(t)b = Shrink
(
cos
(

πb
L

)
u(t−1)DT

n + sin
(

πb
L

)
Dmu(t−1) − λ

(t−1)
1b
β1

,
1
β1

)
, b = 0 , . . . , L − 1

w(t)
a = Shrink

(
twa := g(t−1)

a − λ
(t−1)
2a
β2

,
μ1
β2

)
, a = 0 , . . . , S − 1

g(t)
a = Re

[
F−1

{
A(t)(z) · B(t)(z)

}]
, a = 0 , . . . , S − 1

v(t) = Shrink
(
tv := β3

β3 + β4

(S−1∑
s=0

[
cos
(πs
S

)
g(t)
s DT

n + sin
(πs
S

)
Dmg(t)

s

]
− λ

(t−1)
3
β3

)

+ β4
β3 + β4

(
f − u(t−1) − ε(t−1) + λ

(t−1)
4
β4

)
,

μ2
β3 + β4

)

u(t) = Re
[
F−1

{
X (t)(z) · Y(t)(z)

}]
ε(t) =

(
f − u(t) − v(t) + λ

(t−1)
4
β4

)
− CST

(
f − u(t) − v(t) + λ

(t−1)
4
β4

, δ
)

2. Update
([

λ
(t)
1b

]L−1

b=0
,
[
λ

(t)
2a

]S−1

a=0
,λ(t)

3 ,λ(t)
4

)
∈ XL+S+2:

λ
(t)
1b = λ

(t−1)
1b + γβ1

(
r(t)b − cos

(
πb
L

)
u(t)DT

n − sin
(

πb
L

)
Dmu(t)

)
, b = 0 , . . . , L − 1

λ
(t)
2a = λ

(t−1)
2a + γβ2

(
w(t)
a − g(t)

a

)
, a = 0 , . . . , S − 1

λ
(t)
3 = λ

(t−1)
3 + γβ3

(
v(t) −

S−1∑
s=0

[
cos
(πs
S

)
g(t)
s DT

n + sin
(πs
S

)
Dmg(t)

s

])

λ
(t)
4 = λ

(t−1)
4 + γβ4

(
f − u(t) − v(t) − ε(t)

)
end for

A(z) =
[
β21mn + β3

[
sin

πa
S

(z−1
1 − 1) + cos

πa
S

(z−1
2 − 1)

] [
sin

πa
S

(z1 − 1) + cos
πa
S

(z2 − 1)
]]−1

,

B(z) = β2

[
Wa(z) + 
2a(z)

β2

]
+ β3

[
sin
(πa

S

)
(z−1

1 − 1) + cos
(πa

S

)
(z−1

2 − 1)
]
×⎡

⎣V (z) −
∑

s=[0 ,S−1]\{a}

[
cos
(πs
S

)
(z2 − 1) + sin

(πs
S

)
(z1 − 1)

]
Gs(z) + 
3(z)

β3

⎤
⎦ ,

X (z) =
[
β41mn + β1

L−1∑
l=0

[
sin
(

π l
L

)
(z−1

1 − 1) + cos
(

π l
L

)
(z−1

2 − 1)
] [

sin
(

π l
L

)
(z1 − 1) + cos

(
π l
L

)
(z2 − 1)

]]−1

,

Y(z) = β4

[
F(z) − V (z) − E(z) + 
4(z)

β4

]
+ β1

L−1∑
l=0

[
sin
(

π l
L

)
(z−1

1 − 1) + cos
(

π l
L

)
(z−1

2 − 1)
] [

Rl(z) + 
1l(z)
β1

]
.

Choice of Parameters

μ1 = cμ1β2 · max
k∈�

(∣∣twa [k]
∣∣) , μ2 = cμ2(β3 + β4) · max

k∈�
(|tv[k] |) and β2 = c2β3 ,β3 = θ

1 − θ
β4 ,β1 = c1β4.
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