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Abstract

processing applications that require automation.

Noise estimation is fundamental and essential in a wide variety of computer vision, image, and video processing
applications. It provides an adaptive mechanism for many restoration algorithms instead of using fixed values for the
setting of noise levels. This paper proposes a new superpixel-based framework associated with statistical analysis for
estimating the variance of additive Gaussian noise in digital images. The proposed approach consists of three major
phases: superpixel classification, local variance computation, and statistical determination. The normalized cut algorithm is
first adopted to effectively divide the image into a set of superpixel regions, from which the noise variance is computed
and estimated. Subsequently, the Jarque-Bera test is used to exclude regions that are not normally distributed. The
smallest standard deviation in the remaining regions is finally selected as the estimation result. A wide variety of noisy
images with various scenarios were used to evaluate this new noise estimation algorithm. Experimental results
indicated that the proposed framework provides accurate estimations across various noise levels. Comparing
with many state-of-the-art methods, our algorithm strikes a good compromise between low-level and high-level noise
estimations. It is suggested that the proposed method is of potential in many computer vision, image, and video
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1 Introduction

In the field of computer vision, signal, image, and video
processing, noise is unfortunately inevitable during data
acquisition and transmission. The accuracy of many algo-
rithms significantly relies on well hand-tuned parameter
adjustments to account for variations in noise [1-3]. To
automate the process and achieve reliable procedures, the
capability for accurate noise estimation is essential to mo-
tion estimation, edge detection, super-resolution, restor-
ation, shape-from-shading, feature extraction, and object
recognition [4-9]. In particular, image noise having a
Gaussian-like distribution is quite often encountered, and
it is characterized by adding to each pixel a random value
obtained from a zero-mean Gaussian distribution, whose
variance determines the magnitude of the corrupting noise.
This zero-mean property enables such noise to be removed
by locally averaging neighboring pixel values [10, 11].
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Indeed, many noise reduction algorithms incorporate
the knowledge of the noise level in the denoising process
and assume that it is known a priori [12-15]. Accordingly,
estimation for the amount of noise is critical in these
methods, because it enables the process to adapt to the
level of noise rather than using fixed values and thresh-
olds. The challenge of noise estimation is to determine
whether local image variations are due to color, texture,
and lighting changes of images themselves, or caused by
the noise. Nevertheless, existing noise estimation algo-
rithms can be broadly classified into three major categor-
ies: filtered-based, block-based, and transform-based
approaches [4, 5, 11, 16, 17].

In filtered-based methods, an input image is first filtered
by a low-pass filter to smooth the structures and suppress
the noise in the image [4]. The noise variance is then esti-
mated from the difference between the noisy image and
the filtered image. One fundamental problem of filtered-
based methods is that the difference image is assumed to
be the noise, but this assumption is not always true in
general. This is because the low-pass filtered image is not
equivalent to the original noise-free image, particularly
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when the image is with strong structures and complicated
details. To minimize the influence and obtain a realistic
basis for noise level estimation, Rank et al. [18] proposed
to use the vertical and horizontal information of an image
to extract the noise detail and histogram information in
the corresponding components. However, it has a rela-
tively higher computation load and many user-defined
parameters to be set.

For block-based algorithms, an image is tessellated into
a number of blocks followed by noise variance computa-
tion in a set of homogeneous blocks [5, 17, 19]. The phil-
osophy underlying this approach is that a homogeneous
block in an image is treated as a perfectly smooth image
block with added noise, which has a relatively higher
chance to contain useful visual activities. Consequently,
the block with a smaller standard deviation has a weaker
variation in intensity, leading to a smoother block. One
main difficulty of block-based approaches is how to effi-
ciently identify the homogeneous blocks. Lee and Hoppel
[20] estimated noise level by assuming that the smallest
standard deviation of a block is equivalent to additive
white Gaussian noise. This method is simple but tends to
produce overestimation results for small noise cases. Shin
et al. [5] split an image into a number of blocks, which
were further classified by the standard deviation in inten-
sity. An adaptive Gaussian filtering process was then
applied to relatively flat blocks, where the noise was esti-
mated from the difference of the selected blocks between
the noisy image and its filtered image.

While noise estimation methods in the first two categor-
ies work directly on the pixel intensity in the spatial
domain, transform-based methods seek particular features
in the transformed domain [21]. For example, the median
absolute deviation method [22-24] used wavelet coeffi-
cients to estimate noise standard deviation based on the
assumption that wavelet coefficients in the diagonal sub-
band HH; are dominated by noise. This approach pro-
vides good estimations for large noise cases, but it can
overestimate the noise in small noise cases. The reason for
overestimation is that wavelet coefficients in the diagonal
subband contain not only added noise but also image
details. Subsequently, Li et al. [25] proposed a modified
noise estimation algorithm based on the wavelet coeffi-
cients in the HH; subband. Better results were obtained
by reducing the estimated original image contribution
from HH; comparing to the traditional methods. Liu and
Lin [17] investigated the possibility to estimate noise in
the singular value decomposition (SVD) domain. The
authors used the tail of singular values to alleviate the in-
fluence of the signal in the noise estimation process and
demonstrated the effectiveness of their method over
wavelet-based approaches. However, due to the use of
SVD twice in the estimation procedure, the computation
time is more expensive.
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Alternatively, there are other methods that estimate
noise in various manners [26]. Immerkaer [27] pro-
posed a Laplacian-based noise estimation algorithm,
which computes the noise variance by convolving the
image with a Laplacian-like mask with zero mean.
This approach is fast and performs well on images
that are corrupted by high level noise. However, for
highly textured images, it perceives thin lines as
noise, leading to overestimation. Tai and Yang [28]
extended Immerkaer’s work by introducing the Sobel
operator for edge detection to exclude the edge
pixels. Salmeri et al. [29] introduced different weights
to various subregions based on a similarity measure
followed by a fuzzy procedure to estimate the vari-
ance of noise. Zoran and Weiss [30] proposed a stat-
istical model to estimate the variance of noise and
showed the effectiveness on images with low-level
noise. Their assumption is that adding noise to images
results in changes to kurtosis values throughout the scales.
In their approach, the image was first convolved by the
DCT filter to produce a response image, from which the
variance and kurtosis were estimated. Aja-Ferndndez et al.
[16] presented a noise estimation method based on the
mode of local statistics (MLS). The authors demonstrated
the efficiency of using the mode of the local sample statis-
tical distribution for the variance estimation of additive
noise provided that a great amount of low-variability areas
exist in the image.

Among existing noise estimation methods, block-based
algorithms are relatively simple and straightforward.
Nonetheless, one main issue of this approach is how to ef-
fectively identify the homogeneous regions while alleviat-
ing the dependence of various noise levels. To address this
major challenge and overcome the drawbacks in the exist-
ing methods, this paper proposes a new noise estimation
algorithm that automatically and efficiently divides an
image into a number of homogeneous subregions, which
are called superpixels. To reduce noise influences, a statis-
tical decision is then made to select the best superpixel,
from which the noise variance is estimated. The ambition
is to improve the estimation accuracy in low level noise
while maintaining precision for higher level noise compar-
ing to existing methods. The remainder of this paper is or-
ganized as follows. In Section 2, the noise model along
with the probability density function of the Gaussian noise
is described. Section 3 introduces the proposed algorithm
that consists of three major phases: superpixel classifica-
tion, local variance computation, and statistical determin-
ation. In Section 4, the performance of this new noise
estimation method using a wide variety of images with
various scenarios is evaluated and compared with many
state-of-the-art methods. Finally, Section 5 discusses the
results and Section 6 summarizes the contributions of the
current work.
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2 Noise model

The fundamental assumption of the noise model is that
the image is corrupted by additive, zero-mean white
Gaussian noise with an unknown variance given by

1(x, y) = f(x, 9) + n(x ) (1)

where (x, y) represents the coordinates of a pixel under
consideration, I(x, y) is the observed image, flx, y) is the
intact image, and n(x, y) is the Gaussian noise, whose
probability density function (PDF) can be written as
follows:

_(z-37 ) 2
p(Z) — mae(z )" /20 (2)

where z represents the intensity, z is the mean of z, and
o is the standard deviation used to control the shape of
the distribution.

Figure 1 illustrates two eight-bit images corrupted by
additive Gaussian noise with ¢ =10 and the correspond-
ing histogram maps. The original image in Fig. la has
two uniform subregions with intensity values equal to 50

and 200, respectively. It is observed that the histogram
distribution has two similar shapes correspondingly cen-
tered at the original intensity values after corruption.
This is because the Gaussian noise model (Eq. (2)) is
actually a normal distribution so that the histogram fol-
lows the normal distribution with the same standard
deviation in each individual region provided that no
influences occur. If the image is further divided into
more subregions and the process is repeated as shown
in Fig. 1b, the same observation will be obtained as illus-
trated in the region enclosed by the red box. Rather than
estimating the noise level globally in the entire image,
this paper proposes to classify the image into several
subregions and compute the noise variance locally in
each individual region to minimize the influence caused
by color, texture, and lighting changes [1, 16, 17, 24].

3 Methods

The proposed noise estimation algorithm can be divided
into three major phases as shown in Fig. 2 and described
as follows.

(b)

Fig. 1 Two images (a, b) corrupted by Gaussian noise with 0= 10 and the corresponding histogram maps
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Fig. 2 Flowchart of the proposed noise estimation algorithm

3.1 Superpixel classification

The first step in our noise estimation framework is to
divide a noisy image into several subregions. Unlike con-
ventional block-based methods, each subregion is not
necessary to be a rectangular block and it is usually not.
In essence, each region is expected to have similar gray-
level, color, and texture characteristics regardless of its
geometry. To do this, the normalized cut algorithm [31]
is adopted to achieve this goal. The basic idea is to use
the theoretic criteria of graph to measure the goodness
of an image partition. More specifically, it measures both
the total dissimilarity between different groups as well as
the total similarity within groups. The optimization of
this criterion can be formulated as a generalized eigen-
value problem that can be efficiently solved. The concept
of this perceptual grouping technique is briefly described
as follows.

Given an image of N pixels, the set of pixels can be
represented as a weighted undirected graph G=(V, E),
where V represents nodes of the graph corresponding to
the pixels in the feature space, E represents edges that
are formed between every pair of nodes. A weight w(, j)
is assigned to each edge that captures the similarity be-
tween nodes i and j. In grouping, the goal is to partition
the set of vertices into m disjoint sets V;, V..., V,,,
where, by some measure, the similarity among the verti-
ces in a set V; is high while it is low across different sets.

For simplicity, a graph partitioned into two disjoint sets,
A and B, is considered by simply removing edges connect-
ing these two parts that satisties AUB=V,AnB=®. The
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degree of dissimilarity between these two sets can be
computed as a total weight of the edges that have been
removed, which is called the cut:

Cut(A7 B) = ZueA, veBW(u’ V)’ (3)

where the graph edge weight connecting two nodes i
and j is defined as follows:

w(i,j) = exp (M)

o7
-X(0)-XG)ll5
x { &P o2 Jf X () -X () l5<
0, otherwise

(4)

where X(i) and X(j) are the spatial coordinates of nodes i
and j, respectively. In Eq. (4), r is a prescribed threshold,
I(i) and I(j) are the intensity values at the correspond-
ing locations, and o7 and oy are the standard deviations

histogram map

1

superpixel image histogram in region A

) ] ] m 0 £ 00 ] m

histogram in region B histogram in region C

(b)
Fig. 3 Superpixel classification and the associated histograms of a input
image and b superpixel map image
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for the intensity component and the spatial component,  where cut(A4, B) is the total weight of the edges that have
respectively. been removed after a graph is partitioned into two
The normalized cut (Ncut) between two sets, A and B,  disjoint sets A and B, assoc(4,V) =X, ca:c yW(u, t) is the
is proposed to solve the problem of unnatural bias based  total connection from nodes in A to all nodes in the
on Eq. (3) in such a way to partition out small sets of graph, and assoc(B, V) is similarly defined. The challenge
pixels using the following: is to find optimal sets A and B such that Ncut(4, B) in
cut(4, B) cut(A, B) Eq. .(5) is mir.limized. Unfortunately, minimizing the nor-

, (5) malized cut is exactly NP-complete, even for the special

assoc(4, V) * assoc(B, V) case of graphs on grids. Based on the spectral graph

Ncut(A4,B) =

Rockyroad Bird

Fig. 4 Representative images for the experiments. The image dimension is 512 x 512
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theory, an approximately discrete solution can be effi-
ciently obtained by thresholding the eigenvector corre-
sponding to the second smallest eigenvalue A, of the
generalized eigenvalue system with

(D-W)y = ADy, (6)

where D is a diagonal matrix with entries D;; given as
Dy=d(i) =) wlij) (7)

which is the total connection from node i to all other
nodes in the graph.

As illustrated in Fig. 3, the input image in Fig. 3a is
classified into several subregions using the normalized cut
algorithm as shown in Fig. 3b. Herein, each subregion is
referred to as a “superpixel.” The concept of superpixel is
based on over-segmentation results, and a superpixel is
local and coherent that preserves most of the structure at
the scale of interest [32]. After the classification proced-
ure, a set of regions R representing the superpixel map is
obtained. Note that the histogram distribution of intensity
in each superpixel is approximately a normal distribution
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centered at different intensity values as illustrated in
Fig. 3b, comparing to the overall histogram distribution
shown in Fig. 3a.

3.2 Local variance computation

After the superpixel classification procedure and obtaining
R, local variance computation is performed inside each
superpixel using

e = IR, ®)/mi; i=1,2, .., N (8)

and

ot =Y " (I(Rex) ) /mi i=1,2, . N, (9)

where I(R;, x) is the intensity of pixel x in superpixel R;,
Ur; is the mean intensity in R; n; is the number of all
pixels in R, o%; is the variance in R; and N is the total
number of superpixel regions in R.

Fig. 5 Some of the 100 images obtained from the Berkeley image database for the experiments. The image dimension is 481 X 321 or 321 x 481
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3.3 Statistical determination

By now, the noise variance values for all superpixel regions
in R are obtained. Intuitively, the smallest variance value
should be selected for the noise variance estimation result.
Practically, however, the variance is somewhat affected by
the size, detail, and texture of each individual superpixel so
that underestimation could occur. Since the probability
distribution of the Gaussian noise is normal, the region
that is most close to normal distribution is chosen as an
estimation candidate. The Jarque—Bera (JB) test [33, 34],
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which is a goodness-of-fit test, is used to decide whether
sample data match a normal distribution based on the
skewness and kurtosis. The statistical JB test is defined as
follows:

JB = g <52 + % (1(—3)2> (10)

where # is the number of observations (or degree of
freedom in general).

Fig. 6 Superpixel maps of Bird with different levels of Gaussian noise. a 0,=1.b 0,=5. c0,=10.d 0,=20. e 0,=30. f 0,=40




Wu and Chang EURASIP Journal on Image and Video Processing (2015) 2015:38

In Eq. (10), S is the sample skewness and K is the
sample kurtosis respectively defined as follows:

§— fy %Z; (xi-%)°
T 64 n /
" <% Zizl(xi"_‘)2>3 2

(11)

(12)

where /i, and /i, are, respectively, the estimates of the
third and fourth central moments; X is the sample mean;
and 6% is the estimate of the second central moment,
i.e., the variance. If the data present a normal distribu-
tion, the JB statistic will have a chi-squared distribution
with 2 degrees of freedom asymptotically. The null
hypothesis is a joint hypothesis with both the skewness
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Fig. 7 Noise estimation results with various levels: a Bird. b Countryroad
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and the excess kurtosis being 0. Any deviation from this
condition will increase the JB statistic. Accordingly, the
null hypothesis based on the JB test is defined as
follows:

0, accept null hypothesis

JBr; = { 1, reject null hy};,)othesis ' (13)

In other words, the JB value equals to O if the corre-

sponding superpixel region is examined as a normal
distribution; otherwise, it is set to 1.

After the JB test procedure in each individual super-

pixel region in R, the final noise estimation result is pro-
duced based on the following rules:

1. Sort R; based on the standard deviation oy, in
ascending order.

2. Exclude the superpixel region whose JB value equals
to 1.

3. Exclude the superpixel region whose pixel number is
less than 10 x min(og,), where min(og,) is the
smallest value of oy, in region R.

4. Choose the smallest value of og, from the remaining
regions as the noise estimation result.

The reason for excluding the regions with a small pixel
number in rule 3 is due to the fact that these regions
may not have an enough sample quantity to reflect the
real noise distribution, leading to poor estimations. As
the region size is somewhat related to the value of og,,
the threshold is thus defined as it is and scaled by an
experimental constant.

4 Experimental results
To evaluate the proposed algorithm, a wide variety of
photographic images (512 x 512) were tested, and some
representative images are shown in Fig. 4. In addition, the
Berkeley image database [35] was adopted to evaluate the
performance of the algorithm. The Berkeley database is a
public domain that contains hundreds of images (481 x 321
or 321 x 481) of plants, animals, persons, landscapes, and
architectures as partly illustrated in Fig. 5. Different levels
of additive Gaussian noise were superimposed on those
images to generate various noisy images for experiments.
To assess the performance quantitatively, the relative error
in terms of the standard deviation was computed as given
in the following equation:

e, =197l 100 %,

Oa

(14)

where o, represents the standard deviation of the esti-
mated noise, o, represents the standard deviation of the
added noise, and ¢, represents the relative percentage
error between the added and estimated noise levels.
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Table 1 Quantitative analysis in noise level estimation with 0,=1, 3, 5, 7, 10, 15, 20 on the Bird image using different methods

J196 Z&W09 MLS09 SVD13 QOurs
[ O & (%) O & (%) O & (%) O & (%) O & %)
1 743 642.71 0.00 100.00 139 38.73 296 195.76 1.10 9.71
3 791 163.80 0.00 100.00 2.66 11.23 4.02 33.90 2.85 493
5 8.82 76.38 268 4640 4.90 1.98 546 9.14 4.81 372
7 10.00 42.89 443 36.67 6.84 231 7.1 1.55 647 7.58
10 12.10 2097 6.96 3044 9.65 35 9.88 117 9.63 3.73
15 16.13 7.55 1124 25.05 14.66 224 14.85 0.97 14.49 343
20 20.15 0.07 1532 2340 19.03 483 19.73 135 1792 1042
Average &, 136.34 51.71 9.26 34.83 6.22

As the proposed algorithm was insensitive to parameter
settings, all experiments were conducted using the same
fixed parameters in the process. All compared methods
were executed with appropriate parameter settings as
suggested by the corresponding authors, if any. The
robustness of the superpixel classification procedure based
on the normalized cut algorithm with respect to different
levels of additive Gaussian noise was first investigated. As
illustrated in Fig. 6, the superpixel maps with different
noise standard deviations varying from o,=1 to ¢, =40
were approximately similar from the perspective of
smooth regions. Figure 7 shows the estimation results of
using the proposed algorithm on the Bird and Country-
road images, whose noise levels were quite widespread
with o,=1, 3, 5, 7, 10, and 15. It is obvious that the
estimated values of g, are quite accurate and close to the
corresponding values of ¢, in all levels of noise in both
images. Table 1 summarizes the quantitative analysis in es-
timating various noise levels on the Bird image using the
J196 [27], Z&W09 [30], MLS09 [16], SVD13 [17], and the
proposed algorithm. For 0,=1 and o, =3, the proposed
framework produced much higher accuracy than all other
methods. For 0,=5 and o,>7, the MLS09 and SVD13
methods outperformed all other methods, respectively.

However, both MLS09 and SVD13 methods severely
overestimated small noise levels that resulted in the
augmentation of the overall error. While the JI96
method overestimated and the Z&WO09 method
underestimated all noise levels, the proposed method
provided consistent accuracy that achieved a small
average error of 6.22 %.

Table 2 presents the statistical comparison in noise level
estimation on all six representative images in Fig. 4
between JI196, Z& W09, MLS09, SVD13, and the proposed
algorithm. The JI96 continued to overestimate the noise
levels with o, < 20, which were particularly worse in low-
level noise cases. Not only did the Z& W09 method under-
estimate all noise levels with g, < 25, but it also generated
no results in larger noise levels with ¢, >30 (not shown).
Other three methods alternately produced the best esti-
mation results on different noise levels. The proposed
method and MLS09 achieved similar accuracy with the
average error less than 12 %. Although MLS09 had slightly
smaller error than our framework, it was not statistically
significant based on only six images. For completeness,
Table 3 shows the quantitative results of noise estimation
using the JI96, Z& W09, MLS09, SVD13, and the proposed
algorithm on 100 images, which were randomly selected

Table 2 Statistical comparison of noise level estimation on the six representative images in Fig. 4 between different methods

J196 Z&W09 MLS09 SVvD13 Ours
O, 0, * std. & (%) O, * std. & (%) 0, * std. & (%) O, * std. & (%) 0, =+ std. & (%)
1 515+2.15 415.23 092+0.71 5862 1.60 £0.36 5991 1.75+092 96.18 1224048 3812
3 597 +1.86 99.03 216+134 3592 3.18+0.20 6.79 324+ 061 17.53 320+0.27 10.26
5 725+£156 4498 43+088 15.81 5.08£0.22 3.64 508 +£043 6.70 483 +037 6.27
7 877+1.30 2534 6.15+0.84 12.25 704+0.36 3.84 701 +£0.36 3.76 7.34+£1.01 865
10 11.28+1.00 12.80 889+ 091 11.06 9.95+ 046 334 9.97+0.30 2.1 9.72+0.57 585
15 15.79+£0.69 5.26 1352+1.06 9.84 14.63 061 419 1506+ 034 149 14.05+0.53 6.33
20 2028 +0.67 2.28 1799+1.28 10.04 1934+ 053 3.29 2016+ 042 1.02 1759+ 143 12.03
25 24.76 +£0.83 3.06 2251+163 9.97 2410+ 067 3.88 2527 +0.21 1.10 2344+ 131 6.94
Average &, 76.00 2044 1.1 16.24 11.81

std. standard deviation
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Table 3 Statistical comparison of noise level estimation on 100 images obtained from the Berkeley image database between

different methods

JI196 Z&W09 MLS09 SVD13 Ours

[ O+ std. & (%) 0, =+ std. & (%) 0O, * std. & (%) O % std. & (%) O * std. & (%)
1 568+ 226 468.22 125+ 161 114.72 2514259 150.99 358+335 30281 1.87+1.39 100.62
3 641+2.05 113.78 275+ 168 4033 435+267 46.09 440+3.05 7667 361+ 131 32.50
5 759+1.78 51.86 478 +1.59 22.60 6.22+2.52 25.89 558+276 38.80 542+£1.19 18.74
7 9.04+155 29.14 662+ 147 1591 8.10+£225 1743 6.98+247 25.75 780+ 149 17.37
10 1144+£1.29 14.89 945+ 1.37 12.55 1091 +2.04 11.34 9.29+2.10 18.07 1057 £1.88 13.20
15 15.75+£1.09 6.61 1412149 9.51 1567 +£1.62 6.66 1349+ 1.69 13.70 1547 £1.83 8.76
20 2020+ 1.10 3.75 1865+ 1.69 8.95 2036+ 1.55 4.66 1787+143 1201 19.71+£1.98 790
25 2463 +1.28 325 23.04£1.95 9.16 2512 +147 3.93 2226+122 1143 2436+ 1.92 6.15
30 29024153 393 N/A N/A 29.85+147 346 2678+ 1.15 10.88 29.07+1.86 5.87
35 33.30+1.80 5.09 N/A N/A 3446+ 154 373 31.15+1.19 11.04 33.63+224 549
40 3747 £209 6.37 N/A N/A 3941+152 322 3565+ 1.13 10.89 3791+£3.13 6.95
Average &, 64.26 N/A 2522 4837 2032

N/A not applicable, std. standard deviation

from the Berkeley database [35], some of which are shown
in Fig. 5. The JI9 method severely overestimated the
Gaussian noise levels until the standard deviation ¢, > 15.
On the other hand, the Z& W09 method performed better
in lower level noise with o, < 5, but it was unable to han-
dle noise with g, > 25. Both MLS09 and SVD13 methods
provided higher accuracy in larger noise levels but
achieved worse estimations in small noise levels, particu-
larly for o, =1. Nevertheless, the proposed scheme pro-
duced better accuracy in smaller noise levels and
compatible estimations in large noise levels that resulted
in a smaller overall error than all other methods.

5 Discussion

A new superpixel-based algorithm was proposed to esti-
mate the additive Gaussian noise level in images. The ap-
proach relied on the normalized cut algorithm to classify
the image in order to obtain the superpixel map, from
which the local variance was computed and selected. As
illustrated in Fig. 6, each superpixel region had similar
gray-level, color, and texture characteristics such that it
provided great flexibility for subsequent statistical analysis.
Since the Gaussian noise obeys a normal distribution, we
proposed to use the Jarque—Bera test [33, 34] to separate
those superpixel regions that follow a Gaussian distribu-
tion from all other regions based on the skewness and
kurtosis. After excluding the superpixel regions that had a
relatively small number of pixels, the remaining smallest
local standard deviation was selected as the noise estima-
tion result.

The proposed framework was applied on a wide variety
of images and compared with four state-of-the-art
methods, namely JI96 [27], Z& W09 [30], MLS09 [16], and
SVD13 [17]. As illustrated in Fig. 7, our technique

provided high accuracy for both simple (Countryroad) and
complicated (Bird) texture images, particularly for low-
level noise estimations. This great capability of excellent
accuracy in low-level noise estimation can also be ob-
served from Tables 1 and 2, which were experimented on
the images shown in Fig. 4. In addition, the algorithm was
extensively evaluated on 100 randomly selected images
from the Berkeley database, which contained a wide diver-
sity of photographic images. In comparison with the JI96,
Z&W09, MLS09, and SVD13 methods, the proposed ap-
proach provided more accurate estimations for low-level
noise images as well as smaller overall estimation errors as
presented in Table 3. In general, the JI96 method performs
better in images with high-level noise but inadequately for
images with low-level noise. In contrast, the Z&W09
method performs better in images with lower level noise,
but it fails to produce estimation results for larger noise
levels with ¢, > 25. Both MLS09 and SVD13 methods can

e 3

Fig. 8 Image with high details and complicated textures (Berkeley

image database: 86016)




Wu and Chang EURASIP Journal on Image and Video Processing (2015) 2015:38

Table 4 Performance analysis in noise level estimation on the image in Fig. 8 using different methods

Page 11 of 12

J196 Z&W09 MLS09 SVD13 Ours

[ O & (%) O & (%) O & (%) O & (%) O & (%)
1 10.83 983.20 9.90 89033 11.61 1061.12 1423 1323.03 448 348.05
3 11.23 274.27 10.59 25290 11.49 28295 14.67 388.92 858 186.15
5 11.89 137.74 11.59 131.86 1246 149.16 14.74 194.84 9.51 90.25
7 1291 84.46 13.18 88.26 13.14 87.74 1533 118.96 10.79 54.11
10 14.77 47.74 15.70 57.04 1533 53.27 17.05 70.52 13.23 32.25
15 1845 23.00 20.04 3357 18.00 20.03 19.97 33.13 16.70 11.33
20 22.71 13.56 2461 23.04 23.12 15.59 2284 14.19 20.88 440
25 27.26 9.05 29.23 16.92 25.20 0.81 27.25 9.00 2392 432
30 31.79 597 N/A N/A 30.59 1.95 3168 5.60 27.28 9.07
35 36.17 334 N/A N/A 34.53 1.35 3457 1.23 33.67 381
40 4041 1.02 N/A N/A 34.66 13.35 39.59 1.02 3842 395
Average &, 142.17 N/A 153.39 196.40 67.97

provide satisfactory results in larger noise level estimation
but they may notably overestimate small noise levels.

While our algorithm strikes a good compromise between
the J196, Z& W09, MLS09, and SVD13 methods in provid-
ing better estimation results across various noise levels.
One limitation of this new noise estimation algorithm is
that it could overestimate small noise levels when the
image is with high details and complicated textures as illus-
trated in Fig. 8. Table 4 summarizes the performance of
the proposed algorithm along with the JI96, Z& W09,
MLS09, and SVD13 methods in estimating the noise levels
using the image in Fig. 8. Note that all five methods overes-
timated the noise levels when o, <20 due to the highly
sandy pattern over the entire image. In particular, the poor
performance of SVD13 (see Tables 3 and 4) may be due to
the singular value decomposition of rectangle images.
Lastly, the computation time of our framework was expen-
sive comparing with other tested methods as presented in
Table 5. Nevertheless, the proposed algorithm still outper-
formed all other methods with closer standard deviation
and smaller average error across various noise levels.

6 Conclusions

In summary, a new algorithm for additive Gaussian
noise level estimation is described, which consists of
three major phases: superpixel classification, local variance

Table 5 Comparison of computation time in seconds between
tested methods based on different dimensions of images

Size J196 SvD13 MLS09 Z&W09 Ours
100 x 100 0.02 0.16 032 12 32
200 x 200 0.02 0.20 033 1.2 13.6
300 x 300 0.02 0.26 0.33 1.8 348
400 x 400 0.02 033 0.35 24 85.2
500 x 500 0.02 044 0.39 36 152.0

computation, and statistical determination. Th e algorithm
strikes a good compromise between low-level and high-
level noise estimations. Hundreds of images with various
subjects, scenes, textures, and structures were used to
evaluate the proposed framework. Experimental results
demonstrated the feasibility and effectiveness of the algo-
rithm in providing accurate estimation results across a
wide range of noise levels. This robust noise estimation
framework is advantageous to automating denoising algo-
rithms that require noise variance information. Moreover,
the proposed noise estimation algorithm is of potential and
promising in computer vision, image, and video processing
applications. Further research is needed to more effectively
divide the image into appropriate superpixels, to investi-
gate the incorporation of filtered-based techniques, and to
accelerate the computation for real-time applications.
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