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Abstract

The paper presents a novel method of melanoma recognition on the basis of dermoscopic images. We use color
images of skin lesions, advanced image processing, and different classifiers to distinguish melanoma from the other
non-melanoma lesions. Different families of descriptors are used for generation of the image diagnostic features for
final pattern recognition. To increase the efficiency of the system, we apply different selection procedures to find
the best set of features and different solutions of classifier. The numerical results concerning the accuracy of the
proposed recognition system have confirmed good accuracy of the proposed method and high sensitivity in
melanoma recognition.
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1 Introduction
Melanoma is a potentially life-threatening neoplasm. It
is manifested by the growing, unusual-looking skin
lesion, of the odd-shaped, uneven, or uncertain borders
and multiple colors in advanced cases. Thin melanomas
a few millimeters in diameter can mimic benign nevi
and cannot be detected by the “naked eye” examination.
The only possibility to diagnose them is using the
dermoscopy as a tool. Early recognition and surgical
excision can be curative for the patient.
However, the number of yearly deaths from melanoma

continues to increase, and the overall melanoma mortal-
ity rate is one of the few cancer mortality rates not on
the decline [1–3]. These realities combined with increas-
ing evidence of the lack of efficacy of the clinically
assessed ABCDE criteria (“A” for “asymmetry,” “B” for
“border irregularity,” “C” for “color variation,” “D” for
“diameter,” and “E” for “evolving lesions”) have necessitated
ongoing efforts to enhance the earlier clinical detection of
melanoma [3, 4].
Most approaches to melanoma diagnosis have in-

cluded emphases on recognition of changing lesions,
recognition of outlier (“ugly duckling”) lesions, and spe-
cific melanoma features, with the most utilized criteria
being the ABCDE descriptors. Some recently published

strategies have rejected the diameter criterion as well as
abandoned all or portions of the ABCDE mnemonics
[3–5]. The additional problems with application of the
ABCDE descriptors appear for extensive lesions, for
which the borders of lesions are outside the dermoscopic
image or there is a smooth transition between the
lesions and the healthy skin. Therefore, the development
of other diagnostic features well characterizing the skin
lesions is needed.
There is a growing interest in developing automatic

systems which support the dermatologists in early recog-
nition of melanoma [6]. Such systems include compos-
ition of few main steps: (1) image segmentation, (2)
feature extraction and selection, and (3) lesion classifica-
tion. Recently, many approaches to these topics have
been proposed. The paper [7] proposed new mathemat-
ical descriptors for the border of pigmented skin lesion
images, like lesion slope and lesion slope regularity. The
other works proposed different approaches to melanoma
segmentation and characterization. They include color
clustering [6], wavelet analysis [5], Markov tree features
[8], use of color texture [9], application of global and
dynamic thresholding [10], GVF snakes [10], etc.
Different classifier solutions applying the selected de-

scriptors have been proposed. They include clustering
approach, linear discriminant analysis, neural networks,
fuzzy and neuro-fuzzy systems, support vector machines
(SVM), K-nearest neighbors (KNN), naïve Bayes, random
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forest, etc. Ganster et al. [6] has achieved a sensitivity of
87 % and a specificity of 92 % for a large data set with
more than 5300 dermoscopy images. Recent results show
a sensitivity of 83.06 % and specificity of 90.05 % of cas-
cade classifiers in tenfold cross-validation mode for recog-
nition of melanoma in clinical images [11]. The research
of melanoma reported in [5] show the accuracy of 91.26 %
and area under the curve (AUC) value of 0.937 on the set
of 289 dermoscopic images (114 malignant, 175 benign)
partitioned into train, validation, and test image sets. The
paper [8] has declared the accuracy of SVM classifier vary-
ing from 40 to 75 %, depending on the test performed and
features used. The paper [12] has reported the sensitivity
of 93 % and specificity of 92 %. The work [13] has re-
ported the accuracy rate changing from 69.9 up to 93.7 %
depending on the combination of training and testing re-
sults. The paper [14] has reported the accuracy of 85 %
for recognition of non-invasive melanomas based on the
ABCD rule and pattern-recognition image-processing
algorithms. The other paper [15] has compared the appli-
cation of neural and neuro-fuzzy networks to skin cancer
recognition, reporting the accuracy rate of 90.67 % for
neural and 91.26 % for neuro-fuzzy networks. The recent
paper [16] has investigated two systems (global and local)
of detection of melanoma and declared the sensitivity of
96 % and specificity of 80 %.
In this paper, we propose the application of different

types of image descriptors to characterize the dermo-
scopy image of the skin lesions. Textural features are
based on the standard Haralick descriptors [17], while
statistical features apply the segmentation-based fractal
texture analysis (SFTA) [18, 19], Kolmogorov–Smirnov
distance [20, 21], percolation descriptors [22], and max-
imum subregion descriptors [20]. The selection proced-
ure based on application of Fisher discrimination
measure, feature correlation, and fast correlation-based
filter is used to choose the features, which is able to
recognize melanoma with the best accuracy. The
selected descriptors are used as the input attributes to
the system of classifiers, responsible for the final recog-
nition of melanoma.

2 Materials
Input data were taken from the Department of Soft
Tissue/Bone Sarcoma and Melanoma, Warsaw Memorial
Cancer Center and Institute of Oncology, as dermoscopic
images. We obtained 92 RGB images of non-melanoma
and 84 images of melanoma (176 cases in total). They
were acquired by dermatologists during clinical exams
using a dermatoscope of the magnification of ×20. The
data base was medically assessed by the expert dermatolo-
gists on the basis of the ABCDE dermoscopic criteria and
exact pathomorphological inspection, including medical
segmentation of the lesion and clinical and histological

diagnosis. The detailed contents of the database based on
their assessment are presented in Table 1. The registered
images of the lesions were of different sizes extending
from 465 × 599 to 1077 × 1899 pixels. They were stored
in JPEG format.
The representative examples of both class images,

which participated in our experiments, are shown in
Fig. 1. It is easy to observe that the standard ABCD cri-
teria cannot be applied directly to images of melanoma
because the borders of the lesions have not been regis-
tered or it is impossible to segment the nevus region
from the skin background with a satisfactory precision.
The additional experiments have been performed

using the data set PH2 available in the Internet [23].
The dermoscopic images forming the basis were ob-
tained by the Dermatology Service of Hospital Pedro
Hispano (Matosinhos, Portugal) using the Tuebinger
Mole Analyzer system at the magnification of ×20.
They are 8-bit RGB color images of a resolution of
768 × 560 pixels. The database contains 200 dermo-
scopic images of melanocytic lesions, including 80
common nevi, 80 atypical nevi, and 40 melanomas.
The PH2 database includes medical annotation of all
the images based on medical segmentation of the lesion,
clinical and histological diagnosis, and the assessment of
several dermoscopic criteria (colors, pigment network,
dots/globules, streaks, regression areas, blue-whitish veil).
The assessment of each parameter was performed by an
expert dermatologist [23].

3 Methods
We propose the computerized system implementing few
stages of processing to recognizing melanoma on the
basis of the color images of the skin lesions. The first
stage is an acquisition of the original RGB image con-
taining the lesions area using dermoscopy. The next step
is image filtering, aimed at minimizing the influence of
the noise, like thin hair or small air bubbles. The following
step is generation of the numerical descriptors (diagnostic
features) of the image, which represent the potential input
attributes to the classifier system. These features undergo
the assessment of their class discrimination ability in
the feature selection process. The selected features
are treated as the input attributes to the classification

Table 1 The database of skin lesions used in experiments

Type of lesions Number of samples

Melanoma Lentigo maligna melanoma 69

Nodular melanoma 17

Non-melanoma Seborrheic keratosis 4

Angioma 1

Pigmented nevus 29

Atypical nevus 59
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system, responsible for the final recognition of the non-
melanoma (first class) and melanoma cases (second class).
The general scheme of the proposed system is presented
in Fig. 2.

3.1 Image filtering
Image filtering is aimed at removing small structures
and artifacts from skin image to reduce future over-
segmentation in further processing steps of the image. The
artifacts are treated as an impulse noise and are removed
by applying median filtering.
In the presence of thick hair, the median filtering may

be not sufficient. Therefore, we have applied an additional

procedure based on the improved DullRazor technique
[24]. It identifies the hair areas and replaces the hair pixels
by nearby non-hair pixels. The exemplary result of initial
filtering of the skin lesions is presented in Fig. 3.

3.2 Generation of diagnostic features
To create the effective classification system, we have to
generate the appropriate set of diagnostic features, which
will form the input signals to the classifier. Good fea-
tures should allow distinguishing different classes with
the highest precision. It means that they should as-
sume similar values for the images belonging to the
same class and different values for the representatives

Fig. 1 The examples of input data. The left-side image (a, c) presents the non-melanoma cases and right-side image (b, d) the melanoma cases

Fig. 2 The proposed system of melanoma recognition
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of the opposite class. In the proposed solution, we
will exploit the statistical and textural descriptions of
the image. They are divided into few subgroups: the
numerical descriptors based on the Kolmogorov–
Smirnov (KS) statistical distance [20, 21], maximum
subregion principle, percolation theory [22], classical
Haralick descriptors [17], and descriptors based on
fractal texture analysis [18].

3.2.1 Kolmogorov–Smirnov descriptors
Kolmogorov–Smirnov descriptors reflect the changing
distribution of intensity of pixels placed in the rings of
the increasing geometrical distances from the central
point [20, 21]. The exemplary division of the images into
coaxial rings is illustrated in Fig. 4. It represents four
concentric rings of equal number (56) of pixels in each
ring (equal number of pixels causes more stable distribu-
tion of KS statistics).
The central point is traveling along pixels distributed

uniformly every ten pixels in the image. The results of
statistical analyses of these coaxial rings will be com-
bined together by concatenating the pixel intensities cor-
responding to the rings placed in equal distances from
each other and at different positions of the central pixel.
Then, the cumulative KS distance [21] between the in-
tensity of pixels xi and xj belonging to two different rings
using the KS test is estimated. The KS statistics

determines if the samples of both rings are drawn from
the same continuous population characterized by the cu-
mulative distributions F(xi) and F(xj). The distance be-
tween these two populations is defined in the KS test as

dKS ¼ max F xið Þ−F xj
� ��� �� ð1Þ

over all x. This distance is treated as the measure of
difference between the distributions of both populations.
The KS distance for all combinations of two rings is

calculated. As a result, we get a set of KS statistics corre-
sponding to different levels of such differences. Level 1
corresponds to KS differences of the succeeding rings,
i.e., rings 1 and 2, 2 and 3, 3 and 4, etc. Level 2 corre-
sponds to the KS differences of rings distant by 2, for ex-
ample 1 and 3, 2 and 4, etc. As a result, we collect the
KS distances corresponding to the same differences of
rings for each level.
Figure 5 presents the mean values of dKS for different

levels l and its linear regression estimated for the image
of Fig. 1b. The measured (known) values of dKS are given
by three square points and a solid line while its linear
approximation by the dashed line. The horizontal axis

Fig. 3 The illustration of filtering the skin lesion image. a Original image. b Result of filtering

Fig. 4 The illustration of four coaxial rings around the central pixel
Fig. 5 The linear fit of the relationship of KS distance versus the
levels of differences between the rings
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represents the succeeding levels l and the vertical one
the average KS distance.
As the features, we have assumed:

a) dKS12 (the mean of KS statistics between ring no. 1
and ring no. 2)

b) dKS13 (the mean of KS statistics between ring no. 1
and ring no. 3)

c) dKS14 (the mean of KS statistics between ring no. 1
and ring no. 4)

d) The ratio dKS13/dKS12
e) The ratio dKS14/dKS12
f ) The coefficient α0 of the approximation line dKS

= α0 + α1l + ε
g) The slope coefficient α1 of the approximation line

dKS = α0 + α1l + ε

In this way, the total population of KS features is equal
to seven.

3.2.2 Maximum subregion descriptors
This set of descriptors is generated by applying thresh-
olding and splitting the grayscale image into smaller
consistent subgroups. We search for such level of the
threshold value which creates the largest number of the
compact subgroups of pixels of the intensity either lower
or higher than the threshold value. For computational
reason, this searching will be conducted using percen-
tiles of the pixel’s intensity. Let us assume that the
threshold value tha corresponds to the pth percentile for
the grayscale image of the intensity changing from 0 to
255. We scale this threshold value to the range of per-
centiles from 1 to 99 (to avoid the effect of saturation of
black and white colors). For each image, we determine
the intensity levels f1 corresponding to the first percent-
ile and the intensity f99 associated with the 99th percent-
ile. Then, the normalized threshold ntha is recalculated
according to the formula

ntha ¼ tha − f 1ð Þ 255
f 99 − f 1

ð2Þ

The value of percentile pth and the corresponding
normalized threshold ntha represent the features. The
additional descriptor is the area (in pixels) of the largest
subgroup in the image after thresholding. Because of two
types of thresholding procedures (the intensity of compact
subgroups of pixels higher or lower than the threshold
value), the number of these features is duplicated (six
features in total).

3.2.3 Percolation descriptors
These descriptors are based on percolation theory [22]
and are defined on the grayscale image. The main idea

of the method is to segment the image into subimages
and then “set fire” inside of the square region of nine
pixels (central pixels and its eight neighbors). Assuming
that fire can be spread simultaneously on all subimages
created in the thresholding process, we observe the dur-
ation of the longest fire, measured by the number of it-
erations. The threshold value is changed successively in
the grayscale intensity range [0 255] according to the de-
cile steps from q = 1 up to q = 9. The more jagged image
the longer fire duration. For each threshold, we note the
duration of fire. As a feature, we define the weighted
average indicator qw of quantiles

qw ¼
X9

i¼1
qidi

X9

i¼1
di

ð3Þ

where qi is a quantile changing from 0.1 to 0.9 with step
equal to 0.1 and di is the duration of fire at the threshold
value corresponding to the ith decile. The segmentation
of the image may be continued on the pixels of the in-
tensity higher or lower than the threshold value. In this
way, we can define two features qw corresponding to
these two percolation processes.
Table 2 presents the results of the percolation process

performed on the image of Fig. 6. The values qi and di
represent the deciles and duration of fire, respectively, at
the threshold value corresponding to the ith decile, cal-
culated for the regions corresponding to the pixel inten-
sity higher than the threshold value.
In this case, the descriptor qw takes the value 0.469.

Fig. 6 The exemplary image subject to percolation process
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3.2.4 Haralick descriptors
Haralick (GLCM) descriptors of the texture are based on
the co-occurrence matrix concept [17] and focus on the
relationships among the intensity levels of the neighboring
pixels in the image. In this application, we have limited
our considerations to the statistics concerning the local
contrast of the image, correlation of pixel pairs, energy
representing the occurrence of repeated pairs within an
image, and homogeneity coefficient characterizing the dis-
tribution of the elements of a GLCM with its diagonal.
They have been generated separately for three RGB chan-
nels of the color image. Up to 48 features have been de-
fined in this way.

3.2.5 Descriptors based on fractal texture analysis
The next set of image descriptors uses the segmentation-
based fractal texture analysis (SFTA) [18]. The input
grayscale image is decomposed into a set of binary im-
ages by selecting pairs of lower and upper threshold
values (multi-level Otsu algorithm) for each region
until the desired number nt of thresholds is obtained.
In this way, the number of the resulting binary images
is equal to 2nt.
The SFTA feature vector is constructed by representing

the resulting binary images through their size, mean gray
level, and characterization of boundary fractal dimension
through the box-counting method. In this application, we
have used six binary images, each described by three
abovementioned measures. In this way, 18 SFTA features
have been defined.
The total size of image descriptors taken into account

in the next steps of processing is equal to 81. The first
seven represent the KS features, six represent the max-
imum subregion descriptors, two represent the percola-
tion descriptors, the next 18 (from 16 to 34) are based
on the SFTA approach, and the last 48 are the Haralick
features.

3.3 Feature selection
A central problem in constructing the efficient classifica-
tion system is identifying a representative set of features
from which to construct a classification model for a par-
ticular task. Good feature should take similar values for
the representatives of the same class and differ signifi-
cantly for different classes. Thus, the main problem in the
classification process is to find out the features of the
highest importance for the problem solution. Elimination

of the features of the weakest class discrimination ability
(treated as the noise) leads to smaller dimension of the
feature space and improvement of the generalization
ability of the classifier in the testing mode for the
data not taking part in learning.
In our numerical experiments, we have implemented

and compared three methods of feature selection: Fisher
discriminant measure (FD) [25], correlation feature se-
lection (CFS) [26], and fast correlation-based filter
(FCBF) [27].
In Fisher criterion, the importance of the feature f is

measured on the basis of the so-called discrimination
coefficient Sab(f ). For two classes A and B, it is defined
as follows

SAB fð Þ ¼ cA fð Þ − cB fð Þj j
σA fð Þ þ σB fð Þ ð4Þ

The parameters cA and cB are the mean values of the
feature f in classes A and B, respectively. The variables
σA and σB represent the standard deviations determined
for both classes. The larger the value of SAB(f ) the better
is the separation ability of the feature f for these two
classes. Figure 7 presents the actual values of the Fisher
measure of all features generated for the set of images
representing the investigated 176 lesions of the skin.
According to the Fisher method, the best discrimination

ability possesses the maximum subregion descriptors and
KS features. The poorest performance is associated with
the Haralick features. By trying different values of thresh-
old levels and checking the maximum classification accur-
acy on the learning set, we have found the optimum cutoff
value of Fisher measure equal to 0.18 (the horizontal con-
tinuous line in the figure). It resulted in 21 important fea-
tures, which are then treated as the elements of the input
vector to the classification system. The representative fea-
tures from all families have been chosen in the selected
set: 6—KS, 7—maximum subregions, 1—percolation,
5—SFTA, and 2—Haralick.
The second approach to the feature selection is based

on correlation and called correlation feature selection
(CFS) [26]. We assume that a good feature set is one
that contains features highly correlated with the pre-
dicted class, and not correlated with each other. Know-
ing the correlation between each potential feature of the
process and the class, and also the inter-correlation be-
tween each pair of components, the correlation measure
between a composite test consisting of the summed fea-
tures and the class is estimated as [26]

Rcf ¼ N �Rciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ N N−1ð Þ �Rii

p ð5Þ

where Rcf is the estimated total correlation measure be-
tween the summed features and class c, N is the number

Table 2 The duration of “fire” of the image of Fig. 6 as a
function of the threshold values measured in quantiles qi
changing from 0.1 to 0.9

qi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

di 31 40 31 30 40 24 29 27 22
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of components, �Rci is the average of Pearson’s correla-
tions between the set of features and the class, and �Rii is
the average inter-correlation between features [26]. This
equation is used as a heuristic measure of the “merit” of
feature subsets in classification tasks. The set resulting
in the highest value of this merit measure is treated as
an optimal one.
Application of the CFS method has resulted in the set

of 15 features, covering the members of all feature fam-
ilies. The following features have been selected: 1, 2, 4,
6, 8, 9, 11, 12, 13, 14, 24, 27, 31, 32, and 43. The first
four belong to KS family, six of them are the maximum
subregion descriptors, four represent the SFTA, and only
one represents the Haralick feature.
The third selection method investigated in this work is

the fast correlation-based filter (FCBF), exploiting the cor-
relation measure based on the information-theoretical
concept of entropy, defined for the variable x and for vari-
able x after observing the variable y. The task is to select
the features which are important to the class recognition
but at the same time not redundant to any of the other
relevant features.
The relevance of the feature x to class c is decided by

calculating the symmetrical uncertainty SU(x,c) measure
between each feature and the class and also the values of
SU(xi,xj) for pairwise correlations [27]. By assuming
proper threshold values for both measures, we eliminate
the features below the threshold.
In practical application of this algorithm, we have

assumed the threshold SU(x,c) equal to 0.68 and
SU(xi,xj) = 0.50. As a result, we have selected only six
features treated as the most important for the class
recognition. This set included one feature representing KS

family (feature 4), the next two representing the maximum
subregion descriptors (features 9 and 12), two of the
SFTA (features 24 and 31), and one of the Haralick
family (feature 43).

3.4 Classification systems
The selected features are used as the input attributes to
the classifier system. To get the best possible solution,
we compared the performance of two classifiers: support
vector machine (SVM) and random forest (RF), both
having the opinion of the best. All of them have been
implemented in Matlab [28].
The SVM [29, 30] is a linear machine, working in the

high-dimensional feature space formed by the non-linear
mapping of the N-dimensional input vector x into an L-
dimensional feature space (L > N) through the use of a
kernel function K(x,xi). The learning problem of SVM is
formulated as the task of separating the learning vectors
xi into two classes of the destination values either di = 1
(one class) or di = −1 (the opposite class), with the max-
imal separation margin. The SVM of the Gaussian kernel
has been used in our application. The hyperparameters
(the regularization constant C and Gaussian kernel
width) have been adjusted by repeating the learning ex-
periments for the set of their predefined values and
choosing the best one for the validation data set.
The Breiman random forest (RF) is an ensemble of

decision trees for classification [31]. It operates by
constructing many decision trees at training time and
outputting the class that is the mode of the classes
output by individual trees. The generalization property
is improved by applying randomness in selecting the
learning data and using the limited set of decision

Fig. 7 The values of Fisher discrimination measure of the features. The features are arranged in the following way: the first 7, the KS features; the
next 9, the maximum subregions descriptors; the next 2, the percolation descriptors; the next 18, the SFTA features; and the last 48, the
Haralick features
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variables chosen randomly in each node of the tree. Ran-
dom forest has the reputation of very high efficiency clas-
sification system.

4 Results of numerical experiments
The abovementioned classifier systems have been associ-
ated with different sets of selected features obtained in
the first phase of processing and used in melanoma rec-
ognition. The system resulting in the best accuracy is
treated as the final solution. The statistical results of ac-
curacy related to our base of 175 images are depicted in
Table 3. They refer to the testing data not taking part in
learning in tenfold cross-validation mode and corres-
pond to the application of two abovementioned classi-
fiers associated with different sets of input attributes
(without selection and selection made by FCBF, CFS,
and Fisher). Different feature selection methods have
resulted in changing average accuracy of the class
recognition. SVM was found the best in three config-
urations of features (CFS, Fisher, and also for the set
of all features without selection). RF was found the
best in association with the FCBF selection method.
The accuracy of melanoma recognition differs signifi-
cantly, from the worst 78.63 % to the best of 93.80 %
(Fisher selection and SVM).
In the case of medical application, the important is

the confusion matrix of classification and the measures
associated with it, defined in the form of sensitivity and
specificity [29]. Sensitivity refers to the ability of the
classifier to correctly detect a melanoma among all
cases of melanoma. Specificity determines the ability of
correctly excluding a melanoma. Given the preventive
applications of these kinds of systems, it is more critical
detecting correctly a melanoma than making fewer mis-
takes when determining that an image is not a melanoma.
Table 4 presents the confusion matrix corresponding to
the best result of classification.
The confusion matrix illustrates how the cases belong-

ing to two classes (class of melanoma and the class of
other skin lesions) have been classified by our system.
The columns represent the actual outputs of our system
and the rows—the targets. The number in each entry of
the 2 × 2 matrix is the total number of the actually rec-
ognized classes in testing mode, calculated in five runs
of cross-validation experiments. The diagonal entries of
this matrix represent the quantity of the properly recog-
nized cases. Each entry outside the diagonal means the

number of misclassifications. The entry in the (i,j)th pos-
ition of the matrix for i ≠ j means false assignment of the
case of ith class to the jth one.
The sensitivity is defined as the ratio of the true posi-

tive cases of melanoma to the sum of true positive and
false negative cases. The specificity represents the ratio
of the true negative cases (class of non-melanoma) to
the sum of true negative and false positive cases.
The results show that the best classification system

(SVM associated with Fisher selection) is able to
recognize the melanoma from the other lesions of the
skin with the total accuracy of 93.8 %. The sensitivity in
recognition of melanoma is equal to 95.2 % and the spe-
cificity 92.4 %. The non-zero class recognition errors are
due to the non-unique characteristics of the images in
the data sets. The melanoma and other skin lesions
images inherently vary greatly from patient to patient
according to the type and advancement degree of le-
sions. Special difficulties in recognition follow from
the changing colors of the skin lesions taking part in
experiments. Among the processed lesions images, we
have found brown, skin-colored, pink, red, purple, and
even blue.
Figure 8 illustrates the receiver operating characteristic

(ROC) curve of the best classification system [32]. The
quality of the classifier is assessed on the basis of the
area under curve (AUC). The closer this area to value of
one the better is the classifier. The AUC of our classifier
system is equal to 0.923, and this value is an evidence of
high quality of solution.
Additional experiments have been performed using

the publically available PH2 database [23]. The testing
results of tenfold cross validation at application of SVM
are given in Table 5 in the form of the confusion matrix.
The sensitivity of the system for this database was

equal to 95.0 % and specificity 88.1 %. The results are
slightly better than these presented by authors in [16, 23]
for the same database. The best reported measures in
these works were given for different variants of solution:
sensitivity 93 % and specificity 78 % (global method and
texture features), sensitivity 90 % and specificity 89 %
(global method and color features), sensitivity 96 %
and specificity 80 % (global system splitting image
into two subregions), or sensitivity 100 % and specificity
75 % (local system).

Table 3 Statistical results of accuracy of melanoma recognition
in tenfold cross validation

Classifier All features FCBF CFS Fisher

SVM 85.47 % 78.62 % 89.51 % 93.76 %

RF 85.34 % 83.15 % 89.50 % 91.5 %

Table 4 The confusion matrix of melanoma recognition for our
base of images

Melanoma Non-melanoma

Melanoma 80 4

Non-melanoma 7 85

The rows represent the target class and columns the output class
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In general, it is impossible to get at the same time very
high sensitivity and specificity. By changing the classi-
fication criteria, it is possible to change the balance
level between these two quality measures. For ex-
ample, at application of one-class SVM [30], we have
got 100 % sensitivity; however, on the cost of specificity, it
has dropped to 79.4 %.

5 Conclusions
The paper has presented the research directed to the
automatic recognition of melanoma from the other
lesions of the skin on the basis of color image of the
nevus. The proposed approach uses extended set of
diagnostic features describing the image of the skin
lesions combined with different solutions of the classifiers.
In our solution, we have resigned from the popular ABCD
features, trying to find more powerful descriptors of the
image, which are able to increase the accuracy of class rec-
ognition (melanoma versus non-melanoma lesions).

The applied descriptors rely on the Kolmogorov–
Smirnov statistics, maximum subregions statistics, perco-
lation theory, fractal texture analysis, and Haralick texture
descriptors. To reduce the number of input attributes
applied in classification, we have tried three different
selection methods of diagnostic features: standard Fisher
discrimination measure, correlation feature selection, and
fast correlation-based filter. Each of these methods applies
different mechanism of selection, which results in various
sets of attributes.
These sets have been confronted with three different

classification systems. As the classifiers, we have tried
support vector machine and random forest of decision
trees. The best accuracy of class recognition on the data-
base of Warsaw Memorial Cancer Center (Poland) has
been achieved in the system formed by the SVM classi-
fier supplied by the attributes selected using the Fisher
method. The results of numerical experiments show that
this classification system is able to recognize the melanoma
from the other lesions of the skin with the total accuracy of
93.8 %. The sensitivity in recognition of melanoma is equal
to 95.2 % and the specificity 92.4 %.
Additional experiments performed on the publically

available PH2 database of Hospital Pedro Hispano
(Matosinhos, Portugal) have also shown the superiority
of this approach. In this case, the sensitivity in

Table 5 The confusion matrix of melanoma recognition for PH2
database

Melanoma Non-melanoma

Melanoma 38 2

Non-melanoma 19 141

The rows represent the target class and columns the output class

Fig. 8 The ROC curve of the best classification system (SVM associated with attributes selected by the Fisher method)
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recognition of melanoma was equal to 95.0 % and the
specificity 88.1 %. They are of slightly higher quality than
the results reported for this database in [23].
These experimental results obtained on these two data

bases confirm that an automatic system applying ex-
tended set of image descriptors can reach the efficiency
close to the dermatologist’ expert results.
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