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Abstract

With the advances in digital camcorders, video recapturing (screen camcording), which is also called camcorder theft,
is becoming a significant problem. Nevertheless, little research on recaptured video detection has been undertaken.
In this paper, an automated method for the detection of recaptured videos is proposed based on the shot-based
sensor pattern noise (SPN). The SPN, which is considered to be the fingerprint of digital imaging sensors, is used due
to its identifiable attribute. Furthermore, the differences between the production processes of the original videos and
recaptured videos are analyzed, and this results in the shot-based method being proposed. Moreover, the SPN
merging and high-frequency map are derived in order to overcome the low quality of the shot-based SPN. Empirical
evidence from a large database of test video, including compressed and scaled video, indicates that superior
performance of the proposed method.
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1 Introduction
With greater accessibility to the Internet than ever before,
a significant amount of information is being shared online.
Furthermore, many people are now able to communicate
with each other through the Internet without the limita-
tions of the time and space. The advantages of the Internet
has improved the quality of life; however, the increased
use of the Internet has also resulted in many misuses. The
most common misuse is copyright infringement. Various
types of digital content have been uploaded by pirates,
and they have spread quickly through illegal pathways.
Among these types, pirated movies have resulted in sig-
nificant problems in the film industry worldwide. Most
illegal copies are pirated by video recapturing, which
includes screencasting and screen camcording. Screen-
casting, which is also known as video screen capture, is
a digital recording of the output from a computer screen;
however, it is not a common video recapturing technique
because direct access to the machine that is playing the
movie is required. In contrast, screen camcording, which
is themost commonmethod of video recapturing, records
a movie that is being projected on a movie screen. It only
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requires a single camcorder to pirate a movie in a movie
theater.
The most significant problem of pirated movies recap-

tured by camcorders is that the illegal copies appear on the
Internet just a few hours after a film’s release and before
the legal DVDs become available. Only one camcorder is
needed to copy a movie and to trigger massive unautho-
rized reproductions and distribution of millions of illegal
copies of the movie. The annual amount of revenue loss
caused by these illegal copies has reached US$ 6.1 billion,
and approximately 90 % of these illegal copies are pirated
via video recapturing [1]. For this reason, many movie
associations including the Motion Picture Association of
America (MPAA) and the Federation Against Copyright
Theft (FACT) refer to this act as camcorder theft, which
is a type of content theft, and they consider it to be the
most significant problem facing the film industry in the
modern era.
In order to mitigate the amount of unauthorized recap-

turing activities, most countries have enacted statutes that
prohibit unauthorized recording in motion picture exhi-
bition facilities, and they have conducted anti-recapturing
campaigns including public education/training and re-
ward programs for identifying illegal recorders. With
these efforts, the frequency of illegal recapturing has
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decreased; however, the very nature of the digitalized con-
tent allows one successful recapture in any theater in
the world to become significant through duplication and
distribution of the recaptured video. As a result, video
recapturing remains one of the most significant threats to
the film industry worldwide.
A key problem with catching pirated and bootlegged

copies of movies is that it requires significant amounts
of man-hours to manually inspect the downloaded con-
tent. Furthermore, with high-end camcorders and the
increasing quality of camcording, the quality of the recap-
tured videos is improving, which contrasts with the
early recaptured videos that were easily detected by the
naked eye. The increase in the quality of the recap-
tured videos has accelerated the revenue loss in film
industries.
In order to counter camcorder theft, we present an auto-

mated recaptured video detection method that is based
on the characteristics of sensor pattern noise (SPN). The
proposed method is based on the recaptured video being
recorded by a single digital camcorder. In the experi-
ments, 400 recaptured videos were used to verify the
performance of the proposed method. Originally, video
recapturing included screen camcording, and screencast-
ing, among othermethods. However, this study focuses on
the detection of screen camcording.
The remainder of this paper is organized as follows.

Section 2 discusses the related work in recaptured content
detection. Section 3 presents the preliminary understand-
ing and approach to detecting recaptured videos. The
proposed method is presented in Section 4. The experi-
mental results and conclusion are presented in Sections 5
and 6, respectively.

2 Related work
In order to counter content recapturing, various tech-
niques have been investigated. These techniques can be
classified into four categories. The first category is related
to camcorder recapture resilient watermarking. Various
watermarking schemes that are robust to analog-digital
conversion attack have been proposed [2–5]. In partic-
ular, Lee et al.’s method estimates the position of the
camcorder piracy through geometric distortion estima-
tion based on the auto-correlation function [2]. However,
the watermark degrades the quality of the original video
and the watermark needs to be inserted before the film
screening.
The second category involves video recapturing preven-

tion. Yamada et al. have undertaken a number of studies
[6–8]. In these studies, an infrared light is projected on
the theater screen to contaminate the video content of the
recaptured videos. Furthermore, the real-time warning
system is provided using reflected infrared light. However,
a significant installation cost is required and the infrared

light is blocked by IR-cut or IR-absorb filters inside digital
camcorders. Furthermore, the real-time warning system
suffered from poor detection results when the pirate was
positioned in a diagonal (5°) seat.
The third category is recaptured image detection. The

support vector machine (SVM) classifier is the most fre-
quently used means of recaptured image detection. Cao
et al. proposed a method of identifying the images recap-
tured from LCD screens [9]. They extracted 155 features
(local binary patterns, multi-scale wavelet statistics, and
color features) from a single image. Gao et al. presented a
general model for image recapturing [10] and 166 features
(specularity, surface gradient, color histogram, chromatic-
ity, contrast, and blurriness) were used to identify the
recaptured images.
The fourth category includes studies on the recaptured

video detection. Only a small number of studies have been
undertaken in recaptured video detection. Image features
are not used; instead, geometry, global jitter, ghosting
artifact, and SPN are used. Wang et al. proposed a re-
projected video detection method that utilizes geometric
parameters [11]. This method estimates the skew within
the intrinsic matrix introduced by the recapturing cam-
corder. If the estimated skew is not zero, the video is deter-
mined to be a recaptured one. However, the robustness of
this method decreases as the recapturing camcorder plane
approaches a configuration parallel to the cinema screen.
Moreover, validation in real sequences (a single 42-frame
segment) was limited. Visentini-Scarzanella et al. pro-
posed a recaptured video detection method using scene
jitter [12]. The recaptured video is assumed to contain
uniform jitter that is caused by handheld camcorders.
The model for the uniform additive jitter noise is trained
and used in identifying recaptured videos. However, the
recapturing process is typically undertaken using a tripod,
which provides stability and reduces jitter. In addition, the
experimental results exhibited a high false positive ration
(FPR) (30 %). Bestagini et al. proposed a video recapture
detectionmethod based on ghosting artifact analyses [13].
The ghosting artifact is modeled for the analyses, and
the specific conditions where the ghosting artifact does
not have periodicity are targeted. However, the videos
that have undergone inter-frame interpolation (including
frame rate change) would exhibit a high FPR. Jung et al.
proposed a recaptured video detection method using
the shot-based SPN [14]. The shot-based SPNs are esti-
mated and examined to identify the recaptured videos.
Warshall’s algorithm [15] is adopted to resolve the low-
quality problem of the shot-based SPN; however, none
of the techniques that enhances the quality of esti-
mated SPNs is used. As a result, this scheme is lim-
ited in detection accuracy. The proposed method is
based on this study and deals with the limitation of this
method.
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3 Approach to detecting recaptured videos
This section presents our approach to detecting
recaptured videos. First, we discuss some preliminary
knowledge. Afterwards, we describe the video recapturing
process and the properties of the recaptured videos.
Then, we give our assumptions of the recaptured videos.
Finally, the approach to identifying the recaptured
videos is deduced based on the suggested assumptions.

3.1 Preliminary understandings
3.1.1 Shot
A shot, which is recorded by one camera, is a basic tempo-
ral unit in a film. The term “shot” can refer to two different
parts in the filmmaking process: first, in production, a
shot is the moment from when the camera starts record-
ing until the moment it stops. Second, in film editing, a
shot is the continuous footage or sequence between two
edits or cuts. The second definition of a shot is used in this
paper because it is more suitable for the proposedmethod.
When one shot ends and another begins, it is called a “shot
change.” Shot changes can be detected using shot change
detectors [16].

3.1.2 Sensor pattern noise (SPN)
Digital recording devices such as digital cameras and
digital camcorders adopt various types of digital image
sensors, e.g., a charge-coupled device (CCD), complemen-
tary metal-oxide-semiconductor (CMOS), and a junction
field-effect transistor (JFET). The digital image sensor
consists of numerous photon detectors that convert pho-
toelectrons into electrical signals using the photoelectric
effect. The strength of the electrical signal is affected by
the sensitivity of the photon detectors to light. The light
sensitivity of the photon detectors varies slightly depend-
ing on the imperfections created during the manufactur-
ing process of the silicon that forms the photon detectors.
This difference in light sensitivity of each pixel generates
uncorrelated multiplicative pattern noise. Consequently,
every digital sensor casts a unique sensor pattern noise
(SPN) onto images (frames) it takes. The SPN acts as a
sensor fingerprint that identifies a source digital imaging
device. Using the identifiable attribute of SPN, source dig-
ital camera (camcorder) identification methods have been
proposed [17–19]. In order to identify the source digital
camera, the fine quality of the reference SPN is estimated
from uniform images, e.g., blue sky images. Then, the test
SPN is estimated from the test image. If the correlation
value calculated using the reference SPN and test SPN is
higher than a specified threshold, the digital camera is
determined to be the source camera of the test image.

3.2 Video recapturing model
The video recapturing process can be modeled through
expanding the general image recapturingmodel presented

by Gao et al. [10]. Figure 1 depicts the overall process of
the original video shooting and recapturing. The video
recapturing process includes three steps: the first capture
(scene shooting), the display on a medium m (including
the beam projector and the LCD screen), and the recap-
ture. Assume that N1 camcorders (c(1,1), . . . , c(1,N1)) and
N2 camcorders (c(2,1), . . . , c(2,N2)) are set up for the first
capture and the recapture, respectively. Then, the shot
(first capture) s(x), which captures the real scene radiance
R(x) using the ith (i = 1, . . . ,N1) camcorder c(1,i) of the
first camcorder set, is described as follows:

s(x) = f(1,i)(R(x)), (1)

where f(1,i) denotes the camera response function (CRF)
of the camcorder c(1,i). The term “shot” is used instead
of “frame” because each frame belonging to one shot has
common properties. After the first capture, s(x) under-
goes various post-processing P1, and then the shot s̃(x) is
completed.

s̃(x) = P1(s(x)) = P1(f(1,i)(R(x))) (2)

The post-processing P1 includes geometric operations,
A/D conversion, frame rate change, recompression,
inserting computer graphics (CGs), and so on. The shot
screened on the medium m, which includes the beam
projector and wide screen in the example of Fig. 1b, is
expressed as follows:

sm(x) = fm(s̃(x)). (3)

The recaptured shot S(x), which is recorded using the
jth (j = 1, . . . ,N2) digital camcorder c(2,j) of the second
camcorder set, is written as follows:

S(x) = f(2,j)(Pm(sm(x)α(x) + E(x)(1 − α(x)))), (4)

where f(2,j), Pm, E, and α denote the CRF of the camcorder
c(2,j), the geometric processing, which includes rotation,
shearing, and translation that occurs from the piracy
camera positioning during recapturing, the radiance of
the recapture environments, and the weight factor of E,
respectively. The recaptured shot s2(x) also undergoes
post-processing P2, which only includes simple operations
such as cropping, scaling, and recompression to reduce
the file size for uploading. Then, the final recaptured shot
is acquired as follows:

S̃(x) = P2(S(x)). (5)

3.3 Assumptions of recaptured videos
Based on the video recapturing model, the assumptions of
the recaptured videos are condensed into lists below.

A. Recaptured videos are recorded by digital
camcorders.
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(a) (b)
Fig. 1 An example of the video recapturing process in a theater. a Scene shooting and original video frames and b original video
projection/recapturing and recaptured video frames

B. A single recaptured video is recorded by a single
digital camcorder.

C. Recaptured videos undergo minimal post-processing.

From the listed assumptions of the recaptured videos,
the shot-based analysis method is proposed as a favor-
able solution for detecting recaptured videos. Because the
CRF signal of the recapturing camcorder remains clearly
in recaptured shots and every recaptured shot is recorded
using a single camcorder, the recaptured videos can be
detected by verifying the coherence of the CRFs that are
estimated from each shot.
In this context, SPN is suggested as the suitable fea-

ture for the recaptured video detection. SPN is the best
solution for identifying a digital recording device and it
usually withstands video processing. The shot-based SPNs
estimated from each shot in a recaptured video are corre-
lated to each other because every shot is recorded using
the same digital camcorder and undergoes minimal post-
processing. In contrast, the shot-based SPN estimated
from each shot in an original video could not be cor-
related to each other. Furthermore, analog cameras do
not leave SPN on the video frames. Even if only digi-
tal camcorders were used in the original video shooting,
the source camcorder for each shot would vary. Finally,
the heavy post-processing in the original videos makes the
shot-based SPNs decorrelated.

4 Proposedmethod
In this section, the recaptured video detection method is
described in detail. Figure 2 depicts the proposed method,
which is divided into three steps. First, the input video
is divided into shots in the shot division step. Then, the
shot-based SPNs are estimated from the divided shots.
Finally, the input video is determined to be a recaptured
video or an original video using correlation-based SPN
merging. In the last step, each pixel in the estimated
SPN is examined using a high-frequency map (HFM)
to exclude the high-frequency components from the
estimated SPN.

4.1 Shot division
Once an input video is selected, it is divided into mul-
tiple shots using the shot change detector. An accurate
shot change detector is important because incorrect shot
change declarations can affect the results of the proposed
method. Figure 3 depicts two different shot change detec-
tion errors in original videos. If a shot change is missed,
as depicted in Fig. 3a, two actual successive shots are
declared to be a single shot. The declared shot in Fig. 3a
might have two different source camcorders. It results in
a mixture of two SPNs and it can be correlated to any
SPN that is estimated from a shot recorded by the source
camcorders of those shots. As a result, it increases the
false positive ratio (FPR) in the calculation of the SPN cor-
relation. In contrast, the false shot change alarm in the
original video does not have an enormous effect on the
result of the proposed method. The actual single shot is
divided into two different shots in Fig. 3b. It only increases
the count of the correlation calculation and shortens the
length of the falsely divided shots. In addition, a wrong
shot change declaration in the recaptured video does not
have an enormous effect on the result of the proposed
method because every shot in the recaptured video is
assumed to be recorded by an identical digital camcorder.
Therefore, the performance of the shot change detector
needs to be tuned in order to minimize the missed shot
changes.
From the various shot detection techniques available,

the histogram comparison is used. The histogram com-
parison is discriminant, easy to compute, and mostly
insensitive to translational, rotational, and zooming shots
[16, 20]. In the proposed method, two detectors (one for
intensity and the other for hue) are used in order to min-
imize the missed shot changes. The detail of the shot
change detectors is described as follows:

SDp =
G−1∑
q=0

|Hp(q) − Hp+1(q)|, (6)

where Hp(q) denotes a histogram value for the pth frame,
with q being one of G (256 for intensity and 360 for hue)
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Fig. 2 An overview of the proposed recaptured video detection method

possible levels of the histogram. SDp, which is the criterion
for the shot change, is the sum of the absolute differences
between the histograms derived from the pth frame and
the (p+1)th frame. In order to utilize SDp for shot change
detection with any frame size, SDp is normalized using the
frame size. If the normalized SDp is greater than a given
threshold, the shot change is declared. As a result, the con-
secutive frames between two successive shot changes are
declared as one shot.

4.2 SPN estimation
In this step, the shot-based SPN is estimated from each
shot. Before the estimation, inappropriate shots for the
estimation including dark shots and short-length shots
are excluded. Each shot-based SPN is estimated using
the maximum likelihood estimation method based on the
SPN model [18, 19]. Assuming that the shot is composed
of d grayscale frames (I1, I2, . . . , Id), the detailed SPN
estimation process is as follows:

K̂ =
∑d

n=1WnÎn∑d
n=1 (În)2

, (7)

where K̂,Wn, and În represent the estimated SPN, a noise
frame and a noiseless frame that correspond to the nth
frame In, respectively. Each noise frame, which is used
in the SPN estimation, is obtained by filtering the frame
using a wavelet-based Wiener filter [21]. After the SPN
estimation, the codec noise that is generated by the video
codec is removed. Normally, the videos are transformed
using the differential pulse-code modulation block dis-
crete cosine transform and it produces block artifacts
in each video frame [19]. These block artifacts should
be removed prior to the correlation calculation between
estimated shot-based SPNs because they make uncorre-
lated pairs of SPNs correlated. These artifacts are periodic
with a 16×16 block size and have a high energy in the
frequency domain. They are removed using the Wiener
filter in the frequency domain after zeroing out the means
of rows and columns of the estimated shot-based SPN
[18, 19]. The codec noise-free SPN is denoted by ŜPN.

4.3 Correlation-based SPNmerging using high-frequency
map

In this step, every shot-based SPN, which was estimated in
the previous step, is examined to make the final decision.

(a) (b)
Fig. 3 Shot change detection errors. a False negative shot change detection and b false positive shot change detection
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However, each estimated shot-based SPN is low in quality
so that the wrong decisionmight be driven at the decision-
making step. To resolve the low-quality problem of the
estimated shot-based SPN, Warshall’s algorithm was used
in Jung et al.’s method [14]. However,Warshall’s algorithm
only helped the erroneously uncorrelated shot-based SPN
pairs to be linked to each other. Furthermore, none of the
techniques that enhanced the quality of the estimated SPN
was used.
In the proposed method, correlation-based SPN merg-

ing and a HFM are used to resolve the low-quality prob-
lem of the estimated shot-based SPN. A better quality
of SPN, which minimizes the false decisions of the pro-
posed method, can be obtained using correlation-based
SPN merging. Furthermore, HFM helps to remove the
regions that might have a detrimental effect on the SPN
merging and the correlation calculation.

4.3.1 High-frequencymap (HFM)
The estimated shot-based SPNs are investigated to deter-
mine whether they are correlated with each other using
correlation-based SPNmerging. However, estimated shot-
based SPNs have low quality. The low quality of the
estimated SPN influences the correlation calculation and
SPN merging. If ŜPNi is the shot-based SPN estimated
from the ith shot Shoti (i = 1, . . . ,NS), then it is expressed
as follows:

ŜPNi = SPNi + �i, (8)

where SPNi and �i denote the ideal SPN and the com-
posite error, which is caused during the SPN estimation
process, corresponding to ŜPNi, respectively. The lower
energy of�i results in better quality of ŜPNi; furthermore,
the lower variance of the sequence �i[x, y] for each pixel
(x, y) provides the better quality of the merged SPN.
Thus, both a better quality of the merged SPN and a low
false negative correlation can be achieved if high-energy
regions in �i are suppressed. High-energy regions in �i
are typically introduced by high-frequency components
such as the strong edges in the video frames. Therefore,
the high-frequency components need to be excluded from
the estimated SPN. If only the high-quality regions in the
SPNs are selected before the SPN merging, high quality of
the merged SPN is guaranteed.
Li proposed an approach to attenuating the influ-

ence of the high-frequency components on the estimated
SPNs [22]. Li’s method improved the accuracy of the
source camera identification by assigning weighting fac-
tors inversely proportional to the magnitude of the test
SPN components. However, this method was designed for
the source digital camera identification using fine qual-
ity of reference SPN. Furthermore, two different SPNs
still can be correlated after Li’s method is applied if they

have correlated high-frequency components in the same
position.
Based on the above observation, we propose a HFM,

which is a Boolean matrix that has the same frame
size as the estimated SPN, to determine whether any
pixel of the estimated SPN is contaminated by a high-
frequency component. The high-frequency components
in the scene leave relatively high absolute pixel values
because denoising filters are applied in the noise estima-
tion. Figure 4 depicts the histogram difference caused by
high-frequency components. Figure 4a, which is a his-
togram that is calculated from each pixel value of a high-
quality SPN, presents a small variance; Fig. 4b, which is
a histogram that is calculated from each pixel value of
a low-quality SPN contaminated by the high-frequency
components, presents a relatively large variance. There-
fore, high absolute values are filtered to remove the
high-frequency components in the estimated SPN. How-
ever, it is not desirable to set a fixed pixel threshold to
remove high-valued pixels because the pixel values in the
estimated SPN vary depending on the recording environ-
ment. A normal distribution fitting is used to avoid the
fixed thresholding. Afterward, the SPN is standardized
using the mean and variance of the estimated normal dis-
tribution model. Moreover, a certain portion of the HFM
is marked by thresholding the standardized SPN. The
HFM is calculated as follows:

HFM[ x, y]=
{
1,

∣∣ŜPNZ[x, y]
∣∣ > zα

0,
∣∣ŜPNZ[x, y]

∣∣ ≤ zα
, (9)

where ŜPNZ is the standardized ŜPN using the estimated
model and zα is the critical point of the standard normal
distribution (1 = high-frequency component, 0 = clean
SPN).
After the HFM is created, it is refined by removing the

erroneously detected parts. Since high-frequency com-
ponents are normally connected and grouped together,
the connected pixel groups that are extremely small are
pruned. The HFM is morphologically dilated and eroded,
then the eight-way connected components with sized
smaller than a specified percent (0.01 % in the proposed
method) of the frame size are converted to zero.
The HFM indicates the high-frequency components so

that the relative regions in the estimated SPN are removed
using HFM, as follows:

S̃PN = ŜPN · ¬HFM, (10)

where S̃PN, ·, and ¬ denote the high-frequency-
component-free SPN, the pair-wise multiplication, and
Boolean negation operation, respectively. Figure 5 exhibits
an example of an HFM calculated from a single frame.
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Fig. 4 SPN histograms. a An estimated high-quality SPN and b an estimated SPN contaminated by high-frequency components

4.3.2 Correlation-based SPNmerging
In order to determine whether a given video is recaptured
or not, the estimated shot-based SPN is investigated. If
N shots are selected from the given video, then N shot-
based SPNs are estimated and the corresponding HFMs
are applied. Let S̃PNi be a shot-based SPN estimated
from the ith shot Shoti (i = 1, . . . ,N). Two different
shot-based SPNs shall be correlated if the correspond-
ing shots are recorded by the identical digital camcorder.
In order to verify this, the correlations between the esti-
mated shot-based SPNs are measured. The correlation

between S̃PNi and S̃PNj (i �= j) is measured by calculat-
ing the peak-to-correlation energy (PCE) value between
them. The PCE is described as follows:

PCE
(
S̃PNi, S̃PNj

) = Corr
(
S̃PNi, S̃PNj

)
[ucenter, vcenter]2∑

u,v Corr
(
S̃PNi, S̃PNj

)
[u, v]2

,

(11)

where Corr(·, ·)[u, v] represents the value of the normal-
ized cross-correlation (NCC) surface that is calculated

(a) (b)

(c) (d)
Fig. 5 An HFM example. a A single frame; b SPN estimated from a; c HFM corresponding to (a) using Zα (α = 0.005); d refined HFM
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between the SPN pair at the position of (u, v). The center
coordinate of the correlation plane was used in the PCE
calculation rather than using the peak coordinate because
the coordinate offset of each shot is synchronized in the
recaptured video, while it might not be in the original
video. If the PCE value is greater than a given thresh-
old T, then two shots Shoti and Shotj are determined to
have been recorded using the identical digital camcorder.
Otherwise, Shoti and Shotj are determined to have been
recorded using two different digital camcorders.
The input video is declared to be a recaptured video

if every possible pair of the estimated shot-based SPNs
presents greater PCE values than the threshold T. How-
ever, the low-quality problem of the estimated shot-based
SPN still remains. The low quality of the estimated SPNs
increases the false negative correlations. To minimize
the false negative correlation, the correlation-based SPN
merging is used. The SPN merging increases the number
of frames in the SPN estimation of the merged SPN; and
a large number of frames produce a small variance of the
estimated SPN [17, 18].
The correlation-based SPN merging on a given shot-

based SPN array is divided into 4 steps (refer to Fig. 2):
(1) iterate steps 2 to 4 until the size of the shot-based
SPN array does not change; (2) the HFM of each shot-
based SPN is estimated; (3) the PCE value of every pair in
the shot-based SPN array is calculated using HFM; (4-1)
if a correlated pair is found, it is merged using HFM; (4-
2) the shot-based SPN array is updated by replacing the
correlated pair with the newly merged SPN.
In the SPN merging step, the HFMs are used. Let ŜPNi

and ŜPNj be merged into ŜPNM, then each pixel in ŜPNM
is computed as follows:

ŜPNM =

⎧⎪⎪⎨
⎪⎪⎩

Ave(S̃PNi[ x, y] , S̃PNj[ x, y] ), HFMi[ x, y]= 0 ∧ HFMj[ x, y]= 0
S̃PNj[ x, y] , HFMi[ x, y]= 1 ∧ HFMj[ x, y]= 0
S̃PNi[ x, y] , HFMi[ x, y]= 0 ∧ HFMj[ x, y]= 1

0, otherwise

,

(12)

where Ave(·, ·), HFMi, HFMj, S̃PNi, and S̃PNj denote an
averaging operation based on the number of frames that
are used in the SPN estimation (including SPN merg-
ing), the HFMs and the high-frequency-component-free
SPNs that correspond to ŜPNi and ŜPNj, respectively.
The final decision is made after the correlation-based SPN
merging process is finished. If the final output is a sin-
gle merged SPN, then the input video is declared to be a
recaptured video. Otherwise, the input video is declared
to be an original video.
Finally, we analyze the computational complexity of the

proposed method. Let Fs, NT , NTS, and NS denote the
maximum value between the row and column sizes of
a test video, the total length of the video frames, the

sum of the frame lengths of selected shots, and the num-
ber of selected shots. The shot division step is processed
in time O

(
Fs2 · NT

)
and the SPN estimation step is in

time O
(
Fs2 · NTS

) + O
(
Fs2 log Fs · TS

)
by assuming that

the size of the wavelet filter is negligible compared to Fs
[23]. Computing the NCC takes O

(
Fs2 log Fs

)
by a fast

Fourier transform; thus, the computational complexity
of correlation-based SPN merging is O

(
Fs2 log Fs · NS3

)
.

Since NT ≥ TTS � NS, the computational complexity of
the proposed method can be expressed as below.

O
(
Fs2 log Fs · NT

)
(13)

5 Experimental results
In this section, the performance of the proposed method
is evaluated. The specific settings for the experiments are
also provided. Furthermore, the results of the experiments
are presented and analyzed.

5.1 Experiment settings
For the experiments, 130 original videos were used.
Most of the videos were originally shot partially or com-
pletely using digital camcorders [24]. The original video
list includes Attack on Titan (TV animation), Game of
Thrones (season 3), Homeland (seasons 1 and 2), The
Office (season 7), and Sherlock (seasons 1 and 2). Seven
digital camcorders (refer to Table 1 for specifications)
were used to recapture the original videos. In total, 400
videos were created via recapturing. The original videos
with a resolution of 1280 × 720 were collected, and the
video recaptures were conducted with the same resolution
conditions. In the high-definition (HD) resolution videos,
the robustness of the proposed method was tested at dif-
ferent video quality factors (QFs) and scaling factors (SFs).
The recaptured videos were recompressed with QFs of
100, 90, 80, 70, and 60. In addition, they were resized with
SFs of 80 and 60 and recompressed with QFs of 100 and
80. As a result, a total of 3600 recaptured videos were cre-
ated for the experiments. In the shot division step, the 20
longest shots (NS = 20) were selected from each test video
for the SPN estimation step. Each selected shot had more

Table 1 Specifications of the cameras used in the experiments

Brand Model Base resolution FPS

Samsung HMX-H205BD 1920 × 1080 60

Samsung NX300 1280 × 720 30

Sony HDR-CX550 1920 × 1080 30

Olympus PEN Mini 1280 × 720 30

Cannon EOS-M 1920 × 1080 30

Panasonic GX1 1280 × 720 30

Nikon J2 1280 × 720 60
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than 100 frames in general and the average shot length of
the selected shots was approximately 130.
An auditorium was selected for the video recapturing.

The auditorium was approximately 18 m wide and 21 m
long, and it had 286 fixed seats. The width of the screen
in the auditorium was approximately 4 m, and the video
clips projected using an NEC PA600X projector on the
screen were displayed at a size of 4 × 2.25 m in the hor-
izontal and vertical directions, respectively. Because the
auditorium had its own slope between the seating rows
and the zooming of the digital camcorders was restricted,
four seats, which are indicated using red dashed circles in
Fig. 6, were selected for the recapturing in order to have
the entire projected video screen within the camera angle.
Furthermore, every light source (except the beam projec-
tor) was blocked in order to simulate amovie theater; thus,
the average luminance was 0.2 LUX while the recaptur-
ing was conducted. The camcorders were also mounted
on tripods for the recapturing.
In the experiments, several modified decision-making

measures of the SPN merging were tested. The proposed
SPNmerging uses a strict criteria that declares a detection
only if a singlemerged SPN remains after the SPNmerging
iterations stop. However, two or more SPNs will remain
if one or more shot-based SPNs that have extremely
low quality are included. In order to take this case into
account, the modified measures that tolerate remaining
k additional SPNs, which were never merged, except a
single merged SPN. Three different k values (0 original
criteria, 1, and 2) were used in the tests. Furthermore, in
order to demonstrate the performance of the proposed

method, it was compared with two recaptured image
detection methods (Cao and Kot’s method [9], Gao et
al.’s method [10]) and three recaptured video detection
methods (Wang and Farid’s method [11], Bestagini et al.’s
method [13], and Jung et al.’s method [14]). In order
to apply the recaptured image detection methods to the
obtained videos, every I frame was extracted from the NS
shots that were used in testing the proposed method. We
randomly selected 80 % of the extracted frames for train-
ing and the remaining for testing. Furthermore, those NS
shots were used to examine the above listed recaptured
video detection methods. The parameters for Wang and
Farid’s method were set as follows: the number of points
for featurematching was 32 and the number of fundamen-
tal matrices for skew estimation was 5. In Bestagini et al.’s
method, two detectors for two different video recording
environments were proposed. Therefore, the detector that
fits our test environment (video frame rate �= camcorder
frame rate) was tested.

5.2 HFM experiment
To evaluate the performance of the proposed HFM, we
conducted an experiment. The PCE values that were cal-
culated from each pair of the shot-based SPNs were ana-
lyzed. Since 20 shots were selected from each test video,
190 PCE values were calculated per a test video. In this
test, six values (0.0005, 0.001, 0.005, 0.01, 0.05, and 0.1)
were used for α, which is the parameter of the HFM. Fur-
thermore, Li’s method [22] was benchmarked. Model 5,
which presented the best results in source digital cam-
era identification, was used in the experiment. Figure 7

Fig. 6 Test theater environment
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Fig. 7 The 1.5 IQR of the HFM test (the PCE values were calculated from pairs of SPNs)

presents the PCE values from both the original video and
the recaptured video (including the recompressed and
scaled video) using 1.5 interquartile range (IQR) boxplots.
As Fig. 7 describes, a wide overlapping range was exhib-
ited in the PCE values between the original video and the
recaptured video when no post-processing was applied.
The overlapping range caused a significant number of
false positive SPN correlations. However, the overlapping
range was significantly narrowed after the techniques that
degrade the influence of the high-frequency components
were applied. This indicates that the number of false posi-
tive SPN correlations decreased. Li’s method was effective
in attenuating the influence of high-frequency compo-
nents. However, the attenuation in the pixel values of the
high-frequency components still creates a false positive
correlation. Since the proposed HFM changes the pixel
values with the high-frequency components to zero, the
range of the overlap is narrower than that of Li’s method.
The increment of α value did not have a significant effect
on the test results because the majority of the detected
pixels in the HFM was filtered by post-processing. The
range of the overlap was minimized where α was 0.005.
Therefore, we used 0.005 for the HFM parameter α in the
following experiments. Furthermore, Li’s method was not

tested in the rest of the experiments because Li’s method
cannot be applied to SPN merging.

5.3 Quality factor experiment
In general, the recaptured videos are recompressed
in order to reduce their file size before the online
distribution. For this reason, we tested the robustness
to compression. The recaptured videos were compressed
using various quality factors (QFs) while other compres-
sion attributes, including the resolution and frame rate,
were not changed. The range of QFs for the test was set
from QF100 to QF60 with a step size of 10. The ffdshow
H.264 codec and TMPGEnc 4.0 Xpress video encoder
were used to recompress the test videos. In addition, we
used the variable key frame interval, which was the default
setting. The parameter α of the HFM was set to 0.005.
The test results are presented in Fig. 8. First, Jung

et al.’s method [14] exhibited steep slopes in the receiver
operating characteristic (ROC) curves; these slopes were
caused by a few low-quality SPNs. Several low correla-
tions between shot-based SPNs were compensated for
using Warshall’s algorithm, but the limitation of the low
quality of the shot-based SPN was not. Bestagini et al.’s
method [13] presented constant test results while the QFs
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(a) (b)

(c) (d)

(e)
Fig. 8 Quality factor experiment results. a QF100, b QF90, c QF80, d QF70, and e QF60
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decreased. However, the detection results were not satis-
factory. The frame rate change, which was used to unite
various shots in the original video production, might have
produced false positive detection. The proposed method
without the HFM produced slightly better results than
Jung et al.’s; however, it also did not provide satisfactory
detection results. In contrast, the proposed method with
theHFMexhibited a high level of detection ratios. Overall,
the every recaptured video detection method that utilized
the SPN exhibited a decreasing detection ratio as the QF
decreased.
The recompression lowers the quality of the estimated

shot-based SPN and results in low correlation values
between the shot-based SPNs. Furthermore, the severe
quality degradation of the shot-based SPN disturbs the
SPN merging and makes the shot-based SPN uncorre-
lated even to the high-quality SPN. In the high QF tests
(Fig. 8a–c) with the strict criteria (k = 0), most missed
detections resulted from the low correlations between the
merged SPN and several shot-based SPNs that had the
severely degraded quality due to the recompression. How-
ever, with a less strict criteria (k = 1, 2), the detection ratio
increased because the number of the shots that under-
went the severe quality degradation was small. In contrast,
in the low QF tests (Fig. 8d–e), most missed detections
arose from the failure of the SPN merging because the
quality of most of the estimated shot-based SPNs was
heavily degraded. The proposed method presented a low
detection ratio in the QF60 test. However, in general,
QF60 is not a common quality factor that is used in video
compression due to the severe visual quality degradation.
Thus, the low detection ratio in theQF60 test is acceptable
considering that QF60 is a rare compression parameter for
recaptured videos.
Table 2 presents the test results for Cao and Kot’s

method, Gao et al.’s method, and Wang and Farid’s

method. The test results of these methods could not be
presented in graph form; thus, we compared the proposed
method by fixing the false positive ratio. In addition, we
also included the test results for Bestagini et al.’s method
and Jung et al.’s method at a zero false positive ratio.
The table demonstrates that the proposed method out-
performed the other methods, except in the QF60 test
where Gao et al.’s method outperformed the proposed
method.

5.4 Scaling factor experiment
The recaptured videos were scaled using various scaling
factors (SFs). Because up-scaling is rare for videos, only
SFs lower than 100 (%) were tested. SFs lower than 60
were excluded in the experiment considering that the res-
olution of the original recaptured videos was 1280 × 720.
Normally, the video quality is also adjusted when the scal-
ing is adjusted; thus, the experiments for QF80, which is
a common default recompression quality factor, were also
conducted.
The detailed settings of recompression followed the

quality factor experiment except for the QF and SF.
Figure 9 presents the experiment results for the scaled
test videos. The proposed method (k = 2) with the
HFM outperformed the other methods. The proposed
method exhibited good results for QF80 and SF0.8,
which are common parameters for video scaling. Table 3
presents the test results compared with Cao and Kot’s
method, Gao et al.’s method, Wang and Farid’s method,
Bestagini et al.’s method, and Jung et al.’s method.
The table demonstrates that the proposed method out-
performed the other methods at every SF level. The
compared methods that did not utilize the SPN exhib-
ited a constant detection ratio while the QF and SF
decreased.

Table 2 Detection result at different levels of video quality factors

QF100 QF90 QF80 QF70 QF60

TP FP TP FP TP FP TP FP TP FP

Proposed (k = 0)

1.00 0.00 0.99 0.00 0.98 0.00 0.93 0.00 0.61 0.00

1.00 0.01 1.00 0.01 1.00 0.01 0.95 0.01 0.69 0.01

1.00 0.03 1.00 0.03 1.00 0.03 0.98 0.03 0.80 0.03

Proposed (k = 2)

1.00 0.00 1.00 0.00 0.99 0.00 0.97 0.00 0.75 0.00

1.00 0.01 1.00 0.01 1.00 0.01 0.99 0.01 0.84 0.01

1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 0.90 0.03

Wang and Farid [11] 0.82 0.35 0.83 0.35 0.94 0.35 0.89 0.35 0.87 0.35

Bestagini et al. [13] 0.58 0.00 0.58 0.00 0.59 0.00 0.60 0.00 0.61 0.00

Jung et al. [14] 0.48 0.00 0.38 0.00 0.35 0.00 0.22 0.00 0.16 0.00

Cao and Kot [9] 0.78 0.27 0.78 0.27 0.77 0.27 0.78 0.27 0.76 0.27

Gao et al. [10] 0.94 0.33 0.96 0.33 0.98 0.33 0.98 0.33 0.99 0.33

[9] and [10] are image-based recapturing detection methods included here for reference only. Correlations between frames are not used here in our comparison
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(a) (b)

(c) (d)
Fig. 9 Scaling factor experiment results. a SF80, b SF60, c SF80 with QF80, and d SF80 with QF80

Table 3 Detection result at different levels of scaling factors

SF80 SF80 (QF80) SF60 SF60 (QF80)

TP FP TP FP TP FP TP FP

Proposed (k = 0)

0.99 0.00 0.95 0.00 0.98 0.00 0.92 0.00

1.00 0.01 0.97 0.01 0.99 0.01 0.94 0.01

1.00 0.03 0.98 0.03 1.00 0.03 0.97 0.03

Proposed (k = 2)

1.00 0.00 0.99 0.00 1.00 0.00 0.96 0.00

1.00 0.01 1.00 0.01 1.00 0.01 0.98 0.01

1.00 0.03 1.00 0.03 1.00 0.03 0.99 0.03

Wang and Farid [11] 0.84 0.35 0.86 0.35 0.86 0.35 0.92 0.35

Bestagini et al. [13] 0.61 0.00 0.60 0.00 0.62 0.00 0.61 0.00

Jung et al. [14] 0.26 0.00 0.23 0.00 0.18 0.00 0.16 0.00

Cao and Kot [9] 0.77 0.27 0.78 0.27 0.78 0.27 0.78 0.27

Gao et al. [10] 0.98 0.32 0.97 0.32 0.98 0.33 0.97 0.33

[9] and [10] are image-based recapturing detection methods included here for reference only. Correlations between frames are not used here in our comparison
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6 Conclusions
This paper investigated a recaptured video detection
method. The proposed method operates automatically for
a given video and does not use additional information
such as watermarks. The proposed method is based on
the SPN, which is the unique fingerprint of digital imag-
ing sensors. The proposed method consists of three steps:
first, the video is divided into shots; second, the shot-
based SPN is estimated from the divided shots; and third,
the video is determined to be a recaptured video or not
using the correlation-based SPN merging. Furthermore,
an HFMwas used to exclude the low-quality regions in the
estimated SPNs during the SPN correlation calculation
and merging processes. We demonstrated the superior
performance of the proposed method by comparing the
test results for various quality factors and scaling factors
with other recaptured content detection methods. How-
ever, the proposed method remains weak against severe
video compression. The next research focus will include
considerations of this weakness.
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