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Abstract

Photometric stereo (PST) is a widely used technique of estimating surface normals from an image set. However, it
often produces inaccurate results for non-Lambertian surface reflectance. In this study, PST is reformulated as a sparse
recovery problem where non-Lambertian errors are explicitly identified and corrected. We show that such a problem
can be accurately solved via a greedy algorithm called orthogonal matching pursuit (OMP). The performance of OMP
is evaluated on synthesized and real-world datasets: we found that the greedy algorithm is overall more robust to
non-Lambertian errors than other state-of-the-art sparse approaches with little loss of efficiency. Along with providing
an overview of current methods, novel contributions in this paper are as follows: we propose an alternative sparse
formulation for PST; in previous PST studies (Wu et al., Robust photometric stereo via low-rank matrix completion and
recovery, 2010), (S. Ikehata et al., Robust photometric stereo using sparse regression, 2012), the surface normal vector
and the error vector are treated as two entities and are solved independently. In this study, we convert their
formulation into a new canonical form of the sparse recovery problem by combining the two vectors into one large
vector in a new “stacked” formulation in this domain. This allows for a large repertoire of existing sparse recovery
algorithms to be more straightforwardly applied to the PST problem. In our application of the OMP greedy algorithm,
we show that greedy solvers can indeed be applied, with this study supplying the first of such attempt at employing
greedy approaches to estimate surface normals within the framework of PST. We numerically compare the
performance of several normal vector recovery methods. Most notably, this is the first detailed test on complex
images of the normal estimation accuracy of our previously proposed method, least median of squares (LMS).
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1 Introduction
Shading in 2D images provides a valuable visual cue for
understanding the spatial structure of objects. Photomet-
ric Stereo (PST) is a powerful technique that exploits
shading information to directly estimate the 3D surface
orientation, i.e. normal vectors. In the classical PST prob-
lem, the input is a set of n images captured from a fixed
viewpoint under n different calibrated lighting conditions;
hence, there are n observations of luminance at each
pixel location. Under the assumption of a Lambertian
reflectance model, where the observed luminance is pro-
portional to the cosine of the incident angle and remains
constant regardless of the viewing angle, the relationship
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between n observations y ∈ R
n at each pixel and the col-

lection of n lighting directions L ∈ R
n×3 is formulated as

a linear equation group with respect to the normal vector
n ∈ R

3, i.e.,

y = Ln. (1)

We emphasize that there are indeed such a set of n
equation at each pixel. In PST, the linear system Eq. 1 is
solved via ordinary least squares (LS). The advantage of
PST over 3D laser scanning is that the former provides a
very high resolution (depending on the actual resolution
of the camera) and therefore can capture the fine details
of the surface that may not show up in the scanned model.
In addition, PST only requires a simple and inexpensive
hardware setup whereas 3D scanning devices are usually
costly and less portable. Innovative recent work [3, 4] can
reduce PST to a single-shot scenario in a different setup
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with spectral multiplexing and more than three colour
channels or polarized illumination.
Although the classical PST method almost always guar-

antees a visually plausible normal map, it in fact suffers
from a serious accuracy problem: the simple Lambertian
reflectance model adopted in PST does not strictly apply
to most real-world textures, which exhibit specular reflec-
tion properties to various degrees. Even if the surface is
indeed approximately Lambertian, other non-Lambertian
errors can be introduced by the interaction of the light and
the objects’ geometry, resulting in cast shadows, includ-
ing self-shadowing, as well as interreflections. Attached
shadows are also outside the simple shading model. Such
non-Lambertian observations, regarded as “outliers” in
a Lambertian-based linear model, may severely reduce
the accuracy of LS results. Hence, a PST method that is
robust to such non-Lambertian effects is needed in order
to generate a high-quality normal map.
Many improved PST methods have been proposed

since the original PST in an attempt to minimize the
effect of non-Lambertian components. These methods
either adopt a more sophisticated reflectance model to
accommodate non-Lambertian observations as “inliers”
(e.g. [5–7]) or rather keep the Lambertian model but
use robust statistical methods to rule out or reduce the
effect of non-Lambertian outliers (e.g. [8–10]). A typi-
cal example of the second category is the least median
of squares (LMS) approach used in our previous study

[11] (and see [10, 12]), in which the observations out-
side a certain confidence band are deemed to be outliers.
In this study, we again adopt the Lambertian model,
but solve for the normal vectors via a sparse represen-
tation framework that estimates both the normals and
non-Lambertian errors at the same time. This sparse
method is more closely related to the statistical-based
methods.

1.1 Sparse representation and recovery
It is well understood that ordinary LS fails to unambigu-
ously reconstruct a signal that is passed through an under-
determined linear system, where the number of unknown
variables exceeds that of linear equations (Fig. 1b). How-
ever, it has been shown that if the signal to be recov-
ered is sparse—having a considerable number of zero or
nearly zero entries (Fig. 1c)—then an accurate reconstruc-
tion of the signal is still possible via a sparse recovery
scheme [13].
The canonical form of a sparse recovery problem can be

stated as follows: given an underdetermined linear model
y = Ax, where A ∈ R

n×p is the so-called dictionary
matrix (n < p), and y ∈ R

n×1 is the vector consisting
of n scalar observations, find the unknown sparse signal
x ∈ R

p×1 such that

min
x

‖x‖0 s.t. y = Ax, (2)

Fig. 1 Stylized visualization of three examples of linear equation systems. A and y represent the design matrix and observations, respectively; x is
the unknown signal to be recovered. Positive and negative values are shown as coloured blocks, and zero entries are represented by black blocks.
a Overdetermined system, where there are more observations (5) than unknowns (3). b Underdetermined system, where there are more unknowns
(5) than observations (3). The signal x cannot be uniquely determined from such a system. c Underdetermined system with sparse signal. It is
possible to recover x using sparse recovery methods as long as we know that x is sparse, even though the system is underdetermined and the exact
positions of non-zero entries are not known a priori
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where ‖·‖0 represents �0 pseudo-norm, the number of
non-zero entries.
Equation 2 is generally a non-deterministic polynomial-

time (NP)-hard combinatorial problem [14]. In practice, it
is more feasible to solve a relaxed form.Wewill briefly dis-
cuss various alternative formulations and corresponding
solvers in Section 2.2.

1.2 Photometric stereo and sparse recovery
PST is often formulated as an overdetermined regres-
sion problem. The classical PST adopts three lights (hence
three observations of luminance at each pixel location)
[15] to solve for the 3D normal vectors. Later methods use
more lights ranging from four to hundreds [6, 10, 16, 17].
Recently, a few attempts have been made to represent
PST as an underdetermined system; firstly, in the case
of calibrated lighting directions [1, 2], as addressed here,
as well as for the alternative case of unknown lighting
conditions [18, 19], not studied in this report. Reconfigur-
ing PST as an underdetermined system means explicitly
modelling the non-Lambertian error for each observa-
tion as additional unknowns. Suppose there are n lights
(hence n equations for each pixel): the per-pixel number
of unknowns would be n + 3 (three normal vector com-
ponents and n non-Lambertian errors). As was already
pointed out, such a system cannot be unambiguously
solved through ordinary LS. Fortunately, if we make an
assumption that the majority of luminance observations
are approximately Lambertian, then the error vector is
essentially a sparse vector with a large number of zero
or approximately zero entries. Now that we have a sparse
representation of the PST problem, we can solve it using a
sparse recovery algorithm.
It has been shown by Wu et al. [1] and Ikehata et al. [2]

that sparse PST behaves significantly more robustly than
the classical PST method. However, the accuracy is con-
tingent on the solver. At present, the most accurate solver
for the sparse formulation is sparse Bayesian learning
(SBL) as tested by Ikehata et al. in [2]. In the current study,
we employ a modified form of the sparse representation
given in [2], but solve it via a different approach—greedy
sparse recovery algorithms.

1.3 Novel contributions
The main contributions of the current study are threefold:

1. We propose an alternative sparse formulation for
PST (Eqs. 10 and 11). In previous PST studies [1, 2],
the surface normal vector and the error vector are
treated as two entities and are solved independently.
In this study, we convert their formulation into a new
canonical form of the sparse recovery problem by
combining the two vectors into one large vector.
Although such a “stacked” formulation is not novel

(e.g. [20]), it is used in the context of surface normal
estimation for the first time. The advantage of this
formulation is that it allows for a large repertoire of
existing sparse recovery algorithms to be more
straightforwardly applied to the PST problem.

2. We apply a greedy algorithm called orthogonal
matching pursuit (OMP) [21–23], from information
theory, to solve the PST problem. It has been
previously demonstrated in [1, 2] that PST can be
solved by several sparse recovery algorithms that fall
into different categories, including augmented
Lagrangian rank-minimization [1], �1 optimization
approaches and probability-based methods [2].
However, the possibility of applying greedy solvers,
an important category of sparse recovery algorithms,
to the PST problem has never been explored. To the
best of our knowledge, this study is the first of such
attempt at employing greedy approaches to estimate
surface normals within the framework of PST.

3. We numerically compare the performance of several
normal vector recovery methods. Most notably, it is
the first time that the normal estimation accuracy of
our previously proposed method—LMS—has been
tested and quantitatively demonstrated on complex
models.

1.4 Overview
This paper is organized as follows: Section 2 provides a
short survey on recent robust PST and sparse recovery
methods. In Section 3, we provide a detailed description
of our sparse formulation and the OMP algorithm. Exper-
imental results and discussions are presented in Section 4,
followed by several possible future research directions
discussed in Section 5.

2 Related work
2.1 Robust photometric stereo
This section presents a brief overview of current PST
methods. Since the original non-robust Lambertian-based
PST [15], many methods have been proposed in an
attempt to address non-Lambertian effects such as spec-
ularities and shadows. These approaches usually adopt
a robust statistical method and/or an improved non-
Lambertian reflectance model.

2.1.1 Statistics-basedmethods
In statistics-based methods, a robust statistical algorithm
is employed to detect the non-Lambertian observations as
outliers and exclude them from the estimation process in
order to minimize their influence on the final result. Early
examples include a four-light PST approach in which the
values yielding significantly differing albedos are excluded
[16, 24, 25]. In a similar five-light PST method [17], the
highest and the lowest values, presumably corresponding



Zhang and Drew EURASIP Journal on Image and Video Processing  (2015) 2015:42 Page 4 of 27

to highlights and shadows, are simply discarded. Another
four-light method [26] explicitly included ambient illumi-
nation and surface integrability and adopted an iterative
strategy, using current surface estimates to accept or reject
each additional light based on a threshold indicating a
shadowed value. The problem with these methods is that
they rely on throwing away a small number of outlier
observation values, whereas our robust sparse methods in
the current study reaches the solution based on all obser-
vations, by correcting the non-Lambertian error of the
outlier observations.
Willems et al. [27] used an iterative method to esti-

mate normals. Initially, the pixel values within a certain
range (10–240 out of 255) were used to estimate an ini-
tial normal map. In each of the following iterations, error
residuals of normals for all lighting directions are com-
puted and the normals are updated based only on those
directions with small residuals. Sun et al. [28] showed that
at least six light sources are needed to guarantee that every
location on the surface is illuminated by at least three
lights. They proposed a decision algorithm to discard only
doubtful pixels, rather than throwing away all pixel val-
ues that lie outside a certain range. However, the validity
of their method is based on the assumption that out of
the six values for each pixel, there is at most one highlight
pixels and two shadowed pixels. Mallick et al. [29] intro-
duced a method based on colour space transformation to
separate specular and diffuse components. Holroyd et al.
[30] exploited the symmetries in the 2D slices of bidirec-
tional reflectance distribution function (BRDF) obtained
at each pixel to recover surface normal and tangent vec-
tors. Both [29] and [30] can be applied to a great variety of
surface reflectance, but they do not provide enough focus
on the robustness against shadow pixels. Julià et al. [31]
utilized a factorization technique to decompose the lumi-
nance matrix into surface and light source matrices. They
consider the shadow and highlight pixels as missing data,
with the objective of reducing the influence of these pixels
on the final result.
Some recent studies utilize probability models as a

mechanism to incorporate the handling of shadows and
highlights into the PST formulation. Tang et al. [32] model
normal orientations and discontinuities with two coupled
Markov random fields (MRF). They proposed a tenso-
rial belief propagation method to solve the maximum a
posteriori (MAP) problem in the Markov network. Chan-
draker et al. [33] formulate PST as a shadow labelling
problem where the labels of each pixel’s neighbours are
taken into consideration, enforcing the smoothness of the
shadowed region, and approximate the solution via a fast
iterative graph-cut method. Another study [8] employs a
maximum likelihood (ML) imaging model for PST. In this
method, an inlier map modelled via MRF is included in
the ML model. However, the initial values of the inlier

map would directly influence the final result, whereas our
sparse method does not depend on the choice of any prior.
A few other studies employ random-sampling-based

methods. Using three-light datasets, Mukaigawa et al.
[34] adopt a random sample consensus (RANSAC)-based
approach to iteratively select random groups of pixels
from different regions of the image, and the sampled
group whose pixels are all taken from diffuse regions are
used to calculate the coefficients in the linear equation.
RANSAC is also used in a multiview context [9] as a
robust fitting approach to select the points on a certain
3D curve. Drew et al. [10, 12] and Zhang and Drew [11]
employ a LMS method. Instead of taking samples from
different regions on the image, they use a denser image
set (50 lights) and sample only from the observations
at each pixel location. Non-Lambertian observations are
rejected as outliers and excluded from the following LS
step. Based on [33], Miyazaki et al. [35] used a median
filtering approach similar to LMS but also considering
neighbouring pixels. Instead of taking random samples,
they simply compare all the three combinations of obser-
vations, which is feasible for the small number of lights
used in their study. Although guaranteeing a high statisti-
cal robustness, these methods are computationally heavy
since they usually rely on a large number of samples to
take effect.

2.1.2 Non-Lambertian reflectancemodelling
Instead of statistically rejecting non-Lambertian effects
as outliers, another way to minimize their negative influ-
ence on surface normal recovery is to incorporate a more
sophisticated reflectance model to directly account for the
non-Lambertian components.
Tagare and de Figueiredo [36] constructed an m-lobed

reflectance map model to approximate diffuse non-
Lambertian surface-light interactions. In [25], a Torrance-
Sparrow model is employed to estimate the roughness
of the surface that is divided into different areas.
Similarly, Nayar et al. [37] adopt a Torrance-Sparrow
and Beckmann-Spizzichino hybrid reflectance model.
Georghiades [38] applied Torrance-Sparrow model to
handle the uncalibrated photometric stereo problem.
Other mathematical models to encode surface reflectance
include polynomial texture mapping (PTM) [39] and
spherical harmonics (SH) [40]. Drew et al. [10] proposed
a radial basis function (RBF) interpolation to handle the
rendering of specularities and shadows.
Other studies use reference objects to facilitate the esti-

mation of surface properties. In [41], an object with sim-
ple, known 3D geometry and approximately Lambertian
reflectance (for instance, a white matte sphere) is present
in the captured images. A look-up table is established
that relates luminance observations at each pixel location
and the surface orientation. Then, the surface properties
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of other objects with similar reflectance as the reference
object can simply be inferred from the look-up table.
This method, however, only applies to isotropic materi-
als. Hertzmann and Seitz [5] later revisited the idea of
including reference material. By adopting an orientation-
consistency cue assumption that two points on the surface
with the same orientation have the same observed light
intensity, they effectively cast PST as a stereoptic corre-
spondence problem. This approach is capable of handling
a wider range of anisotropic materials with a small num-
ber of reference objects, usually one or two. Similar to
[5], an appearance-clusteringmethod proposed by Koppal
and Narasimhan [42], also adopting the orientation con-
sistency cue, focuses on finding iso-normals across frames
in a captured image sequence, and a classical PST
approach may be applied later to obtain the accurate
value of the surface normals. Although their method does
not rely on the presence of a reference object, it does
require the image sequence to be densely captured on a
continuous path.
Recent studies attempt to solve a more complicated

problem where neither shape nor material informa-
tion of the object surface is available. Goldman et al.
[43] employed an objective function that contains terms
for both shape and material and proposed an iterative
approach where the reflectance and shape are alternately
optimized. The estimation of the material is an insep-
arable part of the reconstruction process so an explicit
reference object is no longer needed. Alldrin et al. [6] also
adopt a similar iterative approach that updates shapes and
materials alternately. Their formulation is non-parametric
and data-driven, and as such is capable of capturing an
even wider range of reflectance materials. Ackermann
et al. [7] proposed an example-based multi-view PST
method which uses the captured object’s own geometry as
reference.
Yang et al. [44] include a dichromatic reflection model

into PST for both estimating surface normals as well as
separating the diffuse and specular components, based on
a surface chromaticity invariant. Their method is able to
reduce the specular effect even when the specular-free
observability assumption (that is, each pixel is diffuse in at
least one input image) is violated. However, this method
does not address shadows and fails on surfaces that mix
their own colours into the reflected highlights, such as
metallic materials. Moreover, their method also requires
knowledge of the lighting chromaticity—they suggest a
simple white-patch estimator—whereas in our method,
we have no such requirement. Kherada et al. [45] pro-
posed a component-based mapping (CBM) method. They
decompose the captured images into direct components
(single bounce of light from a surface) and global compo-
nents (illumination onto a point that is interreflected from
all other points in the scene). They then model matte,

shadow and specularity separately within each compo-
nent. This method depends on a training phase, requires
accurate disambiguation of direct and global contribu-
tions and has a high computational load. Shi et al. [46]
introduced a bi-polynomial representation to model the
low-frequency component of reflectance and used only
the low-frequency information to recover shape and esti-
mate reflectance.
The problem with these methods is that they usually

do not work well against non-Lambertian effects that are
not accounted for by the surface reflectance alone, such
as cast shadows. In our current sparse method, we make
no assumption of the surface reflectance property and
treat all non-Lambertian effects (specularity and shadow)
equally.

2.1.3 Sparse formulation
Recently, a few studies began to adopt sparse representa-
tion into PST. Wu et al. [1] model the matrix of all lumi-
nance observations as a linear combination of Lambertian
and non-Lambertian components and represent the non-
Lambertian error as an additive sparse noise vector. Under
the assumption that most pixel observations approxi-
mately follow the Lambertian reflectance model, they
obtain the solution by finding a sparse vector such that the
rank of the Lambertian component matrix is minimized.
The formulation is known as robust principal component
analysis (R-PCA) in the field of sparse recovery. Specifi-
cally, they adopted a fast and scalable algorithm suitable
for handling a large amount of data points, i.e. the aug-
mented Lagrange multiplier method [47]. However, this
method requires a shadow mask to be specified explicitly.
Later, Ikehata et al. [2] reconsider PST as a pure sparse
regression problem and aim to minimize the number of
entries (i.e. the �0 pseudo norm) in the error matrix. They
also add an �2 relaxation term to account for cases when
the sparse assumption is violated. In order to avoid the
difficult combinatorial problem involved in the minimiza-
tion of �0 norm, they introduced two possible algorithms.
One is to relax the �0 pseudo norm into �1 norm, as
justified in [13, 48], and the solution is obtained via itera-
tively reweighted L1 minimization (IRL1) [49]. The other
method is a hierarchical Bayesian approach called SBL
[50]. It has been shown that SBL has an improved accu-
racy over IRL1 at the expense of lower efficiency, and both
IRL1 and SBL perform better than R-PCA [2]. Indepen-
dently of [1, 2], a similar, but quite complex, schema called
alternating direction method of multipliers (ADMM) is
developed in a recent paper by Adler et al. [51]. That paper
in part applies sparse coding to PST and thus provides
a motivating source for the present paper; however, our
papermakes use of a radically different formulation as well
as ties the PST problem into well-studied sparse solver
algorithms. Moreover, that paper is aimed at producing
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a matte image with specularity and shadows attenuated,
whereas the present work is aimed at accurate normal-
vector recovery. Whereas our use of OMP uses a greedy
algorithm where each component is picked one at a time,
in contrast, the ADMM approach adjusts all the compo-
nents in each iteration. The present study is the first to use
greedy approaches to surface normal estimation within a
PST framework.
Sparse methods have also found their use in uncali-

brated PST, where the lighting directions are not known
(but note that in this study we do assume known lighting
directions so that these works are somewhat peripheral).
Favaro et al. [18] incorporate the rank-minimization algo-
rithm proposed in [1] into the uncalibrated PST problem
as a pre-processing step to remove shadow and specular-
ity effects. Argyriou et al. [19] recently also adopt a sparse
representation framework to decide the weights for find-
ing the best illuminants to use, again with the lighting
directions unknown.

2.2 Sparse recovery methods
As was pointed out in Section 1.1, the canonical form of
the sparse recovery problem (Eq. 2) is NP-hard [14] and
cannot be solved efficiently as-is. In this section, we sum-
marize alternative formulations to Eq. 2 and several types
of solvers.
The first type of approach is convex �1 relaxation. It has

been shown that for a dictionary matrix A that satisfies a
certain restriction, Eq. 2 is likely to be equivalent to an �1
minimization problem [13, 48]:

min
x

‖x‖1 s.t. y = Ax, (3)

which can be solved via convex optimization techniques
such as interior-point (IP) methods [52], gradient projec-
tion [53], IRL1 [49] and so forth.
Alternatively, sparse recovery can be achieved via

greedy algorithms. The basic idea of such an algorithm
is employing an iterative method to find the collection
of non-zero entries, or support, of the signal x, and then
recover x via LS using only the observations in the sup-
port.
One of the most notable greedy algorithms is OMP

[21–23], an improvement over the simple matching pur-
suit (MP) algorithm [54]. In OMP, a column aj in A is
iteratively chosen such that aj is most greatly correlated
with the current residual r. Then, r is updated by taking
into consideration the contribution of aj. The algorithm
is terminated as a fixed number of non-zero entries are
recovered or other stopping criteria are met. Then, a sim-
ple LS is performed only on a submatrix ofA consisting of
the columns chosen by OMP, and the regressed result will
be assigned only to the signal entries corresponding to the
selected columns. The columns that are not selected by
OMP, on the other hand, will not be used in the final LS

step, and their corresponding signal entries are simply set
to zero.
In fact, OMP approximately solves the following k-

sparse recovery problem:

min
x

‖y − Ax‖2 s.t. ‖x‖0 ≤ k. (4)

Many state-of-the-art greedy algorithms nowadays are
based on OMP. Examples include regularized OMP
(ROMP) [55, 56], stagewise OMP (StOMP) [57], compres-
sive sampling matching pursuit (CoSaMP) [58], probabil-
ity OMP (PrOMP) [59], look ahead OMP [60], OMP with
replacement (OMPR) [61], A* OMP [62] etc.
Another type of solvers employ a thresholding step to

iteratively refine the recovered support, i.e. the selec-
tion/rejection of an entry at each step, is decided by
whether the value of a certain function dependent on this
entry falls below a given threshold. Algorithms in this
category include iterative hard thresholding (IHT) [63],
subspace pursuit (SP) [64], approximate message passing
(AMP) [65], two-stage thresholding (TST) [66], algebraic
pursuit (ALPS) [67] etc.
The fourth category is probability-based algorithms.

These methods assume the signal to be recovered follows
a specific probability distribution and solve the sparse
recovery problem with statistical methods such as ML
or MAP estimation. SBL [50] is one of the major algo-
rithms in this category and has already been applied in the
context of PST [2].

3 Sparse regression
3.1 Sparse formulation for photometric stereo
In this section, we explore the possibility of formulating
and solving PST as a sparse regression problem. Since
only the normal recovery is studied in this paper, we omit
the albedo α from all equations in this and the follow-
ing sections for simplicity and always use n to represent
the unnormalised surface normal vector unless otherwise
specified.
Here, we assume a Lambertian reflectance model with

an additional term e ∈ R to account for the non-
Lambertian error. Hence, the observed luminance y can
be expressed as:

y = l · n + e, (5)

where l ∈ R
3 and n ∈ R

3 represent the lighting direction
and surface normal, respectively. For each pixel, we have n
observations y = (y1, y2, . . . yn)T ∈ R

n. Now, let us write
Eq. 5 in vector form

y = Ln + e, (6)

where L = (l1, l2, . . . ln)T ∈ R
n×3 and e =

(e1, e2, . . . en)T ∈ R
n.

Equation 6, containing n linear equations but n + 3
unknowns (n components in e and three components in
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n), is effectively an underdetermined problem and as such
cannot be solved unambiguously. However, if the error e
is a sparse matrix, i.e. most or at least a great percentage
of its elements are zero, then it is still possible to recover
e exactly or almost exactly by solving the following sparse
regression problem:

min
n,e

‖e‖0 s.t. y = Ln + e. (7)

In Eq. 7, ‖·‖0 represents the �0 pseudo-norm or the
number of non-zero elements in e. This formulation,
however, has two major issues: (1) it is an NP-hard com-
binatorial problem and (2) real-world scenes may contain
a large variety of materials that are only poorly approx-
imated by the Lambertian reflectance model. For those
materials, it is very likely that e is not strictly sparse. Thus,
the equality constraint is very hard to be satisfied. Instead,
it is more realistic to use an inequality constraint with a
user-defined error tolerance ε

min
n,e

‖e‖0 s.t. ‖y − Ln − e‖2 ≤ ε. (8)

Alternatively, if we care more about how much the
reconstructed luminance approximates real observation
rather than the sparsity of e, then it would be more natural
to reformulate Eq. 8 as

min
n,e

‖y − Ln − e‖2 s.t. ‖e‖0 ≤ s, (9)

where the scalar s is the sparsity of vector e. To further
simplify Eq. 9, we propose merging n and e into one large
vector and treating them as one entity, i.e.

y = Ln + e
= Ln + Ie

= (L, I)
(
n
e

)

= Ax,

(10)

where I ∈ R
n×n is an n × n identity matrix, A = (L, I) ∈

R
n×(n+3) is a new merged dictionary matrix and x =

(nT, eT)T ∈ R
(n+3)×1 is the combined vector of all the

unknown variables. Hence, Eq. 9 can be rewritten as

min
n,e

‖y − Ax‖2 s.t. ‖x‖0 ≤ s. (11)

The stacked formulation was inspired by the work of
Wright et al. [20, Eq. 20]. However, in [20], both the signal
and the noise are assumed sparse, whereas in our case, the
signal (normal vector) has only three components and is
not at all sparse.
By formulating our problem in the form of Eq. 11, we

can now take advantage of existing algorithms to effi-
ciently achieve an accurate solution. One such solver is a
greedy algorithm known as OMP [21–23], which is known
for its high accuracy and low time-complexity. We will
describe this algorithm in Section 3.2 in detail.
Previously, Ikehata et al. [2] proposed a different for-

mulation to Eq. 11. They expressed the PST problem in a
so-called Lagrangian form, i.e.

min
n,e

‖y − Ln − e‖22 + λ‖e‖1 (12)

and applied two solving algorithms: IRL1 minimization
and SBL. They showed that SBL provides a more accurate
estimation but is more computationally expensive. Later,
in Section 4, we will show that our OMP solver produces a
more accurate result than SBL with comparable efficiency
to IRL1.

3.2 Orthogonal matching pursuit
Sparse recovery problems like Eq. 11 can be solved
via many different methods (see Section 2.2 for a brief
overview). Here, we choose to apply the classical greedy
OMP to our surface normal recovery problem. Given the

Fig. 2 Visualization of all observations of one pixel from dataset Caesar. a The pixel studied is marked with blue crosses at the same location
(X = 90, Y = 39) on all images numbered from 1 to 50. b Luminance observations arranged by the image index 1 to 50. c Luminance observations
sorted by incident angle. Blue dotted line shows the actual 50 observations; red circled line shows the approximated luminance using least squares;
black solid line represents the ground truth matte (Lambertian) luminance
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Fig. 3 Outliers identified by orthogonal matching pursuit. a Outliers with great non-Lambertian error (red circles) detected in iterations 4–10.
b Outliers with medium to great error (red circles) detected in iterations 4–18. c All outliers (red circles) detected as of iteration 28. Blue dotted lines
show actual luminance observations in all three plots

linear model in Eq. 10, the basic idea of OMP is to itera-
tively select columns of the dictionary matrix A that are
most closely correlated with the current residuals, then
project the observation y to the linear subspace spanned
by the columns selected until the current iteration. We
denote each column of A as Aj.
Let i be the current number of iterations and ri and ci

the residuals and the subset of selected columns in A at
the ith iteration, respectively. LetA(ci) and x(ci) represent
the columns indexed by ci in A and the entries indexed by
ci in the signal x to be recovered, respectively. The OMP
algorithm [23], as we here apply to our PST problem, can
be summarized as follows:

AlgorithmOrthogonal matching pursuit

1. Normalise each column of the dictionary matrix A
and denote the resulting matrix as A′, i.e. ‖A′

j‖2 = 1
for j = 1, 2, . . . , p. Initialize the iteration counter
i = 1, residual r0 = y and c0 = ∅.

2. Find a column A′
t (t ∈ {1, 2, . . . , p} − ci−1) that is

most closely correlated with the current residual.
Equivalently, solve the following maximization
problem:

t = argmax
j

‖A′T
j ri−1‖ (13)

3. Add t to the selected set of columns, i.e. update
ci = ci−1 ∪ t, and use A′(ci) as the current selected
subset of A′.

4. Project the observation y onto the linear space
spanned by A′(ci). The projection matrix is
calculated as follows:

P = A′(ci)(A′(ci)TA′(ci))(−1)A′(ci)T . (14)

5. Update the residuals with respect to the new
projected observation

ri = y − Py. (15)

6. Increment i by 1. If i > n/2 + 3 (= 28 for our typical
datasets of 50 images), then proceed to step 7,
otherwise go back to step 2.

7. Solve only for the entries indexed by ci in signal x
using the original, unnormalised design matrix A,
and simply set the rest of the entries to 0, i.e.

x(ci) = A(ci)†y (16)

and

xj = 0 for each j /∈ ci. (17)

8. Take the first three entries in x as the solutions for
the x, y and z component of the normal vector,
respectively,

n = (x1, x2, x3). (18)

Fig. 4Matte component recovered by orthogonal matching pursuit.
Blue dotted line represents actual luminance observations; black solid
line shows the actual matte model; red solid line shows the matte
recovered by OMP
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In our formulation Eq. 10, we merge the normal and
the errors into a large vector, so the components of the
two vectors are treated equally by OMP. In each iteration,
which column in the dictionary matrix is to be chosen
purely depends on its correlation with the current resid-
uals. Thus, there is no strict mathematical guarantee that
the normal vector components will be selected in the first
s iterations. Indeed, this failure could happen if the non-
Lambertian error vector accounts for most of the observa-
tions. However, since the observed luminance is usually a
function of the surface normal, it is expected that the nor-
mal vector components are more closely correlated to the

observations than the sporadic non-Lambertian errors. In
our experiments, all normal vector components are usu-
ally selected within the first few iterations (<10). On the
other hand, if one or two components of the surface nor-
mal are rather small, then they might not be selected by
our algorithm. However, since they are very close to zero
anyway, simply treating them as zero would not negatively
impact the accuracy of our estimation.
One of the biggest advantages of OMP is its low com-

putational cost and straightforward implementation. We
have found that it is significantly faster than LMS as well
as other state-of-the-art robust regression methods that

Fig. 5 Sample images from four synthesized datasets rendered with POV-Ray. From top row to bottom row: Caesar, Sphere, Buddha and Venus
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have been applied in the context of PST (see Section 4.3
and Fig. 21 for more details). Note that for our particu-
lar choice of the design matrix A, the correlation between
any column in the identity matrix and the residual r can
be simply represented by one element in r. Therefore,
the inner product in Eq. 13 may be reduced to finding
the maximum entry in r. This observation allows for an
even more efficient implementation. In this work, how-
ever, we still implement OMP according to Eq. 13 for
generality.

3.2.1 Normalization and orthogonality
As a requirement of the standardOMP algorithm, we used
the column normalised version of the design matrix A′
in the column selecting process. After normalization, the

first three columns in A′ no longer hold the correct value
of lighting vector components. In other words, it appears
that the lighting directions are modified by normaliza-
tion. However, this observation does not negatively affect
our results. In step 2 of OMP, the column most correlated
with the current residual vector is selected. Normalization
only makes sure one column does not have a numerical
advantage over another simply because it has a greater L2
norm. Therefore, normalization does not interferes with
the selection of the outliers. On the contrary, it enforces
the correctness of selection. It is also important to note
that after the outliers are selected, we use the original
unnormalised dictionary matrix A, instead of A′, to make
sure that the normal vector are recovered on the actual
lighting directions.

Fig. 6 Normal maps of a head statue of Caesar recovered using various methods. a Ground truth normal map; b colour wheel and colour bar used
for normal and angular error visualization, respectively. Angular error is measured in degrees. c, e, g, i, k,m Normal map recovered using LS, OMP,
IRL1, SBL, LMS and LMS mode, respectively. d, f, h, j, l, n Angular error of normal maps recovered using the aforementioned methods
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Another issue worth noting is the orthogonality of the
dictionary matrix A. It has been shown that if A satisfies a
restricted isometry property (RIP), then the exact recov-
ery of signal x may be possible [68, 69]. Essentially, RIP
specifies a near-orthonormal condition for A. Although
our dictionary matrix A unfortunately does not obey the
RIP property in its general form, we still argue that this
matrix is near-orthogonal: with our uniform light distri-
bution, the first three columns are indeed near-orthogonal
(the dot products between column 1–2, 1–3 and 2–3 are
8.85 × 10−8, −1.04 × 0−6 and −5.17 × 10−7, respec-
tively). The rest ofA is a large identity matrix I, which itself
is orthonormal. Also, due to the large number of zeros in
I, the dot product of any of the first three columns and any
column in I is a rather small number (10−3−10−2 scale on

average). Thus, although it is yet to be strictly proven, we
speculate that the dictionary matrix A in near-orthogonal
enough for our purpose of recovering the three com-
ponents of normal out of the 53-element signal. As our
results show, OMP indeed achieves highly precise recov-
ery of surface normal for most of the pixel locations (see
Section 4). We also show that even with a very biased
lighting distribution (such that the orthogonality of the
first three column are greatly reduced), OMP still provides
an accepted recovery with higher accuracy than other
sparse methods (see Section 4.2.4).

3.2.2 Stopping criterion
For simplicity, here we set the stopping criterion as a
fixed number (s) of iterations. We make a conservative

Fig. 7 Normal map of an ideal sphere recovered using various methods. a Ground truth normal map; b colour wheel and colour bar used for normal
and angular error visualization, respectively. Angular error is measured in degrees. c,e, g, i, k,m Normal map recovered using LS, OMP, IRL1, SBL, LMS
and LMS mode, respectively. d, f, h, j, l, n Angular error of normal maps recovered using the aforementioned methods
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assumption that 50% of the observed pixels are polluted
by non-Lambertian noise. Thus, for our typical datasets
of n = 50 images and normal vectors with three compo-
nents, the stopping criterion is i > s = n/2+ 3 = 28. This
criterion ensures that there is always a moderate number
of observations (25) available for regression.
An alternative choice of stopping criterion is based on

the residual, i.e. |r| < threshold. It has been proved
that in the matching pursuit and its orthogonal version,
OMP, are guaranteed to converge [21, 54]. Thus, such a
stopping criterion is theoretically viable. Indeed, we have
validated that in our OMP-based method, the residual
converges on all pixels used in our datasets. However, we
have also noticed in our tests that setting a hard thresh-
old for all pixels results in a slightly decreased accuracy

than using the sparsity-based criterion (results not
shown). Therefore, in the current study, we will continue
using the sparsity-based criterion, i.e. i >= 28.

3.3 Visual demonstration
In this section, we demonstrate how OMP enforces
robustness onto the normal recovery process by using
a simple example. Particularly, we use a synthesized
dataset Caesar (see Section 4.1.1 for more information)
and study all the 50 observations of one pixel (marked
by blue crosses in Fig. 2a) at location (X = 90,Y =
39) where the ground truth normal vector is ngt =
(−0.0780, 0.1828, 0.9801). The luminance profile of these
observations, sorted by incident light angle, are shown
in Fig. 2c (blue dotted line), along with the actual matte

Fig. 8 Normal maps of a head statue of Buddha recovered using various methods. a Ground truth normal map; b colour wheel and colour bar used
for normal and angular error visualization, respectively. Angular error is measured in degrees. c, e, g, i, k,m Normal map recovered using LS, OMP,
IRL1, SBL, LMS and LMS mode, respectively. d, f, h, j, l, n Angular error of normal maps recovered using the aforementioned methods
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model curve (black solid line), i.e. the theoretical values
of luminance, if the surface is purely Lambertian. It is
obvious from Fig. 2c that due to the existence of specular
reflection, a good percentage of observations (especially
when the incident angle is small) deviate from the values
predicted by a matte model.
The naive LS regression, when applied to this pixel,

attempts to approximate the values of all observations
without taking the actual matte model into consideration
(Fig. 2c, red line marked with circles). Naturally, the LS
result nLS = (−0.1578, 0.4852, 0.8600) deviates greatly
from the ground truth (−0.0780, 0.1828, 0.9801).
On the other hand, OMP first attempts to identify s

entries, one in each iteration, from the stacked signal x =
(x1, x2, . . . xn+3)T ∈ R

n+3 (see Eq. 10). Usually, these s
entries include three components for normal vectors (x1,
x2, x3) and (s − 3) components from the remaining n
entries (x4, x5, . . . , xn+3) that correspond to error values.
When the OMP algorithm as described in Section 3.2 is
applied to this pixel, it behaves as follows:

Iterations 1–3: The entries that correspond to normal
vectors, x3, x2 and x1, are selected in the order listed. This
is not a coincidence since the first three columns of the

dictionary matrix A are overall more strongly correlated
to the observations than any of the rest of the columns
that correspond to noise values. Also, we noticed that
these entries are in fact selected in order of the abso-
lute value of their corresponding normal components. For
instance, the third component of the ground truth nor-
mal (−0.0780, 0.1828, 0.9801) is greater than the other
two components. Therefore, x3 gets selected in the first
iteration.
Iterations 4–10: Entries x26, x15, x32, x9, x37, x21 and

x20 are selected sequentially. These entries correspond to
non-Lambertian errors at observation #23, #12, . . . #17,
respectively (marked with red circles in Fig. 3a). Note that
the indices of observations mentioned here (23, 12, . . . )
are equal to the entry indices found (26, 15, . . . ) minus
3, since the first three elements in x do not represent
errors. We notice that the corresponding observations
of these selected entries all have very high error val-
ues. As in iterations 1–3, these error entries are also
selected in order of their absolute value. For instance,
observation #23 (incident angle ≈ 32°) has the great-
est non-Lambertian error; therefore, its corresponding
error entry x26 is selected in iteration 4, before other
entries.

Table 1 Statistics for the angular error between the normal maps recovered for various methods and the ground truth, for three
synthesized datasets. All numbers are shown in degrees

25 % Quantile Median Mean 75 % Quantile STD

Dataset Caesar

LS 4.669 8.586 9.672 14.32 5.875

LMS mode 1.313 6.769 8.148 13.46 7.620

LMS 1.335 2.692 3.700 4.305 4.242

IRL1 1.854 3.339 5.276 6.440 5.080

SBL 1.576 2.441 4.487 4.488 5.158

OMP 0.7571 2.624 2.424 2.690 3.332

Dataset Sphere

LS 7.255 12.23 13.55 20.79 7.566

LMS mode 1.658 4.939 6.211 9.907 4.901

LMS 2.588 3.601 3.261 4.030 1.103

IRL1 3.045 4.253 4.960 5.662 3.119

SBL 2.762 3.620 3.671 4.239 1.822

OMP 2.617 3.051 3.179 3.991 0.9324

Dataset Buddha

LS 9.039 14.03 15.29 20.19 8.25

LMS mode 7.304 14.70 17.42 25.03 13.79

LMS 1.985 4.736 8.454 6.391 15.35

IRL1 4.066 7.354 10.08 13.28 9.178

SBL 2.412 5.295 8.034 9.333 9.479

OMP 1.289 3.049 7.065 5.495 14.17
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Iterations 11–18: Another eight entries x4, x10, x42,
x8, x14, x51, x48 and x5 are selected sequentially. Their
corresponding observations have medium error values
(Fig. 3b).
Iterations 19–28: Select the rest of the error entries x43,

x27, x50, x31, x16, x7, x13, x6, x53 and x25. The correspond-
ing observations have small error values (Fig. 3c).

Through the 28 iterations above, we have obtained 28
indices; 3 of them correspond to the normal-vector com-
ponents and the remaining 25 represent the observations
that have significant non-Lambertian effect, i.e. non-zero
values in signal x in the sparse regression problem y =

Ax (Eq. 10). Suppose the indices of 25 selected non-
Lambertian outliers are collectively represented as cout ⊂
{1, 2, . . . , 50}, we can obtain the normal vector n and an
error vector e by solving the following equation (which is
essentially the same as 16):

y = (L, I(cout))
(
n
e(cout)

)
. (19)

For our sample pixel, the above equation gives nOMP =
(−0.0877, 0.2282, 0.9697), which well approximates the
ground truth ngt = (−0.078, 0.1828, 0.9801) compared
to the naive LS result nLS = (−0.1578, 0.4852, 0.8600).

Fig. 9 Angular error of normal maps recovered using various methods (a–c). Red horizontal lines indicate medians. Upper and lower border of the
blue boxes represent third (Q3) and first quartile (Q1), respectively. Upper and lower whiskers show 1.0 interquartile range (the difference between
the upper and lower quartiles, the IQR) extended from Q3 and Q1, respectively. The whiskers show the quantile Q1 and Q3 extended by 1.0 IQR (as
opposed to the typically shown 1.5 IQR)
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Fig. 10 Three-dimensional surfaces reconstructed from normal maps. b Depth map recovered with the ground truth normal map. a, d, e, c, f Depth
maps recovered using LS, IRL1, OMP, LMS and SBL, respectively

Fig. 11 Sample images from three datasets of real-world scenes. From top row to bottom row: Gold, Elba and Frag
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Additionally, we can directly recover the matte compo-
nents by subtracting the error vector e from the actual
luminance observation y. Note that thematte components
obtained this way (Fig. 4, red solid line) almost coincide
with the ground truth matte model, exhibiting a high
degree of robustness.

4 Results and discussion
In this chapter, we present our experimental results and
observations on synthesized and real datasets. All experi-
ments were carried out on a Dell Optiplex 755 computer

equipped with an Intel Core Duo E6550 CPU and 4 GB
RAM, running Windows 7 Enterprise 64 bit. All algo-
rithms were implemented in MATLAB R2014a 64 bit.

4.1 Normal map recovery
We first examine the angular error of normal maps
recovered by different methods on both synthesized
and real datasets. For synthesized datasets, we quanti-
tatively inspect the difference between the ground truth
normal map and the recovered normal maps. For real
datasets without a ground truth map, on the other hand,

Fig. 12 Normal maps for three real-world dataset recovered using various methods. Columns a–c represent dataset Gold, Elba and Frag,
respectively. Rows 1–5 show results using LS, IRL1, SBL, OMP, and LMS, respectively
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the recovered normal maps are examined visually and
qualitatively.

4.1.1 Synthesized datasets
Four 3D objects are used for our synthesized datasets
in this study: Sphere, Caesar, Buddha and Venus. All
3D models are either created programmatically as geo-
metrical primitives (Sphere) or downloaded from the
AIM@SHAPE Shape Repository (Caesar, Buddha) [70]
and the INRIA Gamma research database (Venus) [71].
For each object, 50 images are rendered under various
lighting directions using raytracing software (POV-Ray
3.6) at a resolution of 200 × 200 (except for Venus, whose
resolution is 150× 250). Global illumination is enabled to
ensure a highly photorealistic appearance. All scenes fea-
ture significant specularity and large areas of cast shadow.
Caesar, Buddha and Venus are rendered with the spec-
ular highlight shading model provided by POV-Ray (a
modified version of the Phong model) [72], and Sphere
is rendered with a pure Phong model. A checkered plane
is intentionally included in the rendered scene as back-
ground to (1) allow for the cast shadow to appear and
(2) add further challenges to the algorithms since it intro-
duces local fluctuation in luminance while the surface nor-
mals remain constant. Sample images for these datasets
are shown in Fig. 5.
For each image set, the normal map is estimated using

the OMP method [21–23] as proposed in this study. For
comparison, we show the results for two other state-
of-the-art sparse recovery methods—IRL1 and SBL [2].

Another two of our previously proposed outlier detection-
based methods, LMS [10] and LMS mode finder [11],
are also applied and compared. Then, the angular error
between the normal map recovered using each method
and the ground truth is quantitatively measured. Note that
only results for Caesar, Sphere and Buddha are shown in
this section. The fourth dataset Venus is reserved for later
in Section 4.2.2 as a failure case.
We found these methods exhibit similar relative perfor-

mance to each other on all the three datasets tested in this
section—Sphere, Caesar and Buddha. In Caesar, the nor-
mal maps recovered using OMP (Fig. 6e) have a higher
quality than those by IRL1 (Fig. 6g) and SBL (Fig. 6i) both
qualitatively and quantitatively.
We observe that IRL1 and SBL, although much more

robust than LS, still produce a considerable error at
highly specular regions, most notably the cheek and
the forehead. As a result, the faces on IRL1 and SBL
normal maps appear to be more protruding than the
ground truth. Also, some fine details on these two nor-
mal maps, such as the wrinkles on the forehead, are not
well preserved. In addition, IRL1 and SBL fail to han-
dle the regions right beside the neck which are heavily
shadowed.
On the other hand, OMP shows a higher degree of

robustness than previous sparse methods at specularity-
affected regions (cheek, forehead and nose) as well as
shadowed regions (areas around the neck on the check-
ered background), resulting in a normal map closer to
the original. For example, the forehead appears flat on

Fig. 13 Performance of OMP and SBL on the MERL BRDF database. Top row shows sample images of material ID 10, 20, 30, . . . , 90, respectively
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OMP normal maps, closely resembling the ground truth.
The wrinkles are almost perfectly recovered. However,
OMP appears to be confused by the checkered pattern of
background, producing a small angular error in these flat
regions.
The LMS result (Fig. 6k) is better than IRL1 and SBL but

worse than OMP.
The 1D version of LMS—finder—produces a poorer

visual result (Fig. 6m) compared to the other robust meth-
ods, although it does give a statistically more reliable

result than LS. We will exclude this method from future
discussion but still show its result for reference.
The effect of specularity on normal map recovery can

be further seen from the results for the Sphere dataset
in Fig. 7. Again, IRL1 and SBL results are noisy in
the specularity-affected areas, whereas OMP gives much
cleaner results. LMS performs similarly to OMP. Interest-
ingly, a pentagon-shaped pattern is visible on each error
map because there are exactly five lights at each elevation
angle.

Fig. 14 Statistics for the angular error of normal maps recovered using sparse methods. Upper row: sample rendered images with phong_size
10–160, respectively, from left to right.Middle figure: boxplot of the angular error of normal maps under various degrees of specularity. Upper and
lower border of blue boxes represent third (Q3) and first quartile (Q1), respectively. Upper and lower whiskers show 1.0 interquartile range (IQR)
extended from Q3 to Q1, respectively. Red bars in blue boxes represent medians. At each specularity level, four sparse recovery methods are
compared, symbolized by different markers on the median bar: IRL1 (cross), SBL (triangle) and OMP (diamond). Red dots are outliers distributed out
of the error bar range. Lower figure: the medians of the angular error
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For Buddha (Fig. 8), OMP again produces a bet-
ter overall result than IRL1 and SBL. However, the
relatively poorer performance of the greedy methods
in shadowed concave regions now becomes a more
significant problem due to the prevalence of concave
regions such as creases on the clothes. The angu-
lar error distribution of the LMS result is similar
to that of OMP, though with slightly greater overall
error.

From the normal map recovery results obtained on the
three datasets, we can see that OMP generally performs
better than IRL1 and SBL on convex objects and are more
resistant to specularities and cast shadows. The statistical
result of the angular error of the normal maps recovered
with different methods are listed in Table 1. OMP result
has the lowest mean, median, 25 % and 75 % quantiles,
as well as standard deviation for all three datasets men-
tioned above. The LMS result is better than IRL1 and SBL,

Fig. 15 Normal maps of the Venus dataset recovered using sparse methods. a Ground truth normal map. b Colour wheel and colour bar used for
normal and angular error visualization, respectively. Angular error is measured in degrees. c, e, g, i Normal maps recovered using LS, OMP, IRL1 and
SBL, respectively. d, f, h, j Angular error of normal maps recovered using the aforementioned methods
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but worse than OMP. These results are also depicted in
Fig. 9. Curiously, we notice that the estimation accuracy is
generally lower on Sphere than Caesar, despite the simple
geometry of the former. This may be jointly caused by the
unique lighting model, surface colour and material that
Sphere is rendered with. The exact explanation for this
observation requires further investigation in the future.
As is witnessed on the Buddha dataset, OMP performs

less optimally than IRL1 and SBL on small concave regions
that are rarely illuminated. This problem also occurs for
Caesar on the medial side of the eyes and under the

eyebrows. It is a lesser concern for objects that are gen-
erally convex such as Caesar and Buddha but may exert
a strong negative influence on a scene that contains large
concave areas. We will demonstrate the result for such a
scene using Venus in Section 4.2.2.

4.1.2 Comparison via reconstructed surfaces
Using the normal maps recovered with various methods,
we also reconstructed the 3D surface with the Frankot-
Chellapa method [73] for direct comparison of the shape.
Here, only the reconstruction result for Caesar is used

Fig. 16 Robustness of sparse recovery methods against Gaussian noise. Upper tow: sample images rendered with Gaussian noise of mean = 0.5 and
STD = 0–0.016 , respectively, from left to right.Middle figure: boxplot of the angular error of normal maps under various degrees of Gaussian noise.
Upper and lower border of blue boxes represent the third (Q3) and first (Q1) quartiles, respectively. Upper and lower whiskers show 1.0 IQR extended
from Q3 and Q1, respectively. Red bars in blue boxes represent medians. At each noise level, three sparse recovery methods are compared,
symbolized by different markers on the median bar: IRL1 (cross), SBL (triangle) and OMP (diamond). Lower figure: the medians of angular error
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for demonstration. It is apparent from Fig. 10 that in the
LS, IRL1, and SBL results, the overall shape of the face
appear to be more protruding then it actually is, espe-
cially at the eyebrow ridge and the nose, whereas the
OMP manages to preserve the shape accurately. Again,
the LMS result appears to be less protruding than IRL1
and SBL results, although still not as accurate as OMP.
We speculate that the exaggerated convexity originates
from the inaccurately estimated normal vectors at high-
light areas, such as the forehead and the nose. Since our
greedy algorithm generally provides a better recovery in

those regions, they naturally yield a more accurate shape
recovery.

4.1.3 Real datasets
Three datasets of real-world scenes are tested in this
study: Gold, an ancient golden coin, Elba, an Italian high-
relief sculpture, and Frag, a much-decorated golden frame
(that surrounds a painting by Fragonard). Sample images
of the three datasets are shown in Fig. 11.
The advantages and disadvantages of the methods we

found using synthesized datasets are also observed in the

Fig. 17 Robustness of sparse recovery methods against salt and pepper noise. Upper row: sample images rendered with salt and pepper noise of
density = 0–4 %, respectively, from left to right.Middle figure: boxplot of the angular error of normal maps under various degrees of salt and pepper
noise. Upper and lower border of blue boxes represent third (Q3) and first (Q1) quartiles, respectively. Upper and lower whiskers show 1.0 IQR
extended from Q3 and Q1, respectively. Red bars in blue boxes represent medians. At each noise level, four sparse recovery methods are compared,
symbolized by different markers on the median bar: IRL1 (cross), SBL (triangle) and OMP (diamond). Lower figure: the medians of angular error
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real datasets. Most images in dataset Gold have a large
area of cast shadow. The influence of shadow can be
clearly seen on the normal maps recovered by LS, IRL1
and SBL (Fig. 12a (1–3)) but is completely eliminated by
OMP (Fig. 12a (4)). As for Elba, the scene contains a great
number of small concave regions such as the pleats on the
curtain. As expected, the greedy algorithm fail at these
regions. Again, we notice that the LS, IRL1 and SBL results
are more protruded than greedy results for both Gold and
Elba (Fig. 12a (1–5), b (1–5)). Although there is not a
ground truth normal map to support our speculation, it is
reasonable to argue that the non-greedy algorithms exag-
gerate the convexity for Elba, as was the case for Caesar

(Fig. 10). The complex geometry of the object in our third
dataset—Frag—accounts for the noisy estimates observed
in concave regions in the greedy normal maps (Fig. 12C4
and C5). Note that the non-greedy results also show a
large degree of inaccuracy in these regions (Fig. 12C1–
C3), but in a less noticeable manner since these artefacts
are usually smoothly blended into less-affected areas.

4.1.4 MERL database
We also tested the performance of OMP on 95 materi-
als from the MERL BRDF database [74]. Each material
is rendered on a sphere at a resolution of 200 × 200 on
50 images of various lighting directions. The performance

Fig. 18 Robustness of sparse recovery methods against light calibration error. Top row: leftmost plot shows actual light positions used for
generating the dataset. Remaining plots show miscalibrated light positions with angular perturbations (2°–32°, from left to right) from the actual
light positions at random directions.Middle figure: boxplot of the angular error of normal maps under various degrees of light calibration error.
Upper and lower border of blue boxes represent third (Q3) and first (Q1) quartiles, respectively. Upper and lower whiskers show 1.0 IQR extended from
Q3 and Q1, respectively. Red bars in blue boxes represent medians. At each angular perturbation level, four sparse recovery methods are compared,
symbolized by different markers on the median bar: IRL1 (cross), SBL (triangle) and OMP (diamond). Bottom figure: the medians of angular error
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pattern of OMP is very similar to SBL (Fig. 13): both
methods are good at handling materials with an insignif-
icant specular component (e.g. #10, red-specular-plastic).
On the other hand, they both show decreased accu-
racy on shiny, strongly non-Lambertian metallic materials
(e.g. #90, silver-metallic-paint) probably due to the viola-
tion of the sparsity assumption. Overall, the mean angular
error of OMP over all 95 materials is 6.3174°, on par with
SBL (6.5370°), and both methods significantly outperform
the naive LS (10.8027°).

4.2 Robustness
To further understand of how well these methods behave
in the presence of non-Lambertian effects, we tested their
performance on Sphere with varying degrees of specular-
ity and on Venus, where a large portion of the scene is
concave, and as such, is heavily polluted by cast shadow.
To find out the robustness of these methods against exter-
nal error introduced by the experimental setup, we also
tested the methods with additive image noise and light
calibration error.

4.2.1 Specularity
We rendered five datasets of the same object Sphere
with various sizes of highlight area (Fig. 14, top row)
and tested how the size of the specular region affects
the performance of our sparse regression methods. The
size of the highlight is controlled by the phong_size
parameter in POV-Ray [72]. We found that although
the accuracy of all three methods compared (IRL1, SBL,
OMP) decreases as the specular size increases, the greedy
algorithm is less affected (Fig. 14, middle and bottom
figures).

4.2.2 Shadow and concavity: a failure case
In Section 4.1.1, we have already noticed the possibility
that the performance of our greedy algorithmmay be neg-
atively affected at shadowed concave regions. Here, we use
theVenus dataset to further demonstrate this observation.
In Venus (Fig. 5, bottom row), the convex foreground (the
Venus statue) and the concave background (the dome) are
well separated, allowing us to clearly inspect the perfor-
mance of algorithms on different regions.
The result is shown in Fig. 15. As speculated, OMP

shows robustness in shiny, convex regions such as the
outer rim of the dome, and on the statue itself, but fails
on the heavily shadowed background. The other three
methods (LS, IRL1, SBL), on the contrary, suffer from
noticeable angular error in convex areas. However, they
are less severely affected by shadow and concavity on the
background than greedy methods. Overall, the normal
map recovered with the greedy approach are less smooth
for Venus due to the inaccurate estimation of normal
vectors in the concave regions.

4.2.3 Image noise
We tested three sparse algorithms (IRL1, SBL and OMP)
against Gaussian noise as well as salt and pepper noise. For
Gaussian noise (Fig. 16), the accuracy of all three methods
drastically decreases as the noise level increases, although
OMP appears to be slightly more adversely affected. On
the other hand, all sparse methods are quite insensitive to
salt and pepper noise (Fig. 17).

4.2.4 Lighting
There might be cases when the lighting directions are not
properly calibrated. That is, the assumed lighting direc-
tions deviate from their actual values. In this test, we
introduce for every assumed lighting vector a fixed angu-
lar perturbation, ranging from 2° to 32°, at a random
direction, while keeping the actual arrangement of lights
unchanged.
We tested the performance of the sparse methods under

various degrees of light calibration error on the Caesar
dataset. The actual arrangement of lights is displayed in
Fig. 18 (leftmost plot on the top row). As an increasingly
greater random perturbation is added to the assumed
lighting directions, the angular error gradually increases
for all sparse methods. Note that OMP appears to be
susceptible to the random calibration error the most,
especially when the perturbation reaches 32°.
Also note that in Fig. 18 (bottom), the median of the

angular error produced by OMP slightly decreases at 16◦
compared to previous conditions. We believe that this is a
fluctuation caused by the particular arrangement of lights
at this condition. Despite this decrease in the median
of error, the widths of the error distributions steadily
increase at 16◦ for all three methods, as can be clearly seen
from Fig. 18 (middle).
It was reported that the number of lights has a large

impact on the accuracy of sparse photometric stereo
recovery [2]. We found that our OMP-based method also
shows a similar but somewhat greater dependency on the

Fig. 19Mean angular error of recovered normal maps under different
numbers of lights
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number of lights (Fig. 19). This observation indicates that
the OMP works best when a large number of lights are
present.
We also investigated the performance of sparse meth-

ods under a highly biased lighting distribution. We used
25 lights; 23 of them is located on the left or upper-
left hemisphere and the other two on the right (Fig. 20).
Under such a biased lighting, OMP still has the best mean
angular error (8.2140°) compared with IRL1 (9.1173°), SBL
(8.6561°) and LS (12.0726°).

4.3 Efficiency
The actual per-pixel processing time for the MATLAB
implementation of the algorithms tested in this study is
reported in Fig. 21. The maximum number of iterations
for IRL1 and SBL are set to 100 although iteration will be
terminated as soon as another stopping criterion is met;
OMP always terminates after exactly 28 iterations for our
datasets of 50 images; for LMS, the number of iterations
is fixed at 1500.
InOMP, the operation with the highest asymptotic com-

plexity is the inversion of a k × k matrix (where k is
the number of selected columns) in Eq. 14. With a naive
Gauss-Jordan elimination method, the inversion takes
O(k3), which is asymptotically O(n3) since k ≤ n/2 + 3.
Since the above operation is repeated n/2 + 3 times, the
overall time complexity of our OMP algorithm is O(n4).
In our current implementation, the running time of OMP
(4.823ms/pixel) is comparable to IRL1 (3.338ms/pixel).
LMS is the slowest (57.48ms/pixel), though it can bemade
faster with fewer iterations at the expense of accuracy.

Fig. 20 Recovery accuracy under highly biased lighting distribution.
Polar plot shows the arrangement of lights. Upper and lower border
of blue boxes represent third (Q3) and first (Q1) quartiles, respectively.
Upper and lower whiskers show 1.0 IQR extended from Q3 and Q1,
respectively. Red bars in blue boxes represent medians

Fig. 21 Average running time (per pixel) of photometric stereo
algorithms measured in milliseconds

4.4 Summary
Based on the experimental results above, we have come
to the conclusion that our greedy algorithm overall has
a higher accuracy than L1 minimization and SBL with a
comparable efficiency, though OMP may be less robust
in poorly illuminated regions. LMS is close to the greedy
sparse algorithm in accuracy, despite its low efficiency.
The algorithms tested in this chapter are summarized and
compared in Table 2.

5 Conclusions
In this study, the classical PST is reformulated in terms
of the canonical form of sparse recovery, and a greedy
algorithm—OMP—is applied to solve the problem. Our
formulation is different from previous ones [1, 2] in that
the former incorporates normal vector components and
non-Lambertian errors in one combined vector, allowing
for the straightforward application of OMP. In order for
OMP to obtain normal estimations, the normal vector
components have to be selected before the iteration stops.
Although it is not theoretically guaranteed, we observed
that the normal components are always selected within
the first few iterations in the datasets we tested, unless
some components are indeed zero or very close to zero.
We also speculate that the dictionary matrix in our for-
mulation is near-orthonormal and satisfies the conditions
required by OMP to achieve exact recovery.
We found that, in general, our greedy method OMP

outperforms other state-of-the-art sparse solvers such as
IRL1 and SBL [2] with comparable efficiency. In partic-
ular, OMP provides a more numerically accurate esti-
mation of normal vectors in the presence of common
non-Lambertian effects such as highlights and cast shad-
ows, although it may occasionally fail at concave areas
that are poorly illuminated. In addition, all sparsemethods
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Table 2 Qualitative comparison of photometric stereo algorithms

Robustness
Smoothness Efficiency

Overall Highlight Shadow Concavity

LS Very low Very low Very low Very low Very high Very high

LMS Very high Very high Very high – Low Very low

LMS mode Low Low Low – Medium Very high

IRL1 High High High Medium High High

SBL High High High Medium High Low

OMP Very high Very high Very high Low Medium High

The performance is evaluated on a five-level scale: ‘Very low’, ‘low’, ‘medium’, ‘high’ and ‘very high’. Fields that are not available are indicated by a ‘–’ sign

tested are reasonably robust against additive image noise
and lighting calibration error.
Another two outlier-removal based methods—LMS and

LMS mode finder—are also tested in this study for com-
parison. LMS results are overall statistically more accurate
than IRL1 and SBL but less so than OMP. LMS mode
finder, the 1D simplification of LMS, shows some robust-
ness against non-Lambertian errors, especially highlights
but performs poorly against cast shadows.
This study opens up many possible directions for

future research. First, a great number of sparse recov-
ery algorithms have already been proposed in the past
few decades, each designed for a specific formulation.
Even within the domain of greedy algorithms, there are
many other potential candidates aside from OMP that
may be directly applied to the PST problem. It would
be interesting to explore this large repertoire of sparse
formulations and recovery algorithms to find an optimal
method.
It has been shown that sparse methods such as IRL1

and SBL can be used to estimate the lighting directions
in the context of uncalibrated PST [19]. It is highly pos-
sible that greedy algorithms such as OMP can also be
extended to be applied for such a purpose. Future stud-
ies may reveal more applications of greedy algorithms in
different aspects of the PST framework.
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