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Abstract

This paper proposes a local intensity distribution equalization (LIDE) method for image enhancement. LIDE applies the
idea of histogram equalization to parametric model in order to enhance an image using local information. It reduces
the amount of computational resources required by traditional method like the adaptive histogram equalization, but
allows enhancing detail similar to the latter technique. Integral image was used to efficiently estimate local statistics
needed by the parametric model. This data structure drastically reduces the computational cost especially for
megapixel image where a large local window is preferred. It should be noted that, with a large local window, the
intensity distribution could contain multiple peaks. LIDE can nicely handle such complex distribution via mixture of
parametric models. To speed-up the mixture parameter estimation, we propose an EM algorithm that is also based on
the integral image data structure. Experimental results show that LIDE produces an enhanced image with greater
detail and lower noise compared to several existing methods.

1 Introduction
Histogram equalization (HE) is a widely used image
enhancement technique. It increases the contrast of an
image by transferring each grayscale value to a new one
via the cumulative distribution function derived from the
intensity histogram. For certain images containing varying
lighting conditions, or those whose local detail is impor-
tant, the global contrast enhancement by HE could be
insufficient. Local contrast enhancement can be done by
applying HE on the histogram computed in local win-
dow around each pixel. This is called local or adaptive
histogram equalization (AHE) [1].
AHE is a computational intensive procedure even on

today’s computer. Block-based HE is generally used to
cut down the computational cost. Pizer et al. [2] apply
block-based HE first to some locations in the image. Then
an interpolation is used to determine the grayscale of
other pixels. This reduces the computational cost at the
expense of increasing blocking artifacts. Partially over-
lapped sub-block HE (POSHE) proposed by Kim et al. [3]
reduces the blocking artifacts. Unfortunately, it does blur
the detail of the image along the block boundaries as well.
Lamberti et al. [4] suggest that POSHE procedure is, in
fact, equivalent to applying the low-pass filter mask on
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the sub-region histogram. From this observation, they
propose to perform POSHE calculation via the binomial
filter. The computational cost of this method increases
as function of the filter size. Cascade multi-step averag-
ing procedure [5] has also been adopted to speed up the
POSHE procedure. The resulting process is then faster
than the original POSHE, but with the same enhancement
capacity. The filtering idea is also used by Gauch [6] and
Stark [7]. Both authors use several convolved images to
compute local histogram. The computational cost resides
mainly in the convolution phase which can be sped up in
frequency domain. To speed up the calculation directly
in spatial domain, Gonzalez and Woods [8, p. 103] sug-
gest to carefully update local histogram since only one
column and/or one row of the local window changes as
it slides through the image. This idea is implemented
later by Wang and Tao [9]. Other speed up techniques
include multi-scale HE [10], parallel implementation [11],
for example.
HE also suffers from its inability to preserve the bright-

ness of the input image. For consumer electronics product
such as video surveillance, preserving brightness is essen-
tial to avoid generating non-existing artifacts in the output
image [12]. To overcome this problem, several research
teams propose to partition the global histogram into two
parts and apply HE to each sub-histogram independently.
Kim [13] and Wan et al. [14] use mean and median of
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intensities as partition threshold respectively. Chen and
Ramli [15] propose to select the threshold minimizing
the absolute mean brightness error between the input
and the resulting images. Singh and Kapoor [16] selects
the threshold according to the exposure of the image.
Recent work by Huynh-The et al. [17] carefully analyzes
within-class variance of each interval in order to mini-
mize the total squared error of each sub-histogram when
equalizing them independently.
The histogram separation idea is further generalized

by Chen and Ramli [18] and Sim et al. [19]. These two
works rely on a recursive partition of the global histogram,
but with different separation criteria. The two techniques
produces a partition of the grayscale range into 2r inter-
vals where r is set by the user. More generic histogram
separation is proposed by Wongsritong et al. [20], and
later by Abdullah-Al-Wadud et al. [21] and Ibrahimet al.
[22], These authors rely on either peaks or minima of
the smoothed global histogram as partition criteria. In
practice, we have found that the number of obtained sub-
histograms depends on the smoothing procedure applied
on the global histogram. Proper size of smoothing filter is
needed in order to correctly remove local fluctuations for
better enhancement. Menotti et al. [12] propose a more
systematic histogram partition based on local discrepancy
measures and a dynamic programming algorithm. This
requires, however, a larger computational cost.
Other brightness preserving histogram-based enhance-

ment techniques are based on histogram matching (HM)
procedure. Wang and Ye [23] first search for the ideal
target distribution maximizing the entropy while main-
taining the average intensity of the input image. Then, HM
is used to map the input histogram to this target distri-
bution. A similar approach was proposed by Wang et al.
[24]. However, the latter chooses the target distribution to
be the one minimizing the difference to the uniform dis-
tribution subject to the average intensity preservation. In
these two techniques, the optimization problem is solved
analytically. The overall procedure is then very fast.
In this paper, we propose a variation of HE that can

enhance local detail similar to AHE but with lower
resources requirement. The basic idea is based on the
use of parametric distribution instead of histogram in the
equalization procedure. The proposed technique called
local intensity distribution equalization (LIDE) relies on
parametric cumulative distribution function computed
around each pixel to enhance local detail. A data struc-
ture called integral image [25] is used to speed up the
calculation especially for local statistics. This idea was
also proposed recently by Liu et al. [26]. Liu et al. used
Gaussian as local parametric model. The reported results
showed advantages of this parametric equalization com-
pared to existingmethods. The authors observed that with
a small local window, blocking artifact can be observed

in the output image. A large local window could allevi-
ate this problem, but the output will be very similar to
that obtained from normal histogram equalization. The
test images used in the work of Liu et al. were rather small
(512× 512 pixels) and the largest local window is equal to
the size of the whole image. Experimentally, we have found
that when working with a megapixel image, even with a
large local window (500×500 pixels), one can still observe
blocking artifact. In addition, with a large local window,
the intensity distribution becomes more complex. It could
contain multiple peaks, in which case the simple model is
not adequate.
To handle complex distribution, a mixture model is

more appropriate. The proposed LIDE can be used with
local mixture model. The combination of LIDE with mix-
ture model increases the memory requirement as well as
the computational cost. However, compared to LIDE with
simple model, it does produce output image with better
quality including less blocking artifact. We also propose
an EM algorithm that is adapted to take advantage of the
integral image data structure for fast calculation.
It is worthy to be noted that the integral image can

be used to speed-up the calculation of histogram in
local window around each pixel that is needed for AHE
as well. Hence, in the following, we shall first present
this data structure in Section 2. Then, Section 3 intro-
duces the LIDE method with simple probabilistic model
(Section 3.1) and LIDE with mixture model (Section 3.2).
Section 4 briefly describes how to enhance color images
then Section 5 presents the experimental results. In
Section 6, we discuss the brightness preserving issue using
LIDE. Finally, Section 7 concludes this work.

2 Integral image
Given an image I, let I(x, y) be the value of pixel at posi-
tion (x, y). The integral image of I, denoted by I, is a two
dimensional array in which each position (x, y) contains
the sum of all pixel intensities above and to the left of (x, y)
inclusive:

I(x, y) =
x∑

x′=0

y∑
y′=0

I(x′, y′). (1)

With this array, the sum of pixel intensities in a local
window of size (2d + 1) × (2d + 1) around a pixel (x, y)
can be computed as follows:

f (I, x, y, d) = I(x0, y0)+I(x1, y1)−I(x0, y1)−I(x1, y0)(2)
x0 = max{0, x − d − 1} (3)
y0 = max{0, y − d − 1} (4)
x1 = min{W − 1, x + d} (5)
y1 = min{H − 1, y + d}, (6)
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where W and H are the width and the height of the input
image I1.
It is straightforward to adapt this procedure to com-

pute mean and variance of the local window around each
pixel. It should be emphasized that the direct calculation
of local sum in the (2d+1)×(2d+1)window around each
pixels requires a complexity ofO(4WHd2) forW ×H pix-
els image. With integral image, the complexity reduces to
O(4WH). This complexity is constant and is independent
from the window size. This means that the complexity of
calculating the local average of 3 × 3 window and that of
300 × 300 window are the same.
The construction of an integral image can be done in a

single pass over the input image using an additional accu-
mulative array S. The following pair of recurrences is used
in this calculation:

S(x, y) = S(x, y − 1) + I(x, y) (7)
I(x, y) = I(x − 1, y) + S(x, y) (8)

with S(x,−1) = 0 and I(−1, y) = 0. The above con-
struction algorithm can be seen as a special case of the
wavefront propagation step used in construction of the
integral histogram [27].

2.1 Integral image based AHE
We first observe that the histogram of intensities can be
expressed as function of several summations, one for each
grayscale level. Hence, we can also use the integral image
data structure to reduce the computational cost of com-
puting local histograms needed by AHE. Indeed, let Il be
the image of grayscale level l defined as follows

Il(x, y) = 1(I(x, y) = l) (9)

where 1(a) = 1 if a is true and 0 otherwise. The histogram
h = h0, . . . , h255 in the local window of size (2d + 1) ×
(2d + 1) around (x, y) can be computed by:

hl = 1
Z
f (Il, x, y, d) (10)

where Il is the integral image of Il, and Z the normalizing
constant such that

∑
l hl = 1.

This approach was also used by Porikli [27] to fas-
ten local histograms calculation. However, in that work,
the author focused on extracting local histogram with
multiple window sizes as signature for object matching.
This integral image based implementation is much

faster than direct implementation of AHE, especially for
large local window. However, it requires quite large mem-
ory since one integral image is needed for each grayscale
level. An additional array is needed in the construction
process of these integral images. Hence, the memory
requirement is an order of O(257WH). For example, to
process an image with 2000 × 2000 pixels, about 1 GB
of memory is needed. This corresponds to about 4 M

pixels image which is rather small compared to today’s
mobile phone camera. The memory required by this pro-
cedure renders it impractical for megapixels images. In
return, we can compute local histogram in local window
of arbitrary size with the same computational cost. The
next section describes the proposed LIDE method that
can achieve similar performance as AHE but with much
lower memory requirement.

3 Local intensity distribution equalization
The basic idea of LIDE is to use a parametric model
instead of the traditional intensity histogram to cut down
the memory requirement of AHE. Indeed, a parametric
model, e.g., a Gaussian model, is constructed in the local
window centered around each pixel (x, y). The cumulative
distribution function (CDF) of this model is then used to
compute the new grayscale value for the pixel (x, y).

3.1 LIDE with simple model
The CDFs of the two commonly used models namely
Gaussian and Laplacian are as follows:

CDFGauss(z,μ, σ) = 1
2

[
1 + erf

(
z − μ√
2σ 2

)]
(11)

CDFLaplace(z,μ, σ) = 1
2

[
1 + sign(z − μ)

×
(
1 − exp

(
−

√
2|z − μ|

σ

))]

(12)

where erf(z) = 2
π

∫ z
0 exp

(−t2
)
dt is the Gauss error func-

tion and μ and σ are mean and standard deviation (SD) of
the sample, respectively.
Given an input image I, LIDE outputs image O is

obtained using the following mapping:

O(x, y) = 255×CDF (I(x, y),μ(x, y, d), σ(x, y, d)) (13)

where CDF(z,μ, σ) is CDF of either Gaussian (Eq. 11)
or Laplacian (Eq. 12) model, μ(x, y, d) and σ(x, y, d) are
local mean and SD in the local window around (x, y).
Fortunately, the integral image technique can be used to
efficiently compute these values. Let I and I

2 be the inte-
gral image of the input image I and the squared intensity
image, i.e., an image whose value at pixel (x, y) is I2(x, y),
we have:
μ(x, y, d) = 1

D
f (I, x, y, d) (14)

σ(x, y, d) = min
{(

1
D
f
(
I
2, x, y, d

) − μ2 (x, y, d)

) 1
2
, σmin

}

(15)

D = (x1 − x0) × (y1 − y0) (16)
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where function f as well as x0, y0, x1, and y1 are given in
the Eqs. 2 – 6, and σmin is the minimum allowed SD in
order to avoid instability in area of uniform intensity2.

3.2 LIDE with mixture model
It is true that globally, the set of local simple models repre-
sent a complex model for intensity distribution modeling.
However, with the increasing size of the local window, the
simple model may not be sufficient to accurately repre-
sent the intensity distribution in each window. A mixture
model is more appropriate tool to handle the multimodal
distribution. This section describes how to use mixture
model in the LIDE method as well as its training proce-
dure.
Recall that the probability density function (PDF) of a

mixture model with K components is of the form:

p(z) =
K∑

k=1
wkp(z|μk , σk) (17)

where p(z|μk , σk) is the PDF of the component k, and
wk is its prior distribution. Two mixture models namely
Gaussian mixture model (GMM) and Laplacian mixture
model (LMM) are considered in this work. However, the
proposed method can also be applied to other mixture
model straightforwardly.
The CDF of this model can be computed as follows:

CDFMixture(z) =
∫ z

−∞

K∑
k=1

wkp(t|μk , σk)dt

=
K∑

k=1
wkCDF(z,μk , σk)

where CDF(z,μk , σk) is the CDF of each component, e.g.,
CDFGauss or CDFLaplace. The output image O obtained
from the LIDE with mixture model is then given by:

O(x, y) = 255×
( K∑
k=1

wkCDF(I(x, y),μk(x, y, d), σk(x, y, d))

)
.

(18)

3.2.1 EM algorithm using integral image
The above mapping function requires the parameters
wk ,μk , σk k = 1, . . . ,K for all pixels in the image. Direct
calculation of these parameters involves running an EM
algorithm on the local window around each pixel in the
image. Three nested loops are then needed; one loop over
the pixels, one loop for the EM algorithm, and the inner-
most loop for computing local statistics in each iteration.
Thus, the overall computational cost of direct implemen-
tation is huge.
To reduce the computational cost, we shall assume that

the K means, μ1, . . . ,μK , are shared across all pixels in

the image, i.e., μk(x, y) = μk ,∀k,∀(x, y). This assumption
implies that one needs to compute the difference between
each pixel intensity and a mean value only once in order
to update the SD of all components in every pixel.
Indeed, let μ

(t)
k , k = 1, . . . ,K be the shared K means

at iteration t and let w(t)
k (x, y) and σ

(t)
k (x, y) be the prior

distribution and the standard deviation of component k
of pixel (x, y), respectively. Initially, the K means are uni-
formly distributed between 0 and 255 (μ(0)

k = 255k/K).
By default, we initialize w(0)

k (x, y) to 1/K and σ
(0)
k (x, y) =

255/K .
The posterior probability of component k of pixel (x, y)

or Pk(x, y) is computed as:

Pk(x, y) = 1
Zk

× w(t)
k p(I(x, y)|μ(t)

k , σ (t)
k (x, y)) (19)

with Zk a normalizing value to ensure that the posterior
probabilities sum up to 1. Given Pk(x, y), the shared K
means are updated as:

μ
(t+1)
k =

∑
(x,y) I(x, y)Pk(x, y)∑

(x,y) Pk(x, y)
. (20)

Once the K means, μ1, . . . ,μK , are updated, the standard
deviations are recomputed via the integral imageDk of the
following squared difference image Dk :

Dk(x, y) = Pk(x, y)
(
I(x, y) − μ

(t+1)
k

)2
. (21)

The SD update equation is as follows:

σ
(t+1)
k (x, y) = min

{(
f (Dk , x, y, d)

f (Pk , x, y, d)

) 1
2
, σmin

}
(22)

where Pk is the integral image of the posterior probability
image. The prior probability is also updated from Pk , i.e.,

w(t+1)
k (x, y) = 1

D
f (Pk , x, y, d), (23)

where D is given in the Eq. 16. The proposed EM algo-
rithm using integral image is summarized in Algorithm 1.

Algorithm 1 EM algorithm for LIDE with mixture model
using integral image.
1. Initialization
2. Iterate until convergence

(a) Compute posterior probability image (Eq. 19).
(b) Update all means values (Eq. 20).
(c) Compute the squared difference images (Eq. 21).
(d) Update SD (Eq. 22) and prior of each

component (Eq. 23)
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3.3 Complexity
For simple models like Gaussian and Laplacian, two inte-
gral images are needed, one to compute the local mean
and another one for local SD. In the current imple-
mentation, two passes are needed for LIDE with a sim-
ple model. The first pass computes the two integral
images, and the second one computes the new grayscale
value using the local CDF. The computational cost is
then an order of O(2WH). However, this means that
the two integral images are constructed in the same
time. Hence, two additional array (S in the Eq. 8) are
needed. The memory requirement is thus an order of
O(4WH).
For LIDE, with mixture of K components, 3K images

of size W × H are needed for storing σk ,wk ,Pk k =
1, . . . ,K . For each component, the standard deviation
update (Eq. 22) and the prior update (Eq. 23) require 2
and 1 additional integral images, respectively. As these
updates can be done sequentially, the whole process
requires additional O(4WH) memory at maximum. The
K means μ1, . . . ,μK require only K floating point values
which are negligible compared to the size of the image.
The memory requirement of LIDE with mixture model is
then an order ofO((3K + 4)WH).
The computational cost of this mixture model is domi-

nated by the EM algorithm. For each iteration, 4K passes
over the image are needed for the four steps a–d in the
Algorithm 1. The overall complexity is thus an order of
O(4KWHT), with T the number of iterations in the EM
algorithm. In practice, ten maximum iterations are used
by default.

4 Color image enhancement
For color image, we first apply the enhancement method
to its grayscale version. Then use the ratio between the
old and new grayscale value to adjust the 3 channels red,
green, blue. Let C be color image with C(x, y).r, C(x, y).g,
and C(x, y).b be the red, green, and blue component of
the pixel (x, y). We first convert the input C image into
grayscale image I as follows:

I(x, y) = 1
3

(
C(x, y).r + C(x, y).g + C(x, y).b

)
(24)

Let O be the enhanced version of I obtained from an
enhancement method (HE, AHE, LIDE, etc.), and C̃ be
the enhanced version of C. The pixel value of C̃ is
given by:

C̃(x, y).r = α C(x, y).r
C̃(x, y).g = α C(x, y).g
C̃(x, y).b = α C(x, y).b

with α = O(x, y)/I(x, y).
We have also tested other methods such as enhancing

the three channels R, G, and B independently or enhanc-
ing only the channel V in HSV colorspace, etc. However,
these methods do not always preserve the correct color
compared to the original image. The method described
above is simple, yet produces correct color. Thus, it will be
used in the remainder of this paper.

5 Experiments
5.1 Experimental setup
The complexity analysis in Section 3.3 shows that LIDE
requires less memory and computational cost compared
to AHE. In this Section, we would like to measure the
actual improvement of LIDE. In addition, we also consider
the quality of the output image when parametric model is
used instead of the traditional histogram. To this end, we
use photography images from MIT-Adobe FiveK dataset
[28]. The size of images in this dataset is quite large, i.e.,
about 10 megapixels. For these images, the size of the
local window was empirically set to 501 × 501 (d = 200).
Indeed, a too small local window could also enhance noise
whereas a too large window would fail to enhance local
detail. The selected size yields good result in many tests
for both AHE and LIDE.
Integral image based AHE was used in this experiment.

It should be noted that Pizer et al. [2] suggest that in the
histogram building process, one should clip large bins,
and distribute the count into small bins of the histogram.
This procedure, known as contrast limited AHE (CLAHE),
allows reducing noise amplification, especially from uni-
form area. In our implementation, we used relative dis-
counting strategy to clip the local histograms. Indeed,
all histogram bins were discounted by the same propor-
tion, and the sum of the reduced count was distributed

Fig. 1 A zoom-in portion of image from Fig. 2 a as well as from the image processed by LIDE with LMM using 3, 5, 10, and 20 components in b, c, d,
and e, respectively
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Fig. 2 An example of image from MIT-Adobe FiveK dataset (a) and the output from AHE (b) and LIDE (c–f) as well as from other enhancement
techniques (g–m)
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Table 1 Nomenclature of methods evaluated in this work

Technique Reference Brief description

HE [8] Standard histogram equalization

AHE This work Integral image based AHE

LIDE-G This work Parametric local equalization with Gaussian model

LIDE-L This work Parametric local equalization with Laplacian model

LIDE-GMM This work Parametric local equalization with Gaussian mixture model

LIDE-LMM This work Parametric local equalization with Laplacian mixture model

DHE [21] Recursive histogram partition using peaks and valleys

MHE [12] Histogram partition using dynamic programming algorithm

ESIHE [16] Histogram partition using exposure level of input image

HEGMM [29] A Gaussian mixture model is fitted to the global histogram first. Then we use the
information from themixture components to partition the histogram. Parametric
equalization is applied to each interval using information from the corresponding
Gaussian component

BPHEME [23] Histogram matching using target distribution obtained by maximizing entropy
criterion under average intensity preserving constraint

FHSABP [24] Histogram matching using target distribution obtained by minimizing the
difference to uniform distribution under average intensity preserving constraint

equally amongst all bins. Five percent discount was used
throughout this work.
Ten components were used by default for both the

Gaussian mixture model (GMM) and Laplacian mixture
model (LMM) in LIDE. Hence, LIDE with mixture model
would require roughly one seventh of memory needed
by integral image based AHE. A less number of compo-
nents could reduce the memory requirement as well as
the processing time, but it will also reduce the local detail
enhancement. Figure 1 shows an example of zoom-in por-
tion of the original image in Fig. 2 as well as portions
from images processed by LIDE with LMM using 3, 5, 10,
and 20 components. We have experimentally found that
10 components per mixture is a good trade-off between
detail enhancement and the resources requirement in
several cases.
Four variations of LIDE were considered namely LIDE

with simple Gaussian model (LIDE-G), LIDE with simple
Laplacian model (LIDE-L), LIDE with GMM (LIDE-
GMM), and LIDE with LMM (LIDE-LMM). These four
LIDE variations were compared against other existing
techniques namely the dynamic histogram equalization
(DHE) [21], the multi-histogram equalization (MHE)
[12], the exposure-based sub image histogram equaliza-
tion (ESIHE) [16], the brightness preserving histogram
equalization with maximum entropy (BPHEME) [23], the
flattest histogram specification with accurate brightness
preservation (FHSABP) [24], and the histogram equaliza-
tion with GMM (HEGMM) [29]. These techniques rely on
the global histogram. Thus, we shall refer to them as global
enhancement methods.
For DHE, a smoothing filter of size 3 was used. We

applied this filter recursively until the distance between

successive local minima is larger than a predefined value
(20 in this experiment). ForMHE, themiddle value of each
interval was used in the discrepancy calculation, and the
weight coefficient (the parameter ρ in [12]) equals to 0.8
was used. In this experiment, we evaluated the number of
intervals partition from 5 to 10, and 6–7 intervals were
found to be optimal for most images.
HEGMM also relies on a Gaussian mixture model but

with different approach from ours. Indeed, HEGMM
first constructs a GMM modeling the global histogram
of the intensities. Then, it partitions the grayscale
range of the input image by analyzing the intersect
ion between Gaussian components. For each obtained

Table 2 Evaluation results for the first test image (Fig. 2). The size
of the original image was 4386 × 2920 pixels

Technique Entropy EBCM GradMag aPSNR Runtime Mem
(×103) (s)

AHE 5.48 0.88 2.92 12.40 409.9 3 GB

LIDE-G 5.20 0.88 1.88 14.86 2.9 49 MB

LIDE-L 5.34 0.88 2.05 13.52 3.1 49 MB

LIDE-GMM 5.04 0.88 1.84 16.72 181.6 415 MB

LIDE-LMM 5.21 0.88 1.92 15.56 177.3 415 MB

HE 5.45 0.88 1.81 16.68 1.9

DHE 4.92 0.87 1.27 21.60 2.3

MHE 4.92 0.87 1.27 21.24 2.3

ESIHE 5.17 0.88 1.47 17.39 2.1

HEGMM 5.42 0.88 1.69 17.51 2.2

BPHEME 4.88 0.85 1.25 21.70 2.5

FHSABP 4.75 0.86 1.17 23.89 2.5
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Fig. 3 An example of image from MIT-Adobe FiveK dataset (a) and the output from AHE (b) and LIDE (c–f) as well as from other enhancement
techniques (g–m)
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interval, HEGMM identifies the dominant Gaussian com-
ponent. Once partitioned, HEGMM constructs the map-
ping function such that the CDF of the distribution in the
output interval is preserved.
Our implementation of HEGMM also relied on the

component-wise EM algorithm for mixtures algorithm
[30] as used by Celik and Tjahjadi [29]. By default, the
mixture model was initialized with 20 components. Then,
each component was updated sequentially. The compo-
nent whose prior probability falls below 0.001 was dis-
carded.
Nomenclature of methods evaluated in this work is

summarized in Table 1. Different enhancement tech-
niques were carefully implemented in C++ using OpenCV
library3. All tests were performed on a MacBook Pro 2.4
GHz Intel Core i5.

5.2 Qualitative results
Example 1 is shown in Fig. 2 along with the output from
different enhancement techniques. For this image, AHE
and LIDE allow enhancing local detail in the water that
cannot be seen in the original image Global enhancement
methods can also bring up some detail in the water but not
all. In fact, several global enhancement methods barely
enhance the detail in this area, since they try to preserve
the overall brightness of the input image.
For AHE, all details in the water, on the lotus leafs as well

as the ripples on the water seem to be equally enhanced.
For LIDE, one can still distinguish between underwater
detail and the rest. LIDE with mixture model produces
better detail enhancement as can be seen, for example on
the lotus flower. The Laplacian model seems to produce
a better detail enhancement compared to the Gaussian
model for both simple andmixture cases. The output from
AHE seems to be the most oversaturated, followed by the
output from LIDE with simple model and with mixture
model, respectively.
Moreover, one can observe a shadow-like effect around

the border of lotus leafs in the output of AHE as well as
that of LIDE-G and LIDE-L. Recall that AHE and LIDE
enhance each local regions independently. Hence, if the
connected regions had distinctive intensities then these
techniques will produce transition area between the two
regions. This transition area corresponds to the border
effect that can be observed. This border effect is less
visible in the output of LIDE with both mixture models.
For the memory requirement, AHE needs about 3

GB. LIDE method allows reducing the memory require-
ment significantly compared to AHE. Indeed, LIDE with
mixture model requires about 415 MB. LIDE with simple
model further cuts the memory requirement down to
less than 50 MB. The runtime of AHE is almost 7 min.
However, it should be emphasized that direct implemen-
tation without integral image would require much more

than 7 min to perform the same enhancement. LIDE with
mixture of 10 components requires about 3 min. LIDE
with simple model needs less than 3 s, that is more than
130 times faster thanAHE. The runtime of LIDEwith sim-
ple model is almost the same as other global enhancement
methods. The resources requirement for this example can
be found in Table 2.

Example 2 is shown in Fig. 3. This image contains
a strong contrast between light and shadow regions.
The border effect can be observed again between these
regions, especially on the orange cover book in the mid-
dle of the image. This effect is more emphasized in the
output of LIDE with simple model. LIDE with mixture
model produces less border effect, but still more visible
compared to AHE. Global enhancement techniques do
not yield such artifact, but most of them fail to enhance
the detail in this image. In fact, only EISHE and HEGMM
successfully enhanced details in the shadow area. They
still fail for the bright area. Local techniques, i.e., AHE
and LIDE, successfully boosted the detail in both dark and
bright regions. They did, however, amplify noise in these
regions as well. LIDE produces less noise compared to
AHE, especially when using with the mixture model.
For this image, LIDE withmixture model requires mem-

ory less than one-seventh of that required by AHE. With
simple model, LIDE reduces the memory requirement
from almost 3 GB to below 50 MB. This is small enough
to fit into today’s mobile device. Moreover, the runtime
of LIDE with simple and mixture models are about 3 and
166 s respectively whereas the runtime of AHE is about
410 s. The proposed method is, again, faster than AHE.
The resources requirement for this example can be found
in Table 3.

Table 3 Evaluation results for the second test image (Fig. 3). The
size of the original image was 4284 × 2844 pixels

Technique Entropy EBCM GradMag aPSNR Runtime Mem
(×103) (s)

AHE 5.45 0.87 2.46 12.70 410.8 2.9 GB

LIDE-G 5.29 0.87 1.55 14.00 2.6 46 MB

LIDE-L 5.40 0.87 1.61 12.88 2.8 46 MB

LIDE-GMM 5.08 0.87 1.57 16.20 165.9 395 MB

LIDE-LMM 5.20 0.87 1.57 14.77 165.3 395 MB

HE 5.49 0.87 1.46 14.98 1.5

DHE 4.95 0.87 1.10 18.05 1.6

MHE 4.65 0.87 1.04 17.10 1.7

ESIHE 5.15 0.87 1.21 15.65 1.8

HEGMM 5.29 0.87 1.35 14.85 1.5

BPHEME 4.74 0.84 1.01 19.46 1.8

FHSABP 4.63 0.86 0.93 21.81 1.8
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Fig. 4 An example of image from MIT-Adobe FiveK dataset (a) and the output from AHE (b) and LIDE (c–f) as well as from other enhancement
techniques (g–m)
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Fig. 5 Staircase effect in the images output from LIDE-G (a) and LIDE-L (b), respectively

Example 3 is shown in Fig. 4. This image is bright but
with low contrast. AHE yields an oversaturated image as
in previous examples. One can observe the border arti-
fact in the powder inside the tubes in output images
from LIDE with simple model as well as from AHE. LIDE
with mixture model seems to be able to better handle
this case.
We can also observe a staircase artifact in the left part

of the output from LIDE-G and LIDE-L. Figure 5a,b show
this portion from Fig. 4 LIDE-G and LIDE-L. In fact, this
staircase artifact happens when LIDE is used with sim-
ple model, especially in the region with a low variation
of intensities. Increasing σmin in the Eq. 15 could allevi-
ate this problem. However, the local detail in other regions
will also be smoothened.
Interestingly, BPHEME and FHSABP that try to pre-

serve brightness does overly brighten up the tubes in the
foreground. Some local detail in the background seems
to be enhanced by these methods as well. For this exam-
ple, the output from LIDE seems to be flatter compared
to these techniques. The resource requirement for this
example can be found in Table 4.

Table 4 Evaluation results for the third test image (Fig. 4). The
size of the original image was 5010 × 3336 pixels

Technique Entropy EBCM GradMag aPSNR Runtime Mem
(×103) (s)

AHE 5.39 0.90 2.62 12.15 588.8 4 GB

LIDE-G 5.01 0.90 1.38 15.32 4.7 64 MB

LIDE-L 5.19 0.90 1.59 13.95 5.1 64 MB

LIDE-GMM 4.93 0.90 1.36 17.06 271.8 542 MB

LIDE-LMM 5.25 0.90 1.52 16.13 272.9 542 MB

HE 5.29 0.90 1.65 14.47 2.4

DHE 4.63 0.90 1.07 19.24 3.2

MHE 4.37 0.90 0.82 21.48 3.5

ESIHE 5.06 0.90 1.20 16.81 2.9

HEGMM 4.94 0.90 1.10 18.13 2.9

BPHEME 5.21 0.90 1.46 15.23 3.6

FHSABP 5.17 0.90 1.53 14.72 3.5

Example 4 is shown in Fig. 6. For this image, all local
enhancement methods amplify noise in the dark area
of dog’s ear inside the car. In this case, the ear shape
enhanced by AHE seems to be the best. The output from
LIDE in this area seems to be pure random noises. Other
global enhancement methods do not produce such arti-
facts but they do not increase the detail neither on the
car’s window nor inside the car. The resources require-
ment for this example can be found in Table 5.

Example 5 is shown in Fig. 7. This image contains a
bright area of the sky on top. AHE performs poorly on
this area. Indeed, it amplifies local noises significantly as
can be seen in Fig. 7b. LIDE with simple model produces
a staircase effect on this area as well. We have experimen-
tally found that, generally, the staircase effect appears on
a region with uniform intensity. Adjusting the size of the
local window could potentially alleviate this problem. It
is, however, beyond the scope of this work. Fortunately,
working with local mixture model can also resolve this
artifact problem. In fact, LIDE with mixture model does
not amplify local noise either. Global methods failed to
enhance detail in the wave and in the splashing water. The
resources requirement for this example can be found in
Table 6.

5.3 Quantitative results
5.3.1 Evaluationmeasures
Entropy. Apart from the visual inspection, we also com-
puted some objective measure to assess the the quality
of the enhanced image. Followed the work of Singh and
Kapoor [16], the entropy was used to measure the quality
of the equalization procedure:

H(I) = −
255∑
l=0

PI(l) logPI(l) (25)

where PI is the histogram of intensity derived from the
image I. Flatter distribution would correspond to higher
entropy.

EBCM. High entropy does not imply better local
enhancement of the image. Indeed, to measure the local
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Fig. 6 An example of image from MIT-Adobe FiveK dataset (a) and the output from AHE (b) and LIDE (c–f) as well as from other enhancement
techniques (g–m)
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Table 5 Evaluation results for the fourth test image (Fig. 6). The
size of the original image was 3068 × 2048 pixels

Technique Entropy EBCM GradMag aPSNR Runtime Mem
(×103) (s)

AHE 5.46 0.81 3.02 12.52 180.2 1.5 GB

LIDE-G 5.32 0.81 2.17 13.28 2.0 24 MB

LIDE-L 5.41 0.81 2.31 12.11 1.8 24 MB

LIDE-GMM 5.11 0.81 2.17 15.75 94.3 204 MB

LIDE-LMM 5.31 0.81 2.21 14.12 97.9 204 MB

HE 5.52 0.81 1.96 13.49 0.8

DHE 5.11 0.81 1.67 15.94 0.8

MHE 4.91 0.81 1.45 17.40 0.8

ESIHE 5.41 0.81 1.81 13.88 0.9

HEGMM 5.43 0.81 1.91 13.70 0.9

BPHEME 4.97 0.78 1.59 15.72 1.0

FHSABP 4.89 0.79 1.41 18.65 0.8

detail enhancement, previous works rely on the edge-
based contrast measure (EBCM) [29, 31]. EBCM is defined
as function of the following edge-based contrast:

c(x, y) = |I(x, y) − e(x, y)|
|I(x, y) + e(x, y)| (26)

where

e(x, y) =
∑

(i,j)∈Neigh(x,y) I(i, j)mI(i, j)∑
(l,k)∈Neigh(x,y) mI(l, k)

with Neigh(x, y) the set of neighbor pixels of (x, y), and
mI(x, y) is the gradient magnitude at pixel (x, y). The
EBCM of an image I is given by:

EBCM(I) =
∑
(x,y)

c(x, y) (27)

Image with higher contrast is expected to have larger
EBCM value.

GradMag. Experimentally, we have found that in several
cases EBCM produces similar values that can be hardly
distinguished. Thus, in this work, we consider another
measure that is the average of gradient magnitude. Indeed,
good local enhancement technique should increase the
magnitude of edges in the output image. It is true that high
gradient magnitude could correspond to noise. Besides,
we have observed that local enhancement techniques tend
to amplify noise. Hence, we also consider measuring the
noise level in the output image as described below.

aPSNR. The classical noise level measuring is the peak
signal-to-noise ratio (PSNR) that is computed from the
mean squared error (MSE) between the original noise-free
image and the processed image. Low noise image would

correspond to high PSNR value; noisy image would have
low PSNR.
It should be noted that PSNR cannot always distinguish

noise injection from an enhancement, supposing that we
slightly shifted the intensity of all pixels in a black image
uniformly toward 255. In this case, we did not introduce
any noise into the image. However, the resulting image will
have high MSE, thus low PSNR value as if we inject some
noise with large amplitude into the original black image.
Hence, PSNR does not measure only the noise level in
the processed image but also its difference from the orig-
inal image. As local enhancement techniques do not aim
at preserving the intensity of the original pixels, the out-
put image could have high MSE when compared to the
input image. This does not necessarily mean that it has
high level of noise as one might expect.
To alleviate this problem, we consider the local mean

image as reference instead of the original image in MSE
calculation. The resulting MSE will be used to computed
the approximate PSNR (aPSNR) as follows:

aMSE = 1
WH

∑
(x,y)

(I(x, y) − μ(x, y, d))2

aPSNR = 20 log10(255) − 10 log10(aMSE) (28)

where d is the size of local window as in AHE and LIDE
calculation. Image with low noise should have low aPSNR
as well.

5.3.2 Experimental results
Tables 2, 3, 4, 5, and 6 summarize different measures
obtained from the output of enhancement methods for
each example as well as their runtime and memory
requirement. Global enhancement techniques requires
only small amount of additional memory that is less than
the size of the input image. Hence, their memory require-
ment can be considered negligible.
LIDE methods give high entropy compared to sev-

eral global enhancement methods but less than AHE. In
fact, for these images, the simple HE already yields high
entropy. Most global enhancement methods yield lower
entropy. This is due to the fact that these methods try to
preserve the brightness of the original image. They are
constrained to output image whose brightness is close to
the input image. Hence, only few details can be enhanced.
To measure the detail enhancement, the obtained

EBCM values are very close in several cases. The gradient
magnitude is easier to be distinguished. AHE yields the
highest gradient magnitude in all cases. It also yields very
low aPSNR as one might expected since AHE tends to
boost up noise. Recall that local enhancement methods
process each local region regardless of the global his-
togram. Consequently, the dark area in the input image
will be enhanced similar to other areas. Hence, there is
no real dark area in output image from these techniques.
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Fig. 7 An example of image from MIT-Adobe FiveK dataset (a) and the output from AHE (b) and LIDE (c–f) as well as from other enhancement
techniques (g–m)



Marukatat EURASIP Journal on Image and Video Processing  (2015) 2015:31 Page 15 of 18

Table 6 Evaluation results for the fifth test image (Fig. 7). The size
of the original image was 3040 × 2014 pixels

Technique Entropy EBCM GradMag aPSNR Runtime Mem
(×103) (s)

AHE 5.43 0.82 4.95 12.00 141 1.5 GB

LIDE-G 5.07 0.81 2.67 15.46 1.2 23 MB

LIDE-L 5.17 0.82 2.97 13.98 1.2 23 MB

LIDE-GMM 4.78 0.81 2.60 18.33 67.2 198 MB

LIDE-LMM 4.94 0.81 2.85 17.02 69.4 198 MB

HE 5.16 0.81 2.93 17.75 0.6

DHE 5.10 0.82 2.47 18.46 0.6

MHE 4.74 0.82 1.83 23.36 0.6

ESIHE 4.79 0.82 2.17 17.96 0.6

HEGMM 4.78 0.81 2.05 19.10 0.5

BPHEME 5.11 0.81 2.37 19.35 0.7

FHSABP 5.04 0.82 2.33 20.26 0.6

The dark intensities are mostly distributed to edges and
to noises in the output image. This is why AHE produces
image with high noise level. LIDE aims at local enhance-
ment also yields high noise level. LIDE-L and LIDE-G
yield the second and the third lowest aPSNR inmost cases.
With mixture model, LIDE outputs higher aPSNR, i.e.,
lower noise level images. In fact, LIDEwithmixturemodel
yields comparable aPSNR as global enhancement meth-
ods, even higher in some cases. This is in agreement with
earlier visual inspection that LIDE with mixture model
produces less speckle noises compared to AHE.

5.4 Discussion
The above examples illustrate that the proposed LIDE
with mixture model, especially with LMM, allows enhanc-
ing local detail similar to AHE, but with less noise amplifi-
cation. It requiresmuch lessmemory compared to integral
image-based AHE. This makes LIDE-LMM practical for
megapixel images. We can further reduce the resources
requirement by using LIDE with simple model (e.g., LIDE-
G or LIDE-L). It can be easily implemented on limited
resource devices such as mobile phones. However, it may
introduce artifacts such as the blocking and the staircase
effects.
We believe that LIDE with mixture model amplifies

less noise thanks to the EM-training procedure. Indeed,
the EM algorithm spreads the information of each pixel
amongst all components. This is similar to the histogram
clipping and the redistribution of counts in contrast lim-
ited HE.

6 Brightness preservation
For some applications, brightness preservation is a
required property in order to avoid abrupt change in

the visual brightness and other undesirable artifacts.
Preserving the brightness also prevents us from ampli-
fying noises in both too dark and too bright areas. An
interesting approach by Wang and his colleagues [23, 24]
relies on histogram matching (HM) to transform the CDF
of an input intensity distribution to the desired target
distribution. The target distribution is obtained from a
constraint optimization problem where the constraint is
to preserve the average intensity, i.e., the average of the
target distribution must match the average intensity of the
input image. Wang et al. proposed two methods namely
BPHEME [23] and FHSABP [24] that differ on the objec-
tive function of the optimization problem. Due to the
discrete nature of the histogram, the obtained image could
have slightly different average intensity compared to the
input image.
The above approach can be applied with LIDE straight-

forwardly. We start by computing the target distribution
(either BPHEME or FHSABP) using global intensity his-
togram. Then HM is used in each local window to
map between local histogram and the target distri-
bution. We have found that this modified LIDE pro-
duces image with brightness level closer to that of input
image compared to normal LIDE. However, as the local
equalization is performed independently around each
pixel, the global intensity preserving property cannot be
guaranteed. We are working on a better way to com-
bine the intensity constraint with local enhancement
method.
Figure 8 shows an image and its output from BPHEME,

FHSABP, as well as LIDE with LMM and its constrained
version using BPHEME and FHSABP target distributions.
The average intensity of each image is depicted below
it. The normal BPHEME and FHSABP produce average
intensity very close to the input image. Constrained LIDE
produces larger difference but yield better detail image. In
this case, the normal LIDE with LMM overamplifies noise
in the dark area at the bottom of the image. By constrain-
ing the output to preserve the brightness, the visibility of
these noise can be reduced.
One can observe that increasing the number of com-

ponents in the mixture does reduce the intensity of the
brightest spot in the image, but increase the visibility
in the dark area instead. As a result, the distribution of
intensities will differ from the target distribution more
and more. In fact, with more components, the obtained
intensity histogram from either BPHEME constraint or
FHSABP constraint appear to be very close. Figure 9
shows the target distributions for BPHEME and FHSABP
of Fig. 8a as well as the intensity histogram obtained
from constrained LIDE-LMM. Hence, we would suggest
LIDE-LMM with small number of components (3 or 5)
for brightness preservation using either BPHEME or
FHSABP target distribution.
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Fig. 8 An example of image from MIT-FiveK dataset (a) and the outputs from several enhancement techniques; b LIDE-LMM with 3 components,
c LIDE-LMM with 10 components, d BPHEME e constrained LIDE-LMM-BPHEME with 3 components, f constrained LIDE-LMM-BPHEME with 10
components, g FHSABP h constrained LIDE-LMM-FHSABP with 3 components, i constrained LIDE-LMM-FHSABP with 10 components

Fig. 9 a The BPHEME target distribution of Fig. 8a and the intensity histogram from BPHEME (b) and BPHEME constrained LIDE-LMM with 3
components (c) and with 10 components (d). e The FHSABP target distribution of Fig. 8a and the intensity histogram from FHSABP (f) and FHSABP
constrained LIDE-LMM with 3 components (g) and with 10 components (h)
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7 Conclusion and future works
This paper proposes a variation of the adaptive his-
togram equalization technique called LIDE that is based
on parametric model instead of the traditional his-
togram of intensities. This allows drastically reduce
the memory requirement. We also propose an efficient
implementation of an EM algorithm for LIDE with mix-
ture model. Experimental results show that it is more than
2 times faster than a carefully implemented AHE. We
believe that the integral image based EM algorithm could
be applied to other tasks involving mixture model such as
the GMM background modeling [32] in video processing.
LIDE with mixture model, especially LMM, produces

image with clear detail and less speckle noise com-
pared to AHE. It is true that local enhancement meth-
ods may not be suitable for all cases. However, we
believe that if local enhancement is needed, the proposed
method represents a good and interesting alternative
to AHE.
It is true that local enhancement could lead to noise

amplification. Experimental results suggest that LIDE can
handle this problem better than AHE. An interesting
method to reduce this artifact is due to Saleem et al.
[33]. The idea is to fuse the results from global and
local enhancement method. This corresponds to fusing
enhancement results frommultiple scales.We believe that
the mixture model used in LIDE can be extended to han-
dle this multi-scale enhancement approach nicely. This is
currently under investigation.
Finally, both AHE and LIDE can handle the change in

lighting condition to some extent. Indeed, information
contained in too dark or too bright areas are not sufficient
for correctly enhancing these regions. Noise amplifica-
tion can be easily observed on these regions. Brightness
preservation constraint could be used to conceal such arti-
fact. However, a better way to handle this case would be
to fuse information from images obtained under different
exposures. We believe that the local mixture model used
in LIDE may provide an interesting method for fusioning
multi-exposure images. This will be further investigated
as well.

Endnotes
1This means that we consider pixels outside the input

image as having zero intensity.
2We have experimentally found that setting

D = (2d + 1)2 would produce artifacts on border pixels
where local window fall out of the input image.

3http://opencv.org
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