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Abstract

Automatic segmentation of the epidermis area in skin histopathological images is an essential step for
computer-aided diagnosis of various skin cancers. This paper presents a robust technique for epidermis segmentation
in the whole slide skin histopathological images. The proposed technique first performs a coarse epidermis
segmentation using global thresholding and shape analysis. The epidermis thickness is then measured by a series of
line segments perpendicular to the main axis of the initially segmented epidermis mask. If the segmented epidermis
mask has a thickness greater than a predefined threshold, the segmentation is assumed to be inaccurate. A second
pass of fine segmentation using k-means algorithm is then carried out over these coarsely segmented result to
enhance the performance. Experimental results on 64 different skin histopathological images show that the proposed
technique provides a superior performance compared to the existing techniques.
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Introduction

Skin cancer is among the most frequent and malignant
types of cancer around the world [1]. Melanoma is the
most aggressive type of skin cancer, which causes a large
majority of skin cancer deaths. According to a recent
statistics, about 76,690 people are diagnosed with skin
melanoma, and about 9,480 died from it in the United
States alone in 2013 [2]. The early detection and accurate
prognosis of skin cancers will help to lower the mor-
tality. However, the early diagnosis of skin cancers such
as cutaneous melanoma is not trivial, as the malignant
melanoma and benign tumors may have similar appear-
ance in their early stages. Although many techniques have
been developed for melanoma diagnosis, e.g., epilumi-
nescence microscopy [1] and confocal microscopy [3],
which can provide initial diagnosis, the histopathological
examination of a whole slide image (WSI) by patholo-
gists remains the gold standard for the diagnosis [4] as the
histopathology slides provide a cellular level view of the
disease [5].
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Traditionally, the histopathological slides are examined
under a microscope, and pathologists make the diagnosis
based on their personal experience and knowledge. How-
ever, the diagnosis by pathologists are typically subjective
and often lead to intra- and inter-observer variability
[6,7]. For example, it has been reported that in the diagno-
sis of melanoma, the inter-observer variation of diagnosis
sensitivity ranges from 55to 100 % between 20 patholo-
gists [8]. Besides, the manual analysis of the WSI with high
resolution is labor intensive due to the large volume of
the data to be analyzed [9]. To address these problems,
computer-aided image analysis which can provide reliable
and reproducible results is desirable.

Figure 1 shows a skin WSI stained with hematoxylin and
eosin (H&E). As observed in Fig. 1, a typical digitized skin
slide can be divided into three main parts: epidermis, der-
mis, and sebaceous areas. The automatic segmentation of
epidermis area is an important step in melanoma diagno-
sis by analyzing the histopathological images. The grading
of the melanoma can generally be made by analyzing the
architectural and morphological features of atypical cells
in the epidermis or epidermis-dermis junctional area [10].
For example, the digitized skin slide shown in Fig. 1 is with
superficial spreading melanoma, where the image looks
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Fig. 1 Example of skin tissue digital slide (superficial spreading melanoma). Note that the manually labeled contour of the epidermis area is

superimposed on the WSI
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like a normal skin tissue unless the epidermis area is exam-
ined carefully. In addition, epidermis segmentation helps
in identifying the relative positions between carcinoma
cells and epidermis boundaries. The invasion depth of car-
cinoma cells into the skin tissue can be measured, which is
a critical indicator for skin caner grading and therapy [3].

Several works have been conducted for computer-aided
diagnosis based on WSI. These works are related to neu-
roblastoma [11, 12], cervical intraepithelial neoplasia [9],
follicular lymphoma [13], and breast cancer [14]. In the
automatic diagnosis of various cancers by analyzing dig-
itized slides, the segmentation of histological structures
(e.g., nuclei and glands) is significantly important [15].
Jung et al. [16] proposed a H-minima transform-based
marker extraction method that segments cell nuclei in
microscopic images by marked watershed algorithm. Lu
et al. [17] proposed a technique that combines the prior
knowledge (e.g., nuclei size and shape) and adaptive
thresholding for nuclei segmentation in skin histopatho-
logical images. Qi et al. [18] proposed to detect cell seeds
in breast histopathological images by a single pass voting
algorithm, and delineate cell contours by a repulsive level
set model [19]. Sertel et al. [13] applied k-means clustering
in the L*a*b* color space to segment nuclei, cytoplasm,
and extracellular material which are used as features of
follicular lymphoma grading. Zhang et al. [20] proposed
an automated skin histopathological image annotation
method which applies a graph-cutting algorithm to seg-
ment skin image into disjoint regions and labels each
region based on the correspondingly extracted features.
Naik et al. [21] proposed a method of automatically
detecting and segmenting glands in prostate histopatho-
logical images. The technique first utilizes a Bayesian
classifier based on low-level image features to detect the
lumen, epithelial cell cytoplasm, and epithelial nuclei. The

detected lumen area is then used to initialize a level set
curve, which is evolved to find the interior boundary of
nuclei surrounding the gland structure. All of these tech-
niques can potentially be used by skin image analysis and
computer-aided system for melanoma diagnosis.

For epidermis segmentation, a few techniques based on
global thresholding have been proposed. Lu et al. [22]
proposed a global thresholding and shape analysis-based
technique (henceforth referred to as the GTSA technique)
that segments epidermis area in skin histopathological
images. The GTSA technique first down-samples WSIs
with x40 magnification by a factor of 32, and then per-
forms epidermis segmentation on the red channel of the
down-sampled image. Haggerty et al. [23] presented a
contrast enhancement and thresholding-based technique
(henceforth referred to as the CET technique) for epider-
mal tissue segmentation in WSIs with x 10 magnification.
Unlike the GTSA technique, the CET technique performs
global thresholding on a contrast enhanced composite
image which is an equal linear combination of grayscale
and b* channel (e.g., b* in L*a*b* color space) images.
Both GTSA and CET techniques assume that there are
small numbers of cell nuclei present in the dermis area,
and they eliminate false positive regions by shape and
area analysis. Mokhtari et al. [3] developed a system for
measuring melanoma depth of invasion in microscopic
images, which includes the segmentation of epidermal
layer. The epidermal layer is segmented by a morpho-
logical closing and global thresholding-based technique
(henceforth referred to as the MCGT technique). The
MCGT technique makes an assumption that the mor-
phological closing operation can remove all low-intensity
components in the dermis area (e.g., cell nuclei and other
skin components). However, it is usually difficult to define
an appropriate structuring element for closing operation
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to remove all low-intensity components in the dermis area
and keep the epidermis unchanged when dealing with the
WSIs. Table 1 compares the related works on epidermis
segmentation in skin histopathological images.

Since existing epidermis segmentation techniques are
mainly based on global thresholding with area and shape
analysis, they usually fail to provide a high precision when
different dark skin components (e.g., cell nuclei, hair fol-
licles) are present in the dermis area. Figure 2 compares
segmentation results obtained by existing techniques with
the manually labeled ground truth. Figure 2a shows a
skin WSI with manually labeled epidermis contours in
our database. Figure 2b—d shows the segmentation results
by the GTSA [22], CET [23], and MCGT (3] techniques,
respectively. It is observed in Fig. 2 that the existing tech-
niques incorrectly segment many false positive regions in
the dermis area as the epidermis area.

In this paper, we propose a new technique that over-
comes the limitations of the existing techniques for epi-
dermis segmentation in skin WSIs. The proposed tech-
nique first performs a coarse epidermis segmentation on
the WSIL The thickness of the coarsely segmented epi-
dermis mask is then measured. The skin region corre-
sponding to the epidermis mask that has a large thickness
is analyzed again for a fine segmentation to improve the
segmentation precision.

Materials and methods

In this section, we illustrate the image dateset used in this
work and the proposed technique for epidermis segmen-
tation.

Image dataset

The studied dataset was based on histopathological
images from formalin-fixed paraffin-embedded tissue
blocks of skin biopsies. The sections prepared are about 4
pum thick and are stained with H&E using an automated
stainer. The skin tissue samples consist of 13 normal
skins, 20 melanocytic nevi, and 31 skin melanomas. The
original digital WSIs were captured under x40 magnifica-
tion on Carl Zeiss MIRAX MIDI Scanning system. Since
the original WSIs have a large volume size (each around
10 GB) and are difficult for real-time processing, these
images were down-sampled by a factor of 32 (the same
as the GTSA technique [22]) and saved into TIFF format
using MIRAX Viewer software. Overall, the image dataset

Table 1 Related works on skin epidermis segmentation

Techniques No. of images WSIs Parameter selection
GTSA [22] 16 Yes Empirically determined
CET [23] 40 Yes From training images
MCGT [3] 40 No Empirically determined
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consists of 64 different skin WSIs with the resolution
between 2500 x 3000 and 6000 x 10,000 pixels.

Schematic of the proposed technique

The schematic of the proposed technique for epidermis
segmentation is shown in Fig. 3. The technique has three
modules. In the first module, the epidermis coarse seg-
mentation is performed based on thresholding and shape
analysis. In the second module, the thickness of coarsely
segmented epidermis area is measured using line seg-
ments perpendicular to the main axis of the epidermis
mask. The coarsely segmented result is evaluated based
on the measured epidermis thickness. In the third mod-
ule, a second-pass fine segmentation by an unsupervised
clustering algorithm is performed on the epidermis region
with the poor quality segmentation result. The three mod-
ules of the proposed technique are now presented in
details in the following.

Coarse segmentation

Given an RGB image [}, the red channel R; is selected for
the epidermis coarse segmentation, since the red channel
of the H&E stained skin histopathological image provides
good distinguishable information [22]. With the red chan-
nel image R;, the epidermis coarse segmentation is then
performed as follows:

(1) Removing white background pixels: In this step, we
empirically select a threshold 7; (e.g., 1 = 240) to sepa-
rate skin tissues from the background (which are typically
white). The pixels in R; with gray values smaller than 7; are
classified as the foreground. Let the foreground pixels be
denoted by {Fi}x—1. 11> Wwhere M is the number of pixels.

(2) Applying global thresholding: The Otsu’s threshold-
ing technique [24] is applied to group the pixels {Fy};—1. s
into two classes. A binary mask by is generated as follows:

. 1 if F
bO(l’/):{o ZPiiZ o

where (i, j) is the 2D coordinate of the pixel Fy in R}, 17 is
the threshold obtained by the Otsu’s technique.

(3) Eliminating false regions: We label all the regions in
the binary mask by via 8-connected criterion. Let the 8-
connected regions in by be denoted by {Cg}i—1...0 where
O is the number of connected regions. For each region
Cr, we calculate the area Cyrea, the major axis length ryaj,
and minor axis length rpyi, of the best fit ellipse [25]. A
binary mask b; with epidermis regions as the foreground
is determined as follows:

b (C)» lf (Carea > Tarea) A
(Vmaj/rmin > Tratio) (2)
0, otherwise

b1 (Cp) =
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Fig. 2 Comparison of automated epidermis segmentation and manually labeled ground truth. a A skin histopathological image with labeled
epidermis contours. b GTSA technique [22]. € CET technique [23]. d MCGT technique [3]. Note that the segmentation results in (b-d) contain many

where bg (Cy) represents the pixels of the region C in by,
A is the AND operation, Tyrea and Tratio are the prede-
fined thresholds. Note that Tyre, is used to remove small
noisy regions in by, while Tratio is used to select the epi-
dermis region that has a long and narrow shape after
global thresholding [22, 23]. In this work, Tarea and Tratio
values are determined based on the domain prior knowl-
edge and experiments on training images. Specially, we set
the thresholds as Tarea = 0.006 M, and Tyti0 = 3. For
more details, please refer to parameters selection in the
“Performance evaluations” section.

Figure 4 shows two examples of both intermediate and
final coarse segmentation results. Figure 4d, h shows
the segmented epidermis regions (b;) corresponding to
Fig. 4a, e, respectively. Note that Fig. 4d shows a good
quality segmentation, whereas Fig. 4h shows a poor
quality (incorrect) segmentation where the false positive
region is highlighted by the manually labeled contour.

Thickness measurement
It is observed in Fig. 4 that coarse segmentation module
may result in both good and poor quality segmentations.
With a pixel resolution of 3.72 um/pixel, the segmented
epidermis as shown in Fig. 4d on average has a thick-
ness of 52 pixels (or 0.19 mm), whereas the segmented
epidermis as shown in Fig. 4h has a thickness of 276 pix-
els (or 1.03 mm). The epidermis varies in thickness in
different regions of the body but should be within a lim-
ited range [26]. In our database, the epidermis of skin
histopathological images roughly has a thickness of 0.1—-
0.4 mm, and hence a second-pass segmentation can be
carried out based on thickness measurement. In this mod-
ule, we measure the thickness of the coarsely segmented
result to classify it as good or poor quality segmentation.
The steps of thickness measurement are detailed below.
(1) Morphological preprocessing: In order to smooth
the boundaries of the epidermis area, the morphological

Fine
Segmentation

Epidermis
Area

Coarse
Segmentation

Digitized
Slides

Thickness
Measurement

Fig. 3 Schematic of proposed technique
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Fig. 4 Two examples of epidermis coarse segmentation. a, @ Red channel images. b, f Images after removing background pixels. ¢, g Binary images
after global thresholding. d, h Final binary masks. Note that white regions in (d) and (h) correspond to segmented epidermis areas

closing operation is first performed on the mask b; as
follows:

by=Db1eS (3)

where e is the morphological closing operator, and S is
the structuring element. In this work, a disk-shaped struc-
turing element with a radius of 10 pixels is empirically
selected for the closing operation. Next, the holes within

the mask by are filled by performing the morphological
reconstruction operation:

by = [3 (625 bm)]" (4)

~

where J is the morphological reconstruction opera-
tor [27], b is the complement of by, and by, is the marker
image which is set to be 0 everywhere except on the
image border, where it is set to be b5. Figure 5a shows a

and zoomed up for clear illustration here

(b) (c)

Fig. 5 lllustration of morphological preprocessing. Epidermis mask a by. b b;. € bs. Note that figures (a—c) are cropped from the whole size image
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mask by [cropped from Fig. 4h], and Fig. 5b, ¢ shows the
corresponding by and b3.

(2) Thinning of epidermis mask: This step reduces the
epidermis area in the mask b3 to a connected stroke (a thin
line) that is only a single pixel wide. The connected stroke
can be considered as the skeleton of the epidermis area.
To obtain the connected stroke, the parallel thinning algo-
rithm [28] is performed on the mask b3. The algorithm
is executed in a number of iterations until the generated
mask by stops changing. Figure 6a shows the generated
epidermis skeleton in the mask b4 superimposed on the
mask b3.

(3) End point extraction: After generating the mask by,
the end points of the epidermis skeleton are detected by
a lookup table (LUT) technique [27]. A LUT is first con-
structed based on the observation that an end point (in the
epidermis skeleton) has exactly one foreground neighbor.
The mask b is then processed by using the generated LUT
to extract end points of the epidermis skeleton. Let the end
points be denoted by {Ex};—; n, where N is the number
of end points. In Fig. 6b, the end points are marked with +
symbols.

(4) Main axis identification: It is observed in Fig. 6a, b
that there are many branches in the epidermis skeleton.
The longest path joining two end points on the skeleton
reflects the main axis of the mask bs. In this step, we cal-
culate all paths joining each possible pair of end points on
the skeleton, and select the longest path as the main axis.
Given two arbitrary end points E; and Ej, let the geodesic
distance (i.e., the number of pixels on the shortest path
connecting E; and E;) be denoted by Dj;. The main axis is
calculated as follows:

Step 1: Calculate all possible D;; based on the geodesic
distance transform [29], where 1 < i,j < N.

Step 2: Select the longest geodesic distance among all
possible D;; and consider the corresponding constrained
path as the main axis.

Step 3: Smooth the main axis by using a moving average
filter of length 200 pixels.
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Note that there is usually a large number of end points,
and hence it may be computationally expensive to cal-
culate all possible D;; in step 1. As observed in Fig. 6b,
the pair of end points corresponding to the longest con-
strained path usually has a relatively long Euclidean dis-
tance. In order to speed up the main axis identification, we
calculate the Euclidean distance between all possible end
points, and select a short list of pairs (e.g., 10 pairs) based
on (large) Euclidean distance. The main axis identification
can then be efficiently performed by applying steps 1-3
on the selected pairs.

Let the obtained main axis be denoted by points set
{Zi}k=1..q where Q is the number of points on the main
axis. Figure 7 illustrates the main axis identification with
an example. Figure 7a shows a constrained path (the red
line) joining points E; and E;. Figure 7b, c shows the epi-
dermis main axis before smoothing and after smoothing,
respectively, superimposed on the mask b3.

(5) Epidermis thickness calculation: In this step, we first
calculate the gradient image of the mask b3, and select
boundary positions with non-zero gradient magnitudes
to obtain the epidermis boundary points set {Ag}i—1 w
where W is the number of points. We then calculate the
epidermis thickness based on the epidermis main axis and
epidermis boundary points. Note that there are Q points
on the main axis. In order to reduce the computational
complexity, we calculate the epidermis thickness using
selected points on the main axis. In this work, a set of
r points, {Zi}x—pon... ;» Where r = L%J and 1 = 20,
is selected. Figure 9a shows the epidermis contour with
r selected points on the main axis. To calculate the epi-
dermis thickness, a perpendicular line for each selected
point on the main axis is defined. Given a point Zj (xg, ¥x)
(see Fig. 8), the steps to calculate the local thickness are as
follows.

Step 1: Let f; denote the directed line passing through
points Zy_ (xk_l,yk_l) and Zjy (xk+1,yk+1). Note that
the direction is from the point Z;_; to Zi41. The slope s
of the line /; perpendicular to f; is computed as follows:

(@)

Fig. 6 Epidermis skeleton and end points. a Skeleton b4 superimposed on epidermis mask bs3. b Epidermis skeleton with end points marked by “+"

symbols

(b)
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Fig. 7 lllustration of main axis identification. a A constrained path joining £; and £;. Epidermis mask bz with the main axis b before smoothing and ¢

0, if a1 = w1

00, if yep1 = yk—1
Kk—1 — Xk+1 (5)

Yik+1 — Yk—1

Sk =
, otherwise

Step 2: The intersection points between the line [
and the epidermis boundary {Ax}i—; 1w are calculated.
A boundary point Ay (ug, vi) is considered to be on the
perpendicular line /[y if it satisfies the following condition:

v —
arctan (sx) — arctan (k)’k) ‘ <n (6)
U — Xk

where 7 is a small positive number (e.g., n = 0.05) to allow
for a small error in intersection point calculation. Note
that for an arbitrary point Z; there will be two or more
intersection points. For example, in Fig. 8, the line /i inter-
sects with the epidermis contour at four points A1, Ay, A3,
and Ag.

Step 3: The directed line f; divides the intersection
points (e.g., A1, Az, A3, and A4) into two groups: right side
points (RSP) and left side points (LSP). Note that RSP and
LSP are seen from the direction of the line fi. The posi-
tion of a point Ay (ug,vr) with respect to the line f; is
determined by the following equation:

p=uo+vp+y (7)

where & = yxi1 —Yk—1, B = Xk—1 — Xk+1, ¥ = Xk 1Vk—1 —
Xk—1Yk+1- If ¢ < 0, the point belongs to RSP (i.e., Ay is
located on the right side of f); if ¢ > 0, the point belongs
to LSP; if ¢ = 0, the point is on the f;. In Fig. 8, the points
Ay, A3, Ay are in the LSP, whereas the point A; is in the
RSP.

Step 4: The local thickness t; for a point Z is computed
as follows:

tx = min {edis (A;,Aj)}, Ai e RSPAA; € LSP (8)

where edis (AL',Aj) is the Euclidean distance between
points A; and A;. In Fig. 8, the Euclidean distance between
points A} and Aj is computed as the local thickness #.

Likewise, the local thicknesses {tx}x—pon... ;, for all
selected points on the main axis are calculated by using
steps 1—4. Figure 9b shows the line segments measuring
epidermis thickness.

(6) Segmentation quality evaluation: The quality of
coarse segmentation result is evaluated based on the aver-
age value of measured epidermis thickness, which is as
follows:

1 if t<13
p= { 0 otherwise ©

where = 137, t,, 73 is a threshold value and p is
a parameter to indicate the coarse segmentation quality.

Main axis
point

Selected main
axis point

Fig. 8 Example of epidermis local thickness measurement
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(a)

epidermis thickness

Fig. 9 lllustration of epidermis thickness measurement. a Epidermis contour with selected points on the main axis. b Line segments measuring

TN

(b)

Note that the threshold t3 is determined based on experi-
ments on training images (please see parameters selection
in the “Performance evaluations” section). In this work,
we set the threshold 73 as 150 pixels. For a good quality
segmentation, p = 1, whereas for a poor quality segmen-
tation, p = 0, which needs to be enhanced by the fine
segmentation to be presented in the next module.

Fine segmentation

The coarse segmentation results are classified into good
and poor quality segmentations based thickness mea-
surement. In this module, we consider the poor quality
segmentation for further analysis in order to obtain a more
accurate segmentation.

When p = 0, it is likely that some dermis pixels
are incorrectly classified as epidermis pixels. In order to
obtain a more accurate segmentation, it is necessary to
conduct a second-pass fine segmentation to divide the
pixels into two classes (e.g., epidermis and dermis pix-
els). To obtain a robust performance, we perform the
second-pass fine segmentation by using {R, G,B} color
channels. Due to the possible variations in the color
spectrum between different digitized slides, k-means clas-
sification [30], which is an unsupervised classification
algorithm, is selected to perform the fine segmentation.
The {R, G, B} values of the pixels that are binary true in the
coarsely segmented epidermis area (e.g., the mask b;) are
taken from the image /; and used as clustering attributes.
The k-means algorithm divides the pixels into two classes

based on their attributes (e.g., {R, G, B} color values) by
iteratively minimizing the following cost function:

2

=¥y

j=1 i=1

ol

(10)

where ||-|| is the Euclidean norm, #; is the number of pixels

in the class j, x/l is the ith pixel in the class j, and ¢; is the
centroid of the class j. Note that the number of classes is
set as 2 that corresponds to dermis and epidermis.

Figure 10a shows the coarse segmentation result in
Fig. 5a in color. Figure 10b, ¢ shows two classes of pixels
obtained by the k-means algorithm. It is observed that the
class with epidermis pixels has relatively darker color (i.e.,
lower R,G,B values) than the class with dermis pixels. The
two classes can be identified as follows:

- |1 if (RU+Gi+B1) < (R +Ga+B)
" |2 otherwise
(11)

where (R, G1, B1) and (Ry, G, By) are the centroids of the
two classes. Note that for the class with epidermis pixels,
k* = 1, while for the class with dermis pixels, £* = 2;

The foreground pixels shown in Fig. 10c are consid-
ered to be epidermis pixels according to the Equation 11.
However, it is observed in Fig. 10c that a number of
low-intensity pixels in the dermis area are classified as
epidermis pixels. Note that most of the false positive

(a)

=1)

epidermis pixels (k*

Fig. 10 lllustration of k-means classification. a Coarse segmentation result in Fig. 5a in color. b Class with dermis pixels (k* = 2). ¢ Class with

(b)
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pixels (belonging to dermis area) are isolated pixels, or
correspond to regions with smaller area. Therefore, false
positive pixels can easily be eliminated by the area open-
ing operation. Regions that have areas below the threshold
Tarea (see the coarse segmentation module) are removed.
Finally, the morphological closing operation with a disk
shape structuring element (with a radius of 5 pixels) is
performed to smooth the epidermis area, and the holes
within the epidermis area are filled by the reconstruction
operation. Figure 11a shows the finally obtained epider-
mis region. Figure 11b shows the epidermis contour on
the original image.

The segmented epidermis area can now be divided into
several image tiles which are mapped to the high reso-
lution field for further image analysis [22]. For example,
the high-resolution image tiles can be further processed
for nuclei segmentation [5, 17] and melanocytes detec-
tion [31]. The features extracted from the epidermis area
provide important indicators for computer-aided skin
melanoma diagnosis. The details of image tiles genera-
tion can be found in [22]. Figure 12 shows an example of
generated high-resolution image tiles.

Performance evaluations

In this section, we illustrate the comparative epidermis
segmentation results by the proposed technique and exist-
ing techniques.

Evaluation metrics

The automatic epidermis segmentation results are com-
pared to the ground truth segmentation results obtained
by visual inspection. The evaluations are performed
by computing area based metrics [22] namely preci-
sion (Aprg), sensitivity (Aspn), and specificity (Aspg),
and boundary based metrics [32] namely Hausdorff
distance (Dpp) and mean absolute distance (Dagap).
We denote the manually obtained boundary as g =
{cf lie (1,2, - ,m) }, and the boundary of the automatic

segmentation as s = {cls |j € (1,2,---,n) }, where m and
n are the numbers of the ground truth and automatically
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segmented boundary points, respectively. The area based
metrics are defined as follows:

R(s)NR(g)|

Aprg = NG| x 100 % (12)
|9 (s) N9 (g)]
Aggn = —————— x 100% (13)
9 (g)]
[T 3 g)
Aspg = — X 100 % (14)
el

where 9 (-) is the area of the closed boundary, || is the car-
dinality operator, N is the intersection operation and 9 (-)
is the complement of R (-). To evaluate the automatically
segmented boundary contours, we calculate the distance
of every point in g from all points in s. The boundary based
metrics are defined as follows:

Dyp = max [mjn ch — clg :| (15)
i j
1 m
D = — i S 3
MAD = - ; |:mj1n G cf :| (16)

where ||-|| is the 2D Euclidean distance between two
points. The Hausdorff distance (Dyp) measures the worst
possible disagreement between two contours. The mean
absolute distance (Dmap) estimates the disagreement
averaged over the two contours.

Parameters selection

There are 64 different skin histopathological images in the
whole dataset, which are provided with ground truth seg-
mentations obtained manually. The 64 WSIs consist of
three categories: 13 normal skins, 20 melanocytic nevi,
and 31 skin melanomas. Note that there are three param-
eters that should be selected appropriately in the pro-
posed technique, which includes Tyrea, Tratio (thresholds
for eliminating false positive regions), and t3 (thresh-
old to determine the coarse segmentation quality). To
determine the values of these parameters, we randomly
selected 4 normal skins, 6 melanocytic nevi, and 8 skin
melanomas as training images, which were used during

(a)

Fig. 11 Fine segmentation result. a Finally segmented epidermis area. b Epidermis contour on the original image

(b)
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are present

Fig. 12 Example of generated image tiles. Note that rectangles mark the interested image tiles for further processing. Some snapshots of image tiles

the development of the technique. The 18 training images
were randomly selected from each category to avoid any
bias. The other 46 images were taken as testing images,
which were used as an independent validation set. The
values of training parameters are shown in Table 2. We
explain the process of determining parameters’ values in
the following.

To determine an adaptive threshold value for Tyye,, we
calculate the portion of epidermis pixels about skin tissue
pixels in training images. It has been found that the por-
tion of epidermis pixels ranged between 0.007 and 0.06,
and hence the threshold Ty, is set as 0.006 M where M
is the number of foreground pixels (i.e., skin tissue pixels)
in the WSI. Similarly, we calculate the ratio 7y,; / Fmin for
all ground truth epidermis regions in training images, and
the 7maj / rmin values have been found to be in the range
between 3.3 and 26.6. Therefore, the threshold Tratio is set
as 3.

The parameter t3 is determined based on experiments
on training images in this work. Based on visual exami-
nation, the coarsely segmented result of training images
are divided into two groups: subsets A and B. In subset A
(11 WSIs), the segmented results are quite similar to the
ground truths, while in subset B (7 WSIs) a large num-
ber of false positive pixels in dermis area are classified as
epidermis pixels. The coarsely segmented masks of subset

Table 2 Training parameters in the proposed technique

B have markedly large thickness than masks of subset A.
Table 3 shows the performance evaluations of subsets A,
B by the area-based metrics, and the corresponding aver-
age epidermis mask thickness x. As observed in Table 3,
the segmentation precision for the subset B is significantly
low, only 38.69 %. The average thickness x for subset B
is 211.60 pixels, which is much higher than 63.26 pixels
for subset A. The boxplot for the epidermis thickness of
subsets A and B is shown in Fig. 13. Based on the results
observed in Fig. 13, the threshold t3 is finally set as 150
pixels.

In order to test how sensitivities are the parameters’ val-
ues to the choice of training images, we selected another
set of 18 skin images randomly (from the testing images)
and calculated the values of Tyatio, Tarea, and 73 follow-
ing a similar process of parameter selection. Experiments
show that the values of these three parameters only have
marginal variations (Tjatio = 0.007M, Taea = 3 and
73 = 155). In other words, the parameters’ values do not
fluctuate too much across databases.

Quantitative results

To illustrate the efficacy of the proposed epidermis seg-
mentation technique, the performance of the proposed
technique is compared with the existing epidermis seg-
mentation techniques including the GTSA [22], CET [23],

Table 3 Performance evaluations of epidermis coarse

Modules Parameters Values segmentation in subsets of training images

Coarse segmentation Tarea 0.006 M pixels ~ Subsets Apre (%) Asen (%) Aspe (%) X(pixels)
Coarse segmentation Tratio 3 A 98.11 97.04 99.96 63.26
Thickness measurement 73 150 pixels B 38.69 99.83 93.70 211.60
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Fig. 13 Thickness variations of coarsely segmented epidermis masks
in subsets A and B of training images. Subset A (B) includes images
with correct (incorrect) segmentations after coarse segmentation
module

and MCGT [3] techniques. The GTSA technique has two
parameters Tyreq and Tiatio, which were set the same val-
ues as our proposed technique. The CET technique has
several key parameters including the low output thresh-
olds for contrast enhancement, the sizes of smoothing
mean filter and morphological operations and the thresh-
olds to eliminate noisy regions after thresholding. For the
parameters (e.g., the size of smoothing filter) that are not
used in the proposed technique, we set them following
the work in [23]. While for parameters (e.g., Tarea used
to eliminate noisy regions) that are used in the proposed
technique, we set them the same values as our proposed
technique. The MCGT technique has only one key param-
eter that is the size the structuring element for closing
operation. To determine an optimal size for structuring
element, we selected a set of values from 20 to 50 with
a step of 5 to do experiments. 30 is finally determined as
the size of the structuring element, as it provides the best
performance of epidermis segmentation in our training
images.

The average results of quantitative evaluations by
Equations 12-16 on both training and testing sets are
shown in Table 4. It is observed in Table 4 that the
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proposed technique provides an overall superior per-
formance in epidermis segmentation than the existing
techniques. Although the sensitivities of the proposed
technique (90.39 and 92.78 %) are marginally lower than
those of the GTSA [22] technique, the proposed technique
achieves much higher precisions (98.69and 96.53 %),
roughly 20 % higher than the GTSA technique. k-means
algorithm used by fine segmentation module of the pro-
posed technique incorrectly classifies a small number of
epidermis pixels as dermis pixels, which results in the
marginal drop in sensitivity. The poor performances of
the GTSA and CET techniques are mainly because a large
number of dermis pixels are incorrectly classified as epi-
dermis pixels in images where there are a large number
of cell nuclei in the dermis area. The cell nuclei in the
dermis area appear dark purple, and global thresholding
incorrectly considers them as epidermis pixels. In addi-
tion, the CET technique [23] applies global thresholding
on an equally weighted linear combination of the grayscale
(Y channel) and b* channel (e.g., b* in L*a*b* color space)
images, which provides a poor performance than using
the red channel in our database. The performance of
the MCGT [3] technique is much poorer than that of
the other techniques, as it does not work on skin WSIs
which include epidermis, dermis, and sebaceous areas.
The MCGT technique assumes that the closing opera-
tion can remove all unrelated components (typically dark
appearance) in the skin dermis area, and hence the epider-
mis area can be segmented out by thresholding. However,
the dermis areas of WSIs contain many different dark skin
components such as hair follicles, sweat glands, and nuclei
clumps. Since the size of different skin components may
vary greatly, it is difficult to define an appropriate struc-
turing element for closing operation which can remove
all unrelated skin tissues and keep the epidermis area
unchanged. It is also noted from the Table 4 that the
proposed technique has achieved relatively smaller Dyp
and Dyap values in both training and testing sets, and
hence the proposed technique provides a better matching
between the ground truth contours and the automatically
segmented contours.

For further comparison of the proposed technique
with existing techniques, the thickness of automatically

Table 4 Quantitative evaluations of epidermis segmentation between existing techniques and proposed technique

Training set (18 WSIs)

Testing set (46 WSIs)

Techniques

Abre (%) Asen (%) Aspe (%) Dip Dwap Abre (%) Asen (%) Aspe (%) Dip Dmap
MCGT [3] 29.12 76.59 90.14 147.99 26.31 27.61 7741 86.26 152.63 2741
CET[23] 56.53 9144 95.14 143.45 23.75 4991 91.25 93.84 139.39 2433
GTSA [22] 75.01 98.13 97.53 140.25 1243 77.82 9842 97.15 117.37 13.82
Proposed 98.69 90.39 99.98 130.16 771 96.53 92.78 99.84 86.83 6.99
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Fig. 14 Comparison of epidermis thickness between manually labeled epidermis masks and automatically obtained results for testing images. Note
that the thickness of epidermis mask obtained by the proposed technique is very close to that of the ground truth, whereas the MCGT [3], CET [23],
and GTSA [22] techniques tend to provide much larger thickness than the manually labeled ground truth
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segmented epidermis masks of different techniques
was measured by the proposed thickness measurement
method (see thickness measurement module), and com-
pared with the thickness of manually labeled epider-
mis masks. Figure 14 shows the thickness comparisons
between the automatically segmented masks and ground
truth masks for 46 testing images. It is observed in Fig. 14
that the thickness of epidermis mask obtained by the pro-
posed technique is very close to that of manually labeled
epidermis mask, whereas the segmented epidermis masks
by existing techniques tend to have much larger thickness
than manually labeled epidermis masks. The MCGT (3],
CET [23], and GTSA [22] techniques incorrectly segment
some low-intensity areas (e.g., cell nuclei) in the dermis
area as the epidermis area, which increases the thickness
of the segmented epidermis mask.

Qualitative results

Qualitative results of epidermis segmentation for a whole
slide skin histopathological image is illustrated in Fig. 15.
Note that Fig. 15a shows the WSI with the manually
labeled epidermis contour, while Fig. 15d, g, j, m shows
the corresponding automatically segmented results by the
MCGT [3], CET [23], GTSA [22], and the proposed tech-
nique, respectively. Figure 15b, ¢, ¢, f, h, i, k, 1, n, o shows
the corresponding selected parts of magnified segmenta-
tion results. Note that the magnification of selected parts
are indicated by the rectangles on the WSIs. It is observed
in Fig. 15 that the proposed technique provides more
accurate segmentations than existing epidermis segmen-
tation techniques. The MCGT [3] technique segments
many false positive regions in the dermis area as the epi-
dermis area, as a simple closing operation fails to remove

dark regions in the dermis area which are subsequently
classified as the epidermis area by thresholding. The
CET [23] and GTSA [22] techniques incorrectly segment
many low intensity dermis areas as epidermis areas, since
these low-intensity areas are segmented as binary fore-
grounds by thesholding but not eliminated by subsequent
shape and area analysis.

Computational complexity

All experiments were done on a 1.80 GHz Intel Core 1II
Duo CPU, with 16 GB of RAM memory using MAT-
LAB version R2013a. The proposed technique roughly
takes 4.2 s to perform the epidermis segmentation for
a whole slide skin histopathological image with size of
3200 x 3000 pixels, while the MCGT [3], CET [23],
and GTSA [22] technique, respectively, take about 1.5,
3.3, and 0.9 s to process the same skin histopathological
image.

Conclusions

This paper presents a new technique for epidermis
segmentation in the whole slide skin histopathological
images. The proposed technique first performs epider-
mis coarse segmentation based on the global threshold-
ing and shape analysis. The thickness of the coarsely
segmented epidermis mask is then measured and com-
pared to a predefined threshold to determine the qual-
ity of the coarse segmentation. It is assumed that the
epidermis mask with a thickness below the threshold
corresponds to a good quality segmentation. Other-
wise, the coarse segmentation result is considered to be
of poor quality, and a second-pass fine segmentation



Xu and Mandal EURASIP Journal on Image and Video Processing (2015) 2015:18

Page 13 of 14

(m)
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Fig. 15 Comparative segmentation results on a skin WSI. a Manually labeled epidermis contour. b, € Magnification of selected parts in (a). d

MCGT [3]. e, f Magnification of selected parts in (d). g CET [23]. h, i Magnification of selected parts in (g). j GTSA [22]. k, | Magnification of selected
parts in (j). m Proposed technique. n, 0 Magnification of selected parts in (m). Note that a large number of dermis pixels are incorrectly segmented
as epidermis pixels in (d, g, j). Distance annotations with a pixel resolution of 3.72 um/pixel are added on (a—c)

using the k-means algorithm is performed. The eval-
uation on 64 different skin histopathological images
shows that the proposed technique provides a superior
performance than the existing techniques in epidermis
segmentation.
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