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Abstract

Stereo matching under complex circumstances, such as low-textured areas and high dynamic range (HDR) scenes, is
an ill-posed problem. In this paper, we introduce a stereo matching approach for real-world HDR scenes which is
backward compatible to conventional stereo matchers. For this purpose, (1) we compare and evaluate the
tone-mapped disparity maps to find the most suitable tone-mapping approach for the stereo matching purpose.
Thereof, (2) we introduce a combining graph-cut based framework for effectively fusing the tone-mapped disparity
maps obtained from different tone-mapped input image pairs. And finally, (3) we generate reference ground truth
disparity maps for our evaluation using the original HDR images and a customized stereo matching method for HDR
inputs. Our experiments show that, combining the most effective features of tone-mapped disparity maps, an
improved version of the disparity is achieved. Not only our results reduce the low dynamic range (LDR), conventional
disparity errors by the factor of 3, but also outperform the other well-known tone-mapped disparities by providing the

closest results to the original HDR disparity maps.
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1 Introduction

High dynamic range (HDR) images provide greater
detail and larger brightness levels than conventional low
dynamic range (LDR) ones. Even though capturing and
displaying HDR images has been widely explored during
the last two decades [1-5], they are not broadly used in
image processing and computer vision applications such
as stereo matching and 3D reconstruction, segmentation,
alpha matting, and face recognition. Working in HDR
space can lead to better results by using more detailed
brightness information. The pixel values in HDR space
are calculated using an estimated camera response func-
tion to fuse the multiple photographs into a single, high
dynamic range radiance map whose pixel values are pro-
portional to the true radiance values in the scene. Dif-
ferently exposed images are used to estimate the camera
response function [1]. It is not hard to predict that work-
ing in HDR space provides more informative disparities.
This is especially true in challenging lighting conditions
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and low-textured areas. However, two important chal-
lenges when switching calculations from LDR to HDR
domain are lack of data and backward compatibility.

To generate a backward compatible solution to conven-
tional stereo matchers, we use tone mapping operations
(TMO) to compress the dynamic range into conventional
range while preserving details of an HDR image. After
comparing disparity maps achieved from different TMOs,
we propose a fusion framework for achieving more infor-
mative disparity maps from tone-mapped HDR image
pairs. In order to estimate the corresponding ground truth
disparity maps, we make use of recently introduced HDR
stereo images and an implementation of a customized
stereo matching approach [6]. Based on these estimated
disparities, we perform an objective evaluation of stereo
matching approaches.

Why do we need a backward compatible HDR stereo
matcher? Most of the available stereo matching soft-
ware approaches are hard-coded to work with 8-bit input
images, including the top-ranked methods in Middle-
bury [7], although a few methods including some hard-
ware solutions implemented on microprocessors have the
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advantage of running on floating point data [8]. Further-
more, most of the available stereo matching codes assume
a fixed range of intensities for both left and right images
while an HDR image pair most probably have different
maximum luminance values for each image due to angular
differences. See Section 5.1 for information regarding the
maximum luminance values in the left and right images of
our data set.

The described modifications are not hard to make in
code level but will cause reviewing and re-factoring avail-
able stereo matching implementations (see Section 5.3
for an example). Stereo matching is an old research and
industrial field, it is important for new stereo data sets to
be runnable on conventional approaches. Therefore, we
use tone-mapped image pairs with the standard interface
to legacy stereo matchers and propose an algorithm to
optimize the disparity maps to achieve the closest results
to HDR stereo matching.

Even though we captured the HDR stereo data, we only
used them for our ground truth disparity calculation and
used HDR tone-mapped data in our proposed framework.
The first reason for using tone-mapped images (not the
original HDR image pairs) is described in the previous
paragraph regarding backward compatibility. The second
reason is, although our HDR stereo matching approach
outperforms the tone-mapped and LDR approaches, it is
not fully automatic. We used a manual in-painting post
processing to fill-in some of the holes in the disparity maps
as shown in Fig. 2. Manual post processing and in-painting
of disparity maps for the purpose of ground truth genera-
tion (evaluation) is a common approach [9, 10] but usually
not a scalable or real-time method. We used the original
HDR disparity maps just as a reference for our evalua-
tion method for the same mentioned reasons. The manual
post processing method will be discussed in more detail
in Section 5.3.

In this paper, we present a graph-cut based dispar-
ity map fusion framework using different tone-mapped
stereo matching results in order to take into account
the best features for stereo matching from several differ-
ent TMOs. Stereo matching in HDR scenes introduces
new challenges to the state-of-the-art matching. Comput-
ing the disparity on the tone-mapped image pairs is an
approach to solve these challenges, but not so many tone-
mapping operators are suitable to be applied on more
than one frame or image while keeping the consistency
of the images or frames. This problem has recently been
addressed in video tone-mapping [11].

The remainder of the paper is structured as follows. The
related work and background are discussed in the next
section. We compare the disparity results obtained from
different tone-mapped image pairs with a focus on edge-
aware filtering based TMOs in Section 3. Our proposed
framework to combine several computed disparity maps
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is introduced in Section 4. Finally, Section 5 debates our
experimental results, evaluation, and discussions. This
Section discusses the HDR stereo image pairs as well as
our reference disparity map generation approach used for
the quantitative evaluation.

2 Related work

Even though there is a considerable amount of literature
on the state-of-the-art in each of the HDR and stereo
matching fields, not much work has been done on join-
ing the two. Several approaches have been presented for
constructing an HDR image from two differently exposed
LDR stereo images by calculating the depth informa-
tion of the scene [12—17]. More recently, Batz et al. [18]
and Orozco et al. [19] proposed interesting approaches
for HDR video reconstruction using depth information.
Orozco et al. introduced a patch match-based method to
generate 3D HDR video sequences using available hard-
ware. The main goal in the mentioned articles is to gen-
erate better quality HDR image/video while our main
focus is to use the available HDR content to achieve
more informative disparity maps. Few approaches have
been introduced for subjectively comparing tone-mapped
stereo images with the focus on stereoscopic data genera-
tion [20] or disparity map calculation [6]. Recently, Aydin
et al. [21] evaluated some of the TMOs based on edge-
aware filters for HDR video tone-mapping taking into
account the visual artifacts and temporal coherency in the
tone-mapped video. The authors also introduced a faster
and more efficient filter for high motion scenes. The key
contribution of this filter is for achieving temporal sta-
bility without ghosting on high motion videos. Our work
focuses on still stereo image pairs and does not contain
motion.

Combining multiple TMOs. Combining results achieved
from different methods is a common approach in image
processing and computer vision research [22, 23]. More
specifically, fusing several TMOs to achieve better quality
images is addressed in [24]. The idea behind this fusion is
that each TMO works better in a special image region and
under some specific conditions and the best output can
be calculated taking into account the suitable TMO for
each image region. Mai et al. [20] explored that HDR tone-
mapping can significantly enhance perceptual quality of
3D images. We go one step further and use tone-mapped
stereo pairs to obtain better disparity information.

Although, our first objective was to report the best TMO
regarding stereo matching, the outcome of our experi-
ments is consistent to the result of many evaluations that
have been done on TMOs [25—27]; there is no single TMO
which performs the best in all conditions. Therefore,
we combined the disparity maps from the tone-mapped
images to maximize the quality of the disparity map taking
into account the strong points of each TMO.
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Combining multiple depth maps. Combining several
depth maps achieved from different view points is stud-
ied by Schuon et al. [28]. Combining range information to
generate a more accurate result is a well-known approach
in the 3D society [29]. Another successful example was
introduced by Izadi et al. [30] to fuse a sequence of depth
maps generated by a kinect camera. We use information
from several tone-mapped disparity maps and combine
them to provide backward-compatible stereo matching
results for HDR scenes.

Many different methods can be used for combining
results. Some of the simple ways are to calculate the
average, weighted average, or median of the candidate
results. In most applications, using simple combination
methods without taking into account any prior or statis-
tical knowledge of candidate results does not achieve the
best outcome. Akhavan et al. used a machine learning-
based approach to combine results of color constancy
in [31]. Markov random field (MRF)-based method was
described and used is [29] to combine range information
in 2005. In [23], a fuzzy integral method was introduced
as a combination method which considers the dependen-
cies between the candidate results. In this paper, we use
Markov random field and more specifically graph-cuts
to combine the disparity maps. Using MRF is proved to
be effective in labeling problems such as stereo matching
[32], since the output values of the matching algorithms
are cost values that are suitable targets for energy min-
imization algorithms. In Section 5.5, the combination
outcomes using average, median, and our method are
compared.

3 Tone-mapped stereo matching
Tone-mapping is the approach of compressing the
dynamic range into conventional range while preserv-
ing details of an HDR image. Therefore, tone-mapped
images of HDR scenes contain more information com-
pared to conventional LDR images. We compare and
evaluate some TMOs specifically for the stereo matching
purpose and provide an objective evaluation compari-
son to HDR disparity maps. By doing this evaluation,
we find the most effective TMO for stereo matching
which achieves the closest results to the HDR method.
This will enable us to achieve as close disparity informa-
tion as possible to disparities computed on HDR images
without the need to customize stereo matching codes.
From the stereo matching perspective, the tone-mapped
image is treated like an LDR image and can be used
easily as an input to any stereo matching method. There-
fore, we call the stereo matching using tone-mapped
image pairs, the backward-compatible stereo matching
approach.

Choosing among so many available TMOs is a challeng-
ing task. It is obvious that comparing all of the available
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TMOs is not possible. In most of the evaluations of TMOs,
a subset of five to ten different methods are chosen for
comparison [25-27]. TMO’s main purpose is for display-
ing HDR images on conventional devices, therefore most
of the comparisons on TMOs used subjective evalua-
tion methods. We evaluate two sets of TMOs. (1) Some
highly ranked TMOs which are reported among the most
effective ones in the evaluations [25-27] (Section 3.1),
and (2) TMOs that are based on an edge-aware filtering
approaches (Section 3.2). A big challenge in using TMOs
for stereo image pairs is to keep the consistency between
two image frames. This challenge is very well-known in
video tone mapping [11]. Using TMOs which have less
dependency to statistical information from an image or a
frame, is more consistent to be used for stereo, multi, or
video frames. According to our experiments, edge-aware
filtering approaches give better results considering the
consistency among left and right images. A reason for this
is that these approaches do not try to estimate any curve
depending on the image information or luminance range.
But they divide the HDR images into two layers, keep the
detail layer, and compress just the base layer.

Akhavan et al. [6] subjectively compared the disparity
maps obtained from two of the TMOs with LDR and HDR
disparities. In this paper, a broader range of TMOs are
studied. Moreover, the effect of edge-aware TMOs are
taken into account for a subjective as well as an objec-
tive comparison which is followed by proposing a new
combining method for disparity estimation. To maximize
the effect of our combining method, a diverse selection
of TMOs is suggested. Since we aim to combine the best
features for stereo matching (among TMOs), the bigger
and more diverse our feature set is, the more effective
the results will be. Due to the fact that there are many
TMOs available, it is easy to choose several and apply our
fast combined solution to achieve as informative disparity
maps as HDR disparities.

3.1 Highly ranked TMOs

According to most of the comparisons on TMOs men-
tioned before, Reinhard TMO [33], Fattal TMO [34], and
Drago TMO [2] are among the most effective ones. Rein-
hard TMO is a global TMO which took the inspiration
from traditional wet-film photography techniques. Fattal
TMO represents a local TMO which is based on gradient
domain operators. Drago TMO is an example of a global
TMO which is extending the logarithmic response curves
to perform on a wider dynamic range. In the following
subsections, we compare and discuss these TMOs from
the stereo matching point of view.

3.2 Edge-aware TMOs
Most local tone-mapping operators use a decomposition
of the image into different layers or scales to reduce the
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contrast differently for each scale, and the final image is a
recomposition of the various scales after contrast reduc-
tion [35]. A very common way to decompose the image
into layers is using the edge-aware filtering approaches.
Using edge-aware filters for tone-mapping was first intro-
duced by Durand in [35] using bilateral filter and was
evaluated as one of the best TMOs. Therefore, in this
paper, we implemented and compared three TMOs using
some well-known edge-aware filters such as guided fil-
ter [36], Farbman filtering approach [37], and domain
transform filter [38]. Even though all of the mentioned
filtering approaches introduced tone-mapping as one of
their applications, the analysis of tone-mapping in these
studies has been brief, since the main contributions of
these works lie elsewhere. No thorough comparison of
these edge-aware tone-mapping operations has been pub-
lished (except for Aydin et al. [21], mentioned in Section 2
which focuses on high motion videos).

Our experiments show that edge-aware TMOs achieve
more discriminative disparity maps since they are more
robust to lighting changes between the left and right
images.

Durand TMO: Based on the idea of an image being
consisted of a high spatial frequency (LDR) and a low
frequency (HDR).

Gastal, He, and Farbman TMOs: Based on the same idea
as Durand TMO but using different edge-aware filtering
approaches.

The tone-mapped disparity maps are calculated using
the cost-volume filtering stereo matching [39] on every
tone-mapped image pair. The TMOs which are used in
this experiment are as follows: Reinhard, Durand, Fattal,
Gastal, Drago, He, and Farbman TMOs.

Our main contribution is the introduction of the com-
bination approach to use all the different characteristics
of TMOs into account. The TMOs which we used in our
benchmark are interchangeable.

TMO parameters: Most TMOs have tunable parame-
ters. We used the default parameters suggested by the
authors in most of the cases for TMOs. Here, we list the
parameter values which we modified to tune the TMOs
for tone-mapped disparity calculation according to our
experiments. For more details of the parameter defini-
tions, please refer to the references.

e Guided filter (He TMO [36]): {r = 9,¢ = 0.0001}
e LS filter (Farbman TMO [37]): {& = 1.2, A = 1}
e Domain transform filter (gastal TMO [38]):

{os = 60,0, = 0.33}

We use a state-of-the-art local stereo matching tech-
nique based on cost-volume filtering [39] for all of our dis-
parity estimations. The matching cost calculation based
on the color intensity values (Ic;) and luma gradient
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information (v,/;) is formulated in Eq. 1 [39]. The seven
different tone-mapped image pairs are used as different
inputs to our stereo matcher.

Ciq = a-min [||Ie; — Ic,_,l|, 71 ] + W
(1 — @)-min [HVxIL - Vxll{_d”r 1'2] .

The cost-volume entry, C; 4, determines how well a pixel
i in the left image matches the same pixel in the right
image shifted by vector (disparity) d in the x direction.
Here, v, is the gradient operator in the x direction. For
weighting the color and gradient information, « is used,
and 7 values are truncation values. We apply this approach
on different tone-mapped stereo inputs in the rest of the
paper. The minimum cost disparity value (among the d
disparities) is then estimated for each pixel i to be saved in
f; as the final disparity as in Eq. 2.

fi = argmin C; 4. (2)
d

4 Combined tone-mapping approach for
disparity map estimation

The discontinuities in a disparity map often co-occur with
the color or brightness changes in the associated cam-
era image [29] as illustrated in Fig. 3. Therefore, using
tone-mapped image pairs which contain more accurate
information of the brightness and color than LDR images
helps the disparity estimation. Our results, discussed in
Section 5, show that some of the TMOs provide bet-
ter data for stereo matching, but here we propose an
approach to take into account all the positive features of
the different tone-mapped images. We tie together the
available information from different tone-mapped image
pairs. Each TMO is based on some specific image fea-
tures. The probability distribution based on each disparity
map (obtained from different TMOs) provides a practical
platform to effectively obtain the most probable disparity
value for each pixel.

4.1 Combination method

Markov random fields (MRFs) are being widely used in
computer vision during the last two decades because of
their enormous power in modeling the visual percep-
tion problems [40]. We model our combining problem
using a pairwise MRF by defining the measurement and
smoothness potentials.

To our best knowledge, this is the first time tone-
mapped disparities are being combined to provide
more discriminative disparity information in HDR, low-
textured scenes. We apply a graphical model to the prob-
lem of fusing several disparity maps using a Markov
random field approach for integrating the disparities. We
propose a modified version of the MRF approach used in
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[29] for integrating our seven different tone-mapped dis-
parity maps. They used a maximum a-posteriori (MAP)
which can be mapped to the usage of graph cuts to solve
an energy minimization problem (see Eq. 8). Our MRF
formulation of the problem works with seven layers of
information, one layer per TMO disparity.

The target disparity value y is estimated using the prior
seven disparity information Z = {z1, 22, . . ., z7} and refer-
ence guided image (here, left image) x from the likelihood
function p(y|Z, x). Since the stereo images are available in
high resolution, this insight is used to enhance the accu-
racy of the disparity estimation. We used the left image as
a guided image in our approach. The MRF is defined in
the form of

1 1
p(ylZ, %) = Z exp (—2(1& + ¢)> . 3)

where C is a normalization factor. The disparity measure-
ment potential ¢ and the disparity smoothness potential
¢ are calculated as follows. The measurement potential
is based on a quadratic distance between the estimated
disparity value and the seven measured ones. The set of
indexes for which different disparity values are available is
shown by L. A constant weight of K can be placed on the
depth measurements. In our calculations, we used K = 1.

V=Y K(y—z)’L=12...,7. (4)
ieL
The neighboring nodes to pixel i are considered in N (i),
and ¢ calculates the weighted quadratic distance between
neighboring disparity information. Various numbers of
neighbors can be used depending on the purpose of the
application. We used values from eight neighboring pixels.
The weighting values w;; determine the correspondence
between two adjacent pixels, using the constant ¢ as a
penalty for smoothing the edges in the image.

o=>" > wilyi—y)> (5)
i jeNG)
The weights w;; are calculated from the guidance refer-

ence image x, which in our case is the left view image since
we calculate the disparity for the left view.

uij). (6)

wy = ||x; — x> (7)

wi = exp(—c

Now that the MRF model is defined, there are many
ways for solving the optimization problem. This problem
can be solved using MAP or energy minimization (see
Eq. 8). In [29], the conjugate gradient is used for solving
the MRF. Here, we minimize the energy with the help of
the graph cuts using a-expansion moves [41] as formu-
lated in Eq. 10, since one of the classical usages of energy
minimization is for assigning labels (here, disparity values)
to pixels. Minimizing the energy/cost has gained a lot of
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popularity especially in solving low-level vision problems
such as stereo matching.

E(y1Z,x) = —logp(y|Z, %). 8)

Equations 8, 9, and 10 show the relation between the
energy and likelihood and their optimization approaches,
where E is the energy function [40].

§ = argmax {exp) € (p(y12) { - )
Y p

§ = argmin { —» " In (p(y12)) (10)
Y p

5 Evaluation and experimental results

An assumption underlying much of image processing and
computer vision is that image intensity values are propor-
tional to scene radiance. This assumption breaks down
especially in saturated regions, which can impact many
vision tasks including stereo matching. There is usually
an unknown, nonlinear mapping of scene radiance to
image intensity values caused by several nonlinear func-
tions that occur in the imaging process [1]. In particular,
real-world scenes contain a high range of luminance lev-
els which cause over- and under-exposed regions in the
captured image. Accordingly, computing disparity in the
mentioned regions is very challenging. Some examples
of such scenes are shown in Figs. 1 and 2. Currently,
there is a trend towards HDR imaging, which fuses several
images, acquired with different exposures, into a single,
HDR radiance map whose pixel values are proportional to
true scene radiance [42].

5.1 Stereo image pairs

The well-known Middlebury stereo data set [7, 43] is not
sufficient for our matching purpose, even though it con-
tains multi-exposure views. Most of the scenes captured
in Middlebury could be categorized as normal LDR indoor
scenes of 102 cd/m? since they do not contain large bright-
ness differences. These scenes are categorized in Table 1
as indoor scenes which most of the time do not need HDR
capturing. On the other hand, sunny outdoor scenes can
get as bright as 10° cd/m? which is a wide dynamic range
of brightness. We constructed bright scenes of 10° cd/m?
in our laboratory (using multiple illuminations in the
scene) which contain just enough brightness to generate
over-/under-exposed areas in conventional photography.
These types of scenes are the ones who are called HDR
scenes and need HDR capturing methods to cover the
whole range of brightness in the image. We generated a
data set of HDR scenes including highly exposed regions
and low-textured areas for our experimental process (see
Table 1).
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Fig. 1 A complete LDR sample from the multi-exposed stereo data. First row: left view, second row: right view. Exposure times from left to right:
1/15,1/30,1/60,1/125,1/250,1/500,1/1000, and 1/2000s. Baseline: 150 mm

We captured normal (LDR) images in eight different
exposures for each view. Figure 1 is a detailed example
of our full exposure stack of images. It shows the eight
exposures for both views which are used for creating HDR
images from a scene containing low-textured regions cap-
tured under a non-uniform luminance in the range of 1
to 8000 cd/m?. Table 2 illustrates the maximum lumi-
nance values per image for all of the scenes in our data set.
The values are calculated from the original HDR images.
As shown in the table, in all five scenes, the right images
contain a higher brightness range since our lamps were
located on the right side of the scene.

Our data set comprises two different baselines of 75 and
150 mm between the two stereo views. For both baselines,
the images were separately rectified. The HDR images

were directly generated from raw image files of the eight
LDR exposures following the approach of Debevec et al.
[1]. Five different samples of our stereo LDR-HDR data set
are shown in the first two rows of Fig. 2.

5.2 LDRdisparity maps

In order to have a fair comparison of the LDR disparity
maps with the tone-mapped and HDR competitives (see
Fig. 4), we used the most informative disparity map
among the eight captured exposures for each of the
images in our data set. As shown in Fig. 1, we captured
the left and right images in the following eight expo-
sures: 1/15,1/30,1/60,1/125,1/250,1/500,1/1000, and
1/2000s. As expected, the middle exposures are the ones
which capture most of the information and the others

Left view

Right view

Gradient
Image

Matched
points

Processed

In painted
reference

Post

Fig. 2 HDR stereo data set and their corresponding reference disparity maps. First two rows: the left and right views of the images. Third row: the
gradient images corresponding to the left view. Forth row: the matched points from two views using the customized HDR cost-volume stereo
matcher. Fifth row: the post processed disparity maps. The last row: the in-painted reference disparity maps
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Table 1 Maximum luminance value of the left and right images
in our data set
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Table 3 Our combined tone-mapped-based approach in
comparison with other approaches

Scene Left, max. luminance Right, max. luminanc
(incd/m?) (incd/m?)

Donkey 5412 5536

Horse 5423 5543

Rabbit 5401 5570

Elephant 6802 7153

Pillow 8150 8221

The rows of this table are arranged with respect to the data set shown in Fig. 2 from
left to right: Donkey, Horse, Rabbit, Elephant and Pillow

are over-/under-exposed. In Table 3, we illustrated our
chosen exposures for each image in our data set. To
choose the most informative LDR image, we ran the
stereo matcher on all of the exposures and calculated the
error using our ground truth. The image pair with the
smallest error was chosen to be compared with other
approaches.

5.3 Reference/ground truth disparity map
Disparity maps obtained from HDR stereo image pairs
are post processed and used as our reference disparity
information. We computed the HDR disparity maps by
replacing the color intensity information and luma gradi-
ent values in Eq. 1 with radiance (R;) and radiance gradient
values (v,R;), respectively [6], as shown in Eq. 11. These
HDR disparity maps are shown as post processed disparity
maps in Fig. 2.

Cig = a-min[||R; — R._,ll, 1] + )

(1 — a)-min [||Vle - Vngfd”’ ‘L'2] .

In Fig. 2, the first two rows demonstrate the left
and right views of the images which contain the low-
textured background as well as tricky lighting conditions
for stereo matching. The third row shows the gradi-
ent images corresponding to the left view, showing the
lack of gradient information. In the fourth row, the
matched points from two views using the customized
HDR cost-volume stereo matcher [6] are shown. These

Table 2 Comparison of our combined graph-cut-based
approach to several other combination methods

Combining approach Average RMSE

Average 16.6087
Median 15.3736
Our graph-cut-based combination method

combining four random tone-mapped disparities 10.5418
Our graph-cut-based combination method combining

seven tone-mapped disparities 51754

Approach Average RMSE
Reinhard 27.9986
Durand 26.1757

Fattal 244647

LDR 16.6513

Gastal 14.1403
Drago 11.9454

He 10.6072
Farbman 9.0224

Our combined approach 5.1754

Our results were compared to conventional LDR stereo matching and seven other
well-known tone-mapped stereo matching approaches. The error is calculated as
the average RMSE on the five introduced stereo image pairs

disparity maps are not post processed. The post pro-
cessed disparity maps are presented in the fifth row. In
the last row, the in-painted improved reference dispar-
ity maps are depicted using the gradient information to
fill in the wholes in the disparities presented in the
fifth row.

We seek to get a deeper insight into the observed
quality differences between the LDR and HDR matching
results by comparing computed cost values in the intensity
space versus HDR radiance space. Details of the cost val-
ues computed in the intensity (LDR) and radiance space
(HDR) for a specific sample are provided in Fig. 3. Graphs
(g1), (2), (g3), and (ga) show the computed matching costs
for specified pixels in e and f. In all graphs, cost values
(first rows) are calculated from color/radiance informa-
tion (middle row) and gradient information (bottom row)
using the LDR and HDR cost computation algorithms as
described before. Pixels #; and %] in the LDR and HDR
disparity maps (e and f), respectively, achieve a plausible
disparity in both cases.

Contrarily, xo and ), represent the same pixel in the
LDR and HDR disparity map for which a wrong dispar-
ity in LDR but a correct disparity in HDR was achieved.
The top row in graph (g3) shows how working in con-
ventional intensity space results in very similar matching
costs inside low texture areas that are very likely to cause
a mismatch. The top row in graph (gs) presents the corre-
sponding pixel matching costs in radiance space with only
one minimum among matching costs. The same effect was
observed on other image pairs too. Using scene radiance
information instead of intensity values, we achieved one
global minimum which is known to be a more reliable
situation in optimization algorithms. Therefore, we use
the HDR disparity maps (forth row in Fig. 2) with small
modifications (last row in Fig. 2) as reference disparity
information for our quantitative evaluation.
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Fig. 3 LDR-HDR cost calculation comparison. a, b Left and right views; ¢, d LDR and HDR computed disparity maps; e, f zoomed areas from ¢ and d;
(g1), (g2), (g3), and (ga): from top to bottom: cost values, color/radiance-differences, and gradient-differences between pixels x1, xq,xz, and x’z, and the
pixel shifted by different disparity levels (1-150 pixels) in the x direction of the same line. (g») and (g4) show how by working in HDR space we

5.4 Qualitative evaluation

Figure 4 compares the disparity maps achieved from
different input stereo data. The first row shows the
HDR reference disparity maps calculated as described in
Section 5.3. The following rows show the matching results
on different tone-mapped stereo images as well as the LDR
stereo input. The last row represents our combination
approach disparities. Five HDR scenes with low-textured
background are chosen for our experiments. The lighting
and shadow situation in all of the scenes creates challeng-
ing situation for stereo matching using conventional LDR
images.

As it is noticeable from the results, some TMOs
perform worse than the traditional LDR approach.
Reinhard TMO, Durand TMO, and Fattal TMO cause
more artifacts and mismatched pixels than the tradi-
tional LDR matching. The reason for this is that the
TM is applied on each image separately. Not so many
TMOs are capable of keeping the consistency between
several frames. Our results illustrate that Gastal, Drago,
He, and Farbman TMOs are robust to some changes
in the lighting condition and therefore achieve more
informative disparity maps from stereo pairs. The com-
bined approach outperforms all of the other calculated
disparities.

5.5 Quantitative evaluation

The root mean square error (RMSE) value indicating the
difference between each calculated disparity map and the
corresponding HDR reference disparity is shown below
the results in Fig. 4. Table 4 contains the average RMSE
values on all of the five data set shown in Figs. 2 and 4.
Based on the information presented in the Table 4, we
derive some conclusions:

e Not all of the TMOs perform well for stereo
matching. Three out of seven tone-mapped stereo
images used in our experiment resulted in more
mismatched disparities compared to conventional
LDR image pairs. Choosing an effective TMO for the
stereo matching and 3D reconstruction purposes is a
completely different task than evaluating TMOs for
visual and display purposes.

e Local TMOs based on edge-aware filters perform
better for stereo matching than some of the other
TMOs which are based on a global curve estimation.
Among the four edge-aware filtering approaches
implemented and studied in this paper, the Farbman
filter suits disparity estimation better than the others.

e As expected, the combined disparities outperform all
of the other tone-mapped stereo matchers. This is
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Fig. 4 Disparity map comparison. The RMSE values are shown below each disparity. First row: HDR reference disparity maps illustrated in Fig. 2.
Reinhard, Fattl, and Durand TMOs achieve disparities with bigger error than conventional LDR stereo matching. Gastal, Drago, He, and Farbman TMOs
perform better than LDR stereo matching while our combined graph-cut approach outperforms all of the LDR and tone-mapped disparity maps
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Table 4 Our data set luminance level in comparison to some
common lighting environments [46]

Condition [lluminance (in cd/mz)
Starlight 1073
Moonlight 107!
Indoor lighting (controlled) 102
Sunlight 10°
Our data set lighting 10°
Max intensity of common monitors 102

based on the fact that the disparities with mismatched
pixels in some regions might carry valuable
information in some other specific areas of the image.
Our experiments show that combining the four best
performing tone-mapped disparities (Gastal, Drago,
He, and Farbman) does not achieve as informative
result as when we used all the seven disparities.

Table 5 shows the effectiveness of the MRF model. The
simplest way to combine some proposed results is to use
average or median. We averaged our seven disparity maps
and achieved an error which is very close to the LDR
result. We also show the average RMSE on choosing four
random tone-mapped disparities among the seven in our
MREF solution. Even though combining four disparities
results in less RMSE, our experiments point out the fact
that using more information to combine results in more
informative results. One can use more than seven tone-
mapped disparities; however, both of our qualitative and
quantitative evaluations illustrate that seven proposed
results are discriminative. There is a trade-off between
the complexity and reducing the RMSE. We suggest to
keep the proposed results for combination below ten to
be able to achieve near real-time disparity estimation.
However, the question of how much improvement one
could gain using the proposed fusion approach remains
open.

Table 5 The most informative exposure time which was used for
LDR stereo matching results presented in Fig. 4 and Table 3

Scene Chosen exposure time for
LDR stereo matching (in seconds)

Donkey 1/125

Horse 1/125

Rabbit 1/125

Elephant 1/60

Pillow 1/60

The rows of this table are arranged with respect to the data set shown in Fig. 2 from
left to right: Donkey, Horse, Rabbit, Elephant, and Pillow
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5.6 TMO selection

As mentioned before, the TMOs used in this study are
interchangeable. There are two important aspects of this
combination approach which needs special attention. First
is TMO selection and second is the number of the TMOs
to be fused. There is no unique answer to these questions,
but we share our insight from the trial and errors.

One can generate candidate results using different
parameters for TMOs which is a similar approach as the
one discussed in [44] to fuse optical flow solutions. The
candidate solutions achieved from parameter modifica-
tions do not differ as much as when using totally different
methods. Our proposed fusion method is choosing the
most probable disparity value per pixel among the can-
didate disparity maps. A disparity value is considered as
a robust and reasonable result if and only if all different
approaches agree on that value. We strongly suggest using
different TMOs based on completely different concepts to
satisfy the diversity for the probabilistic treatment.

Table 5 shows the outcome of fusing four and seven
TMOs disparity maps. Even though fusing four TMOs
reduces the RMSE, we suggest using at least six or seven
results. The maximum number of the disparities to be
combined is an open question. The fusion approach is fast
and works near real time, but it is obvious that adding
more results to be combined will slow the approach down.

5.7 Post processing
In this section, we discuss the various parameter settings
and post processing methods used in our research.

Stereo matching post processing/smoothing the cost-
volume: Various smoothing approaches could be used for
this purpose. In [39], guided filter [36] is found to be faster
and more effective. We use the same filtering approach
as the post processing step of our LDR and HDR stereo
matching. The HDR modified formulas applied on the
radiance channel are shown here. C’ is the filtered cost
volume.

Ciy=Y WijRCiq. 12)
j

The filter weights W;; (in pixel positions i and j) are
chosen according to the weights of guided filter as used
in [39]. Having the radiance guided image R, weights are
defined as follows:

‘)VL»] = “:‘2 Zk:(i,j)ewk(l + R — I’Lk)T
-1
x (XY k+el) (Ri—wmp),

where i is the mean vector and ), is the co-
variance vector calculated in a squared window wy with
dimensions of (2r + 1) x (2r + 1), centered at pixel k in
radiance image R. Further details can be found in He et al.
[36].

(13)
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Manual in-painting for reference disparity generation:
Most of the approaches for disparity ground truth calcula-
tion contain a step of smoothing or filling small wholes or
noise-based artifacts to achieve a better quality disparity
as the reference. It is suggested in [9] to use some inter-
polation method to fill small holes in the ground truth
disparity. Akhavan et al. [10] manually filled in the holes in
the reference disparity map caused by shadows. As shown
in the last row of the Fig. 2, post processed disparity maps
were manually enhanced using the (1) gradient informa-
tion to estimate the edges and (2) neighboring disparity
values. This is an additional step to enhance the reference
disparities which can be omitted from the whole frame-
work process. In other words, the post processed HDR
disparities can be used as the ground truth.

5.8 Environmental settings

It takes approximately 1s to process the combination of
seven disparity maps using our proposed framework on an
IBM Core i7 2.80GHz CPU using single-threaded Matlab
code. This excludes the time of input/output operations
and the time to calculate each of the disparity maps. Since
most of the time is spent performing independent per-
pixel operations, the algorithm is well suited for parallel
processing.

5.9 Fusion moves

In addition to the proposed graph-cut combining
approach, we tried using fusion moves for combining our
candidate solution as introduced in [45]. The results were
not as impressive as our demonstrated ones because the
proposal set of solutions to be combined using fusion
moves must satisfy two important constraints: (1) qual-
ity and (2) diversity according to [44]. Lempitsky et al.
[44] used over 200 proposed solutions from different
approaches and parameter settings for their fusion. Hav-
ing enough diversity in the proposals is an important pre-
requisite to the fusion move approach. We only had seven
candidate solutions for our combination which leads to
not satisfactory disparity maps using fusion moves.

6 Conclusions

We proposed a novel framework for combining several
tone-mapped disparity maps in order to reduce the num-
ber of incorrect matching points and improve the per-
formance of image matching in the HDR scenes. We
used TMOs to compress HDR stereo images in order
to keep backward compatibility to conventional stereo
matchers. Our obtained disparities from different tone-
mapped stereo images are used along with our graph-cut
implementation using «-expansion moves to select the
minimum cost disparity value per pixel. To evaluate our
results, we created the ground truth disparity map using
original HDR stereo images and customized matching
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calculations to radiance space. Our qualitative and quanti-
tative evaluations of seven different tone-mapped dispar-
ity maps, LDR, HDR, and proposed combined disparities
show that there is a lot of room for disparity improvement
in challenging lighting environments. Our novel fusion
approach reduced the average RMSE of the conventional
LDR stereo matching by the factor of 3. Using more dis-
parity maps in the combining framework might improve
our results but for sure will slow the combination process
down. Finding the maximum number of the disparities
which can effectively improve the results is a challenge
that can be investigated in the future. In this work, one
specific stereo matching algorithm is used for all the dis-
parity map calculations. An interesting future research
project can be dedicated to investigate how the proposed
framework affects other stereo matching methods.
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