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Abstract

With the development of modern image sensors enabling flexible image acquisition, single shot high
dynamic range (HDR) imaging is becoming increasingly popular. In this work, we capture single shot HDR
images using an imaging sensor with spatially varying gain/ISO. This allows all incoming photons to be
used in the imaging. Previous methods on single shot HDR capture use spatially varying neutral density
(ND) filters which lead to wasting incoming light. The main technical contribution in this work is an
extension of previous HDR reconstruction approaches for single shot HDR imaging based on local
polynomial approximations (Kronander et al., Unified HDR reconstruction from raw CFA data, 2013; Hajisharif
et al, HDR reconstruction for alternating gain (ISO) sensor readout, 2014). Using a sensor noise model, these
works deploy a statistically informed filtering operation to reconstruct HDR pixel values. However, instead of using a fixed
filter size, we introduce two novel algorithms for adaptive filter kernel selection. Unlike a previous work, using adaptive
filter kernels (Signal Process Image Commun 29(2):203-215, 2014), our algorithms are based on analyzing the model fit
and the expected statistical deviation of the estimate based on the sensor noise model. Using an iterative procedure,
we can then adapt the filter kernel according to the image structure and the statistical image noise.
Experimental results show that the proposed filter de-noises the noisy image carefully while well preserving
the important image features such as edges and corners, outperforming previous methods. To demonstrate
the robustness of our approach, we have exploited input images from raw sensor data using a commercial

off-the-shelf camera. To further analyze our algorithm, we have also implemented a camera simulator to
evaluate different gain patterns and noise properties of the sensor.

Keywords: HDR reconstruction, Single shot HDR imaging, DuallSO, Statistical image filtering

1 Introduction

The range of radiance intensities found in most real-
world scenes, spanning from the sun or direct light
sources to areas in shadow, typically exceeds, by
orders of magnitude. It is very difficult to accurately
capture this wide range using a digital sensor in a
single image or video frame. This limitation has
spurred the development of techniques for capture
of high dynamic range (HDR) images and video; for
an overview, see [26].

We present two algorithms for HDR image
reconstruction based on a single input image where
the pixel gain is varied over the sensor [4, 10].
Similar to [34, 35], we use the per-pixel gain of the
analog signal, pixel measurements, to increase the
dynamic range in the captured image. The analog
pixel gain is proportional to the ISO setting found

* Correspondence: saghi.hajisharif@liu.se
Linképing University, Norrkoping, Sweden

@ Springer

on most cameras. The input to our algorithm is a
RAW sensor image consisting of pixels with either a
high or a low gain setting, for example, varying the
gain by every other two rows. The low gain setting
enables the capturing of high-intensity region with-
out saturation, while the high-gain setting enables us
to capture image with a high signal-to-noise ratio in
darker areas of the scene. Without loss of generality,
we assume that color is captured using a color filter
array (CFA), e.g., a Bayer pattern overlaid on the
image sensor. Figure 1 illustrates two different distri-
butions of per-pixel gain settings overlaid onto a raw
CFA image. This approach to HDR capture is very
robust and can be applied to off-the-shelf consumer
cameras [4]. It does not suffer from, e.g., the various
motion blurs or ghosting artifacts found in the com-
monly used exposure bracketing methods [7, 12].
Compared to multi-sensor cameras, e.g., [16, 31], it
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in the final image

Fig. 1 lllustrates three different gain patterns, with two different gain settings (ISO), for a sensor with a Bayer pattern CFA, and (middle)
how the multiple gain pixels are filtered to reconstruct the HDR output value z at pixel location X;. The different gains, g, and g,
corresponding to, eg, 1x and 16x, amplification of the analog readout enables the capture of a wider range of intensities and extends the dynamic range

does not require costly specialized hardware and
removes the requirement of careful geometric sensor
calibration and the risk of misalignment between the
exposures.

The main contribution in this paper is an exten-
sion of the previous statistical reconstruction method
for duallSO data developed in [10, 15], using two
novel algorithms for adapting the scale of the filter-
ing window. In contrast to previous works [10, 15],
the window support is adapted both to the statistical
properties of the image noise as well as the under-
lying signal structure contained in the image. We
show that the novel scale selection results in
increased image quality in several examples.

2 Background

Since the seminal work by Devebec and Malik [7], a
large body of work has developed more robust and
higher quality HDR capture and reconstruction
methods; for a complete overview, see, e.g., [23, 26].
In this section, we give an overview of the previous
work most closely related to the methods proposed
in this paper.

2.1 HDR capture

High-quality HDR capture using off-the-shelf image
sensors can currently be performed with three distinct
approaches.

The traditional approach captures a sequence of
images with varying exposure times and then merges
these into an HDR image [7, 12]. For dynamic
scenes, non-rigid registration of the individual expo-
sures is necessary; and for moving objects, general
de-ghosting algorithms are necessary to apply for
high-quality results. While there has been a large
body of work improving these approaches, see, e.g.,

the survey [33], they still cannot robustly handle
moving cameras and objects in general scenes.

The second approach to HDR capture is based on using
beam splitters to project incident light onto multiple
sensors with different exposures. The different exposures
can be achieved by using varying neutral density (ND)
filters in front of the sensors [1, 8, 16, 19] or by clever
setups of semi-transparent beam splitter arrangements [31].
These systems offer a major advantage over exposure time
fusion methods in that they robustly handle motion of the
camera and objects in the scene by using the same
exposure time for each sensor.

The third approach, which is most closely related
to this work, is spatial multiplexing of the image to
achieve HDR capture. Here, a single sensor image is
used where the response to incident light varies over
the sensor. Most previous works achieved this by
placing a spatially varying array of ND filters in
front of the sensor [2, 24, 25, 27]. Its most familiar
application is color imaging via a color filter array
(e.g., the Bayer pattern [6]). By avoiding the need for
more than one sensor, this design provides a cost-
effective solution to achieve robust HDR capture.
However, most existing methods still suffer from
noise as large portions of the incident light are
wasted in the ND filters. By instead focusing on
spatially multiplexing the response to incident light
using the gain/ISO setting, we can use the entire
incident light for high-quality HDR reconstruction.

2.2 HDR reconstruction

To reconstruct HDR images from a set of images
with different exposures, the traditional method is to
compute a per-pixel weighted average of the low
dynamic range (LDR) measurements. The weights,
often based on heuristics, are chosen to suppress
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image noise and remove saturated values from pro-
cessing [3, 7, 20]. Mann and Picard [20] assigned
weights according to the derivative of the inverse
camera response, and later Debevec and Malik [7]
used a simple double ramp function that excludes
values close to the saturation point or the black
level. Later work derived weight functions based on
more sophisticated camera noise models. Mitsunaga
and Nayar [22] derived a weight function that maxi-
mizes SNR assuming signal-independent additive
noise, and Kirk and Andersen [13] derived a weight
function inversely proportional to the temporal vari-
ance of the digital LDR values. Granados et al. [9]
extended this approach to include both spatial and
temporal camera noises. While most previous
methods consider only a single pixel at a time from
each LDR exposure, Tocci et al. [31] presented an
algorithm that incorporates a neighborhood of LDR
samples in the reconstruction.

The vast majority of previous HDR reconstruction
algorithms treat the complete imaging pipeline from
raw pixel measurements to a full HDR image in a
series of steps [7, 9, 31], either performing demosai-
cing after or before HDR fusion and denoising. In
this work, we instead treat all of these operations in
a single joint filtering operation. This enables us to
take sensor noise into account in a systematic fash-
ion while also improving the reconstruction speed.
Recently, Heide et al. [11] proposed a framework for
joint demosaicing, denoising, and HDR assembly by
solving an inverse problem with different global image
priors and regularizers using convex optimization
methods. While providing impressive results, their
method does not incorporate a well-founded model of
the heterogeneous sensor noise, and despite GPU
implementations, their implementation is still compu-
tationally expensive which requires solving a global
optimization problem. Instead, we take a local ap-
proach, enabling rapid parallel processing, while also
incorporating a well-founded statistical noise model.

Our statistically motivated locally adaptive filtering
framework is inspired by recent methods in image
processing. The last two decades have seen an
increased popularity of image processing operations
using locally adaptive filter weights, for applications
in, e.g., interpolation, denoising, and upsampling.
Examples include normalized convolution [14], the
bilateral filter [32], and moving least squares [17].
Recently, deep connections have been shown [21, 29]
between these methods and traditional non-parametric
statistics [18]. In this paper, we extend the -earlier
framework for HDR reconstruction developed in [10, 15,
16] based on fitting local polynomial approximations (LPA)
[5] to irregularly distributed samples around output pixels

Page 3 of 13

using a localized maximum likelihood estimation [30] to
incorporate the heterogeneous noise of the samples. In
contrast to the previous works [10, 15, 16], we propose a
novel adaptation of the filter kernel size that allows the
filter extent to adapt not only to local image structure but
also the sensor noise in the region.

3 DuallSO capture and reconstruction—overview
The goal of the algorithm presented in this paper is to
generate an HDR image based on input data in which
the per-pixel gain (ISO) is varying over the sensor. This
means that the analog readouts are amplified differently
between segments of pixels on the sensor. Figure 1 illus-
trates three different gain patterns with two different
gain values, g; and g, using a sensor with a Bayer pat-
tern color filter array (CFA). The unity gain, g;, pixel
segments capture the high-intensity regions in the scene
while the amplified segments, g, capture low-intensity
regions. g, pixels may lie well below the acceptable noise
floor for g; pixels.

The key benefit of using a varying per-pixel gain,
gi» is that the dynamic range in the final output will
be extended using a single image as an input [10,
11]. However, accurate reconstruction of the output
HDR image is a challenging filtering problem. The
different gain settings lead to a loss of data in the
spatial domain due to the fact that the amplified
pixels, using gain g,, saturate faster. For high-quality
reconstruction, it is also necessary to take into
account the heterogeneous image noise, which for a
specific camera and exposure setting, varies with
both intensity and the choice of gain settings.

The method presented here extends the statistical
HDR reconstruction developed by [15, 16] to include
reconstruction kernels which adapts to both the image
content and the heterogeneous measurement noise.
We assume that the input data is a raw CFA sensor
image with per-pixel gain settings varying between
pixel segments as described in Fig. 1 (middle). Each
pixel value, z;, at a pixel coordinate, Xj, in the output
HDR image is, for each color channel, reconstructed
by filtering the input pixels within a neighborhood
around X;. Our statistical approach first estimates the
variance, or measurement noise, for each input sample
in the raw image using a noise model. The input
samples are then weighted using the estimated
variances and an adaptive Gaussian kernel in the
spatial domain. The weights, computed from the
variances, ensure that low noise samples are weighted
higher than noisy samples, and the Gaussian filter
gives lower weights to samples further away from
the reconstruction point, X;. The HDR pixel value z;
at location X; is then reconstructed iteratively by
adjusting the shape of the Gaussian kernel to the
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weighted input samples. In the first iteration, the
Gaussian kernel is very small. The spatial support of
the kernel is gradually increased until a statistically
informed threshold based on the variances and
image content is reached. The final HDR pixel value,
zj, is then estimated by fitting a polynomial to the
weighted input samples. Our method performs noise
reduction, color interpolation, and HDR fusion in a
single operation.

The detailed presentation of the algorithm is laid
out as described below. Section 4 first describes the
camera noise model used to estimate sample
variances, and Section 5 describes how each HDR
pixel value is reconstructed using our statistical
HDR reconstruction framework. The novel methods
for filter scale selection for HDR reconstruction are
presented in Section 6. Finally, in Section 7, we
describe how the parameters for the noise model are
calibrated and in Section 8, we show example results
and evaluation of our reconstruction method.

4 Sensor noise model

The camera sensor electronics convert the incident
radiant power f, which for convenience we express
as the number of photo-induced electrons collected
per unit time, to a measured digital value y; at a
pixel i. The samples, y;, contain measurement noise
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that is dependent on sensor characteristics such as
readout noise, gain/ISO setting, and the inherent
Poisson shot noise in the incident illumination.

To model the dependence of the measured digital
pixel value on the incident radiant power and the cam-
era parameters, we use a well-established radiometric
model derived from previous works [9, 15]. Using this
model, the non-saturated pixel values are modeled as
random variables following a normal distribution:

J’i~N(giﬂitfi + ﬂRagziﬂitfi + ‘7122 (gi>)’ 1)

where ¢ is the exposure time, g; is the pixel gain/ISO,
a; is a pixel non-uniformity, yp is the mean of the
read out noise, and 0% is the variance of the read
out noise. An example showing the standard devi-
ation of the read out noise, oy, for varying gain/ISO
using a Canon Mark III sensor (saturation around
1600) is shown in Fig. 2.

In order to compute an estimate of the incident

radiant power, f » from the noisy digital input sample
values y;, we use the following estimator:

Py yi=bi
fi = eia’ (2)

where b; is obtained from a bias frame captured with no
light reaching the sensor.

Mean Standard Deviation

5 1 1 1
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3000

Gain/ISO
Fig. 2 Mean standard deviation versus gain/ISO of the 14-bit Canon Mark Il sensor. The 1SO settings are 100, 200, 400, 800, 1600, 3200, and 6400
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Similarly,
estimator by

we approximate the variance of this

A2 g?talfi + &%Q(gt)
2 &l 4 ne) @
i git'a;
where g;, a;, and 6%(g;) are found through calibration;
see Section 7. We do not include the effect of pixel
cross-talk, and the variances, 6}% , are assumed to be
independent of each other. '

5 Adaptive HDR reconstruction
To estimate an HDR pixel value z; at a location X;
on the sensor, we use a LPA [5] to fit the observa-
tion samples of the incident radiant power in the
local neighborhood. The same framework is also
known as kernel regression [29].

5.1 Local polynomial approximation

To estimate the radiant power, flx), at an output
pixel, we use a generic local polynomial expansion of
the radiant power around the output pixel location
X; = [x1, %2] T Assuming that the radiant power f(x) is
a smooth function in a local neighborhood around
the output location Xj, an AMth order Taylor series
expansion is used to predict the radiant power at a
point X; close to X; as follows:

F(Xi) = Co+ C1(Xi-X;)
+ Cotrit{ (Xi-X;) (Xi=X) "} + ., (4)

where tril lexicographically vectorizes the lower triangular
part of a symmetric matrix and

Co =f(X;) (5)

6= vt = [ 90

C,

1 [azf (X)) 232f (X;) o°f (X/)}

21 o2 T Oxi0xy O3

Given the fitted polynomial coefficients, C;.,;, we
can thus estimate the radiant power and the HDR
pixel value, z;, at the output location X; by z;=Cj =

5.2 Maximum localized likelihood fitting

To estimate the coefficients, we maximize a localized
likelihood function [30] defined using a Gaussian
smoothing window centered around X;

Wi, (Xi) = 27:112 exp{_(Xk_Xj)h (Xk_Xj) }7 (8)
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where % is a local scale parameter (see Section 6)
which determines the shape of the filtering kernel.
In Section 6, we discuss how the size of the window
function can be selected adaptively depending on the
features at each location in the image.

We denote the observed pixel samples (radiant
power estimates,fi(X/) at position Xj) in the support
of the local neighborhood window by f; with a linear
index k=1... K. Note that these are obtained from
the digital pixel values using Eq. 2 derived from the
sensor noise model.

Using the assumption of normally distributed radi-
ant power estimates, f;, the polynomial coefficients,
C, maximizing the localized likelihood function is
found by the weighted least squares estimate

¢ = (0" wo) o'Wy, (9)
where
j = [flaf27 ~~-f1<]T
W — diag | WD) WillKa) | W)
9%, 9F, 9F

1 (a-x) e {(-x) (xa-x) "}
o= |1 (X2X) trilT{(Xz—X{)(Xg—Xj)T} -

1 (Xk-X)) trilT{(XK—X;)(XK—X,-)T}
(10)

The operator ¢ril lexicographically vectorizes the lower
triangular part of a symmetric matrix.

Using this maximum likelihood approach, we can
efficiently solve for the polynomial coefficients Cj.
and estimate the final HDR pixel value z; at a pixel
location X; for a given smoothing parameter /.
However, in order to enable a good trade-off
between bias and variance, i.e., between image sharp-
ness and noise reduction, it is necessary to locally
adapt the smoothing parameter 4 to image features
and image noise. If 4 is globally fixed over the
image, reconstruction may lead to a noisy final
image for small % and blurry result for a high &
value. The best trade-off between image sharpness
and denoising is achieved by adapting the smoothing
parameter /1 to local image features.

In the next section, we describe the iterative
reconstruction method and two algorithms for
selecting the locally best smoothing parameter, /, for
each HDR pixel estimate, z;, individually.
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Algorithm 1 Adaptive HDR reconstruction
1: procedure HDR RECONSTRUCTION
2: for each color channel in R, G, B do
3: for each HDR pixel estimate z; do
4: h; = hmin
5: zj = estimate £; p, using LPA with degree M
6: for each h; < hypar do
T hy = h; + hinc
8: estimate 2; p, using LPA with degree M
9: estimate Z; ,, variance &23,, h; and the reconstruction error € (for EVS)
10: apply update rule (ICI or EVS) based on Z; 5, and
11: if variation in Z; ,, can be explained by 6'31.’,” then
12: zZj = 2j,hl
13: else
14: break
15: end if
16: end for
17: end for
18: end for
19: end procedure

J

6 Adaptive scale selection

The size of the window function introduces a trade-off
between bias and variance. A large window will reduce
the variance but can lead to overly smoothed images
(bias). Ideally, it is desirable to have large window
supports in regions where the smooth polynomial
model, used for the reconstruction, is a good fit to the
underlying signal, while keeping the window size small
close to the edges or important image features. The size
of the smoothing window is determined by the smooth-
ing parameter /. Figure 3 illustrates how a signal value,
the black point, is being estimated using a kernel with a

gradually increasing smoothing parameter, 7. When the
smoothing parameter / is increased from /g, the Ky,
i.e., a higher degree of smoothing, the variance in the
estimated value can be explained by the signal vari-
ance. When the smoothing parameter is increased
from /1, to h,, the kernel reaches the step in the signal
and the estimation at the black point can no longer be
explained by the signal variance. Smoothing parameter
hy thus produces a better estimate.

The adaptation of the smoothing parameter, %, scale
selection is carried out iteratively. The goal of the
adaptation is to gradually increase %, and find an optimal

P _|:

Y _|f

Fig. 3 lllustrating how a signal value, the black point, is estimated using a kernel with an iteratively increasing smoothing parameter, h. Increasing
from hg to hy, i.e, a higher degree of smoothing, the variance in the estimated value can be explained by the variance in the original signal.
However, when the smoothing parameter is increased from h; to h,, the kernel reaches the step in the signal and the estimate at the black point

can no longer be explained by the signal variance
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Fig. 4 Reconstructed from duallSO data with 1ISO100-1600 captured with Canon 5D Mark lIl. Reconstructed with ICl M=2, h€[06,5.0],and = 1.0

h such that the variation in the estimated value between
iterations can be explained by the signal variance and
the smoothing applied. Denoting each iteration by / and
the corresponding smoothing parameter by /;, Algorithm
1 describes the outline of the HDR pixels z; reconstructed
by adapting the smoothing parameter /;. In each iteration,
we estimate the signal value and its variance. We then
apply an update rule which determines whether the 4
value used is valid or not. This is repeated until the update
rule does not hold or the maximum / value, /., is
reached. In Sections 6.1 and 6.2, we describe how the
variance of the pixel is estimated in detail with the two
different update rules.

6.1 Update rule 1: error of estimation versus standard
deviation (EVS)

The first update rule is built on the intuition that if the
weighted mean reconstruction error is larger than the
weighted mean standard deviation, i.e., the difference
between the data and the fit cannot be explained by the
expected signal variation due to noise, the polynomial
model does not provide a good fit to the underlying
image data. As described in Algorithm 1, the smoothing

parameter, /1, is iteratively increased with an increment
Hine- In each iteration, /, the EVS update rule computes
the weighted reconstruction error e; as

o= \/Z W2k, K) (%) F ) ()
k

where k indexes the pixels in the neighborhood and W is
the weights including both the variance of the original
pixels and the spatial Gaussian kernel as described in
Eq. 10. The weighted standard deviation, ¢, , of this
estimate can be obtained from the covariance matrix M
for the fitted polynomial coefficients, C, which is given by
Mc = (@7 W) o' wiw o0’ wio)",  (12)
where ¥ = diag[a}l,aﬁ, ...,G}k] is the variance of the
observation. The variance of estimated radiant power z;
o 7 at the output location Xj, is thus given by the element
0z, =Mc(0,0) in Mc. During the iterations, the
smoothing parameter, /4, is updated to /;, 1 =l + hy as
long as the weighted reconstruction error,  is smaller
than the standard deviation ¢; < 1"67;”,‘_ , where T is a user-
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~ -

Raw data R_h ' ] B h Result HDR image

Fig. 5 Reconstruction process of one sample raw image. Top left shows the raw input image with CFA Bayer pattern and duallSO row pattern. Top
right indicates the resulted tone mapped HDR reconstructed image with EVS rule. Bottom rows extracted images from left to right: cutout of the raw
image, scaling parameter image for R, G, B color channels with '=1.0, and the cutout of the reconstructed HDR image

scheck

check

Fig. 6 Lamp scene with different methods for comparison: a LPA M =2 from left to right: h=0.6,1.4,and5.0; b SKR M =2 from left to right h= 0.6,
1.4,and5.0; ¢ our method with ICI M =2 from left to right T =0.6,1.0,and1.4; d our method with EVS M =2 from left to right I =0.6,1.0,and1.4




Hajisharif et al. EURASIP Journal on Image and Video Processing (2015) 2015:41

specified parameter controlling the trade-off between
levels of denoising applied by the kernel.

6.2 Update rule 2: intersection of confidence intervals

(1cn

The second update rule is based on the ICI algorithm
[5]. The main purpose of this algorithm is to obtain the
largest scaling parameter in the local neighborhood of
the estimation point under the constraint that the
polynomial model remains a likely fit to the underlying
data. As described in Algorithm 1, the smoothing
parameter, My, < My < Mg, is iteratively increased. For
each iteration, /, the ICI rule determines a confidence
interval, D; = [L;, U)):

L= 2/71’11 (x)_rb:f/,hlv (13)

Uy =zjn(x) + F&ijvhl, (14)

where Z;j,(x) is the estimated radiant power given the
scaling parameter /; and ¢, is the weighted standard
deviation of this estimate computed using Eq. 12. T is a
scaling parameter controlling how wide the intersection
interval is. During adaptation, 4, is increased as long as
there is an overlap between the confidence intervals, i.e.,
hy is updated to hy,q=h;+ hiy if there is an overlap
between D; and Dy ;. In practice, we utilize I' as a user
parameter, enabling an intuitive trade-off between image
sharpness and denoising. A detailed overview of the ICI
rule and its robustness can be found in [28].

7 Camera parameter calibration

The variance of the readout noise, the sensor gain, bias,
and the sensor saturation point are calibrated once for
each sensor. The bias frame, b, and readout noise
variance, Var[ri(g,t)], are calibrated as the per-pixel
mean and the variance, respectively. This calibration is
done over a set of black images captured with the lens
covered, so that no photons reach the sensor. The sensor
gain, g;, can be calibrated using the relation,

Var[y,]-Var[b;] _ g; Varle]
Ely]-E[bi]

giE[ei] :gi’ (15)

where the second equality follows from e; being Poisson
distributed shot noise with E[e;] = Var[e;]. In addition, E[y;]
and E[b,] can be estimated by averaging flat fields and the
bias frame, respectively, and Var[b;] as described above.
The per-pixel non-uniformity, a;, can be estimated using a
flat field image computed as the average over a large
sequence of non-saturated images.
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Fig. 7 Another comparison of a cutout of the simulated lamp scene
for different methods: a LPA M =2 from left to right: h=06, 14,

and 5.0; b SKR M =2 from left to right h=0.6,14,and 5.0; ¢ our
method with ICI M =2 from left to right [ =0.6,1.0,and 1.4; d our
method with EVS M =2 from left to right [ =0.6,1.0,and 14

8 Results and evaluation

The proposed algorithm has been evaluated on two
different sets of images. One synthetic image data set with
known ground truth computed using a camera simulator
and one set of images captured using a Canon 5D Mark III
running the Magic Lantern firmware with the duallSO
module installed. The synthetic data is generated using a
camera simulation framework which takes a noise-free
HDR image as input and applies noise based on the camera

Fig. 8 The ground truth reference images for the cutouts compared

in Figs. 6 and 7
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noise model described in Section 4. The camera parameters
estimated from real cameras as described in Section 7 are
used for simulating duallSO sample data. The noise-free
HDR images (ground truth) were captured as a set of
carefully calibrated exposure brackets one f-stop apart
covering the dynamic range of the scene. Each of the
different exposures in the bracketing sequence was
captured as the average of 100 calibrated RAW images
with the same exposure settings. The test images used
exhibit a very large dynamic range, were selected to be
representative for challenging scenes, and include features
such as dark and bright image regions, high- and low-
frequency regions, image noise, and strong local contrasts.
In our evaluation, we compare three different gain pat-
terns as shown in Fig. 1. We have tested our algorithm
for a polynomial degree of M =0,1,2 and a range of
different parameter settings for I'. In all tests (except
for the non-adaptive fixed 4 comparisons), the
smoothing parameter, /, is allowed to vary between
h=0.6 and h=50. Figure 4 shows an image
captured with a Canon 5D Mark III running the
Magic Lantern duallSO module and reconstructed
by the proposed method. The image shows that our
algorithm performs well in the reconstruction by
keeping image sharpness while allowing high-quality
noise reduction.

Figure 5 shows a high contrast scene simulating a
Canon 5D camera with duallSO settings of ISO100
and ISO1600 alternating in pairs of rows on the
sensor as shown in Fig. 1 (left). Figure 5 shows the
input raw CFA Bayer image, and three images in the
bottom row show the locally adapted / values for
the red, green, and blue color channels, respectively.
The EVS update rule adapts the smoothing param-
eter i1 to both the image features and the image
noise. The parameter /& becomes smaller as we get
closer to edges and textured regions and larger in
homogeneous areas.

In Figs. 6 and 7, we focus on the trade-off between
image sharpness and denoising. We compare our algo-
rithm using both the ICI and EVS update rules to LPA
using non-adaptive filtering kernels, [10], with 4 =0.6,
1.4, and 5.0, and the widely used steering kernel regres-
sion (SKR) method [29]. The images compare two cut-
out regions of the lamp scene from Fig. 5. The two
regions have been chosen to display the performance of
our algorithm in a dark region, Fig. 6, and a highlight re-
gion, Fig. 7. The ground truth reference images of the
cutouts are displayed in Fig. 8. In both images, the com-
parisons are ordered as follows: (a) non-adaptive LPA M
=2 from left to right with 4 =0.6,1.4,and5.0, (b) SKR
[29] M =2 from left to right with /2 =0.6,1.4,and5.0, (c)

-

Block Pattern Row Pattern
F‘l F‘l
Diagonal Pattern Reference

diagonal pattern

Fig. 9 Living room scene. Comparison of our method with EVS rule M=2; = 1.0 for different gain patterns: block pattern, row pattern, and
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-

EVSM=0,T=1.4

ICIM=0,T=1.4

right with M=0,1,and 2

EVSM=1,T=14

ICIM=1,T=1.4

Fig. 10 Lamp scene, evaluation of EVS, and ICI method for different degrees of polynomial for duallSO 100-1600 with row pattern from /left to

EVSM=2,T=14
2

ICIM=2,T=1.4

our method with ICI rule for local adaptation of scale
parameter, M =2, from left to right: I'=0.6, 1.0, and1.4,
and (d) our method with EVS rule, M =2, from left to
right: I'=0.6,1.0,and1.4. From Fig. 6, it is evident that
the non-adaptive method in (a) [10] does not perform
well. SKR produces good results for /# =1.4 but cannot
fully adapt the smoothing parameter as artifacts from
the noise filtering are visible (zoom in). Both ICI- and
EVS-based algorithms keep sharpness while reducing
the image noise more than the other methods. In Fig. 7,
SKR with /2 =1.4 produces a sharp image without color
artifacts; however, it also smooths the reflection on the

red toy. ICI and EVS produce a similar result, but EVS
leads to less smoothing around the highlight areas of the
scene compared to ICL. The images show that our algo-
rithms using ICI and EVS update rules produce high-
quality images. In general, the EVS update rule allows
for a higher degree of smoothing and denoising while
keeping higher contrast edges intact. However, in dark
regions, the EVS update leads to a loss of detail com-
pared to ICI rule. Another important difference is that
although the EVS update rule may produce better results
in some cases, it is built on the heuristic argument that
the reconstruction error should be smaller than the

-

(e —

Fig. 11 Cutouts of the checkerboard in the lamp scene, evaluation of ISO settings for EVS M =2, =1.0. (Top row) From left to right: reference, duallSO
100-400, duallSO 100-800, and duallSO 100-1600. (Bottom row) From left to right: duallSO 100-3200, duallSO 100-6400, duallSO 100-12800, and
duallSO 100-25600
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&

duallSO 100-25600

J
| —F |
Fig. 12 Cutouts of the glass in the lamp scene, evaluation of ISO settings for EVS M =2, [ =1.0. (Top row) From left to right: reference, duallSO
100-400, duallSO 100-800, and duallSO 100-1600. (Bottom row) From left to right. duallSO 100-3200, duallSO 100-6400, duallSO 100-12800, and

standard deviation in the filtered region. While ICI rule
is statistically motivated and designed to minimize the
estimate variance.

In Fig. 9, we demonstrate how our algorithms perform
using the three different gain patterns illustrated in Fig. 1.
This particular image region is selected as it contains
slanted edges in different directions. The comparisons
show that the block pattern and diagonal pattern in some
cases produce better results. However, the reconstruction
quality depends on how the image features are oriented
and the statistically optimal configuration of the gain
pattern is out of scope of this paper. Figure 10 shows a
cutout of the lamp scene simulated with row pattern and
reconstructed using a varying polynomial degree of M =0,
1,and 2. As expected, M =0 produces a blocky result, and
M=1 and M =2 produce increasingly more accurate
reconstructions.

In Figs. 11 and 12, we show the effect of increasing the
ISO separation in the duallSO image using a simulated
14-bit Canon 5D sensor. The dualISO settings are varied
from ISO100-ISO200 to ISO100-1SO25600. As the
separation between the ISO settings increase, the number
of overlapping bits in the two exposures decrease. The
image shows that our algorithm works well up to
ISO100-1SO6400, i.e., a separation of six f-stops and an
overlap of 8 bits. By increasing the separation further,
artifacts start to appear along the edges.

9 Conclusions

In this paper, we presented a novel approach for adaptive
unified HDR image reconstruction that includes the sensor
noise model and error of the estimation for a more robust
and accurate reconstruction of single shot spatial multiplex-
ing raw data. The method handles severe noise, especially
in the darker regions while it keeps the error of the estima-
tion low to prevent over-smoothing of the image. To the

best of our knowledge, none of the previous methods have
considered sensor noise model and estimated error and
variance in order to adapt the reconstructed kernel for each
local region of the image. The robustness of our approach
for noise reduction and HDR reconstruction has been ex-
perimentally verified on both real data and simulated cam-
era images. While being a simple method to implement,
our results demonstrate a relatively good performance.
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