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Abstract

While face analysis from images is a well-studied area, little work has explored the dependence of facial appearance
on the geographic location from which the image was captured. To fill this gap, we constructed GeoFaces, a large
dataset of geotagged face images, and used it to examine the geo-dependence of facial features and attributes, such
as ethnicity, gender, or the presence of facial hair. Our analysis illuminates the relationship between raw facial
appearance, facial attributes, and geographic location, both globally and in selected major urban areas. Some of our
experiments, and the resulting visualizations, confirm prior expectations, such as the predominance of ethnically
Asian faces in Asia, while others highlight novel information that can be obtained with this type of analysis, such as
the major city with the highest percentage of people with a mustache.
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1 Introduction
What do people look like in southern Kenya? What does
the average person from Tokyo look like and how do
they differ from people in Jakarta or Los Angeles? Such
questions are the focus of anthropological studies on
human diversity [1], where the traditional approach relies
on direct observation, which requires extensive manual
effort. This severely limits the types of questions that can
be addressed. A computational model of such variations
could greatly expand our understanding of contemporary
human diversity and enable applications in a wide range of
disciplines, including the following: anthropology, sociol-
ogy, fashion, security, and computer graphics. This avenue
of analysis is enabled by the convergence of two phenom-
ena. First, every day, a growing number of (geotagged)
images are uploaded to social media sites. On one pop-
ular social media site [2], geotagged photos are uploaded
at a rate of around 500 per minute, or 260 million per
year. Second, the state-of-the-art algorithms in computer
vision have reached a level of accuracy and robustness that
allows detailed scene information (e.g., people, objects,
background) to be automatically extracted from images.
Our goal in this work is to explore and analyze the

geospatial structure of facial appearance using publicly
available imagery (Fig. 1). To support this effort, we
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constructed a dataset by gathering geotagged images and
extracting aligned frontal face patches. This resulted in a
dataset, GeoFaces, of approximately 0.8 million geotagged
faces, which, to our knowledge, is the largest publicly
available dataset of its kind. In addition, for each facial
image patch, we also provide automatically extracted
visual attributes such as gender, ethnicity, and facial hair.
We use the GeoFaces dataset to explore the loca-

tion dependence of human face appearance and visual
attributes using a variety of statistical models. This anal-
ysis highlights the strong underlying patterns hidden in
the data. In addition to the dataset, the main contribu-
tions of this work are the following: (1) visualizations,
constructed using techniques from machine learning that
highlight the geo-dependence of visual appearance and
facial attributes, (2) quantitative results that further illu-
minate the dependence, and (3) an evaluation of several
methods for estimating the location of a face at the conti-
nental, sub-continental, and country scale.

2 Related work
The advent of inexpensive GPS-enabled cameras and per-
sistent connectivity has led to a profusion of publicly
available, geotagged imagery. Such images have been used
to extract a wide variety of geospatial information, includ-
ing 3D scene models [3], local weather conditions [4],
land cover type [5], and architectural styles [6]. To our
knowledge, little work has used automated approaches
for exploring the relationship between facial appearance
and geographic location. Despite limited research on the
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Fig. 1 Human facial appearance differs for many reasons, including ethnicity, gender, and hair style. In this work, we explore the relationship
between such visual attributes and geographic location

geo-dependence of face appearance, there is a significant
amount of research in a number of related problems.

2.1 Face image analysis
The human face is one of the most intensely studied
object types in computer vision, with active research on
a variety of subproblems. We give a brief overview of
recent work in the following areas: detection [7, 8], pose
normalization [7, 9, 10], attribute estimation [10–12],
and recognition/verification [13, 14]. Modern approaches
for face detection use machine learning techniques to
automatically determine if an image patch contains a
face. A variety of methods have been proposed, includ-
ing the approach by Shen et al. which uses exemplar-
based image retrieval [7] and the approach by Scherbaum
et al. [8], which uses a traditional AdaBoost-based tech-
nique augmented with novel synthetic training imagery.
Approaches for pose normalization [7, 9, 10] use either
2D or 3D warping and often rely on the output from
the detector to guide the selection of warp parame-
ters. For attribute estimation, Kumar et al. developed a
method for pairwise face verification by comparing sets
of human-describable features and visually descriptive
similes [11]. Another approach built generative mod-
els for opposing facial attributes (smiling-to-frowning,
etc.) [12]. Xiong et al. recently introduced IntraFace, a
tool for identifying human facial features [10]. Recent
work in face recognition has progressed along two fronts,
developing methods for extracting more robust features
[13] and using improved learning-based algorithms for
classification [14].
We make use of recently developed commercial and

academic tools for face detection, pose normalization,
and attribute extraction. Our work uses these tools to
address a higher-level question, “How does expected face
appearance depend on location?”

2.2 Large-scale image datasets
Many large-scale image datasets have been introduced
recently to advance research in vision-related areas such
as object detection [15–17], classification [18, 19], and
outdoor scene analysis [20, 21]. Similarly, for the task
of image geolocalization, datasets [22–25], which con-
tain millions of geotagged images, have been collected
from Internet search engines and photo-sharing websites.
We use a similar approach for constructing the GeoFaces
dataset, except that the existing datasets have focused on
scenes and our focus is faces. Many large facial image
datasets have been developed, but most are targeted at
facial recognition and have size on the order of several
thousands [26–28]. To our knowledge, the large-scale geo-
tagged face image dataset we have constructed is the
first of its kind. It is significantly larger than existing
face datasets and is the only one that provides geotagged
imagery.

2.3 Geo-dependence of scene appearance
The relationship between scene appearance and loca-
tion has been of significant recent research interest, with
work focusing on image localization [25, 29–32], detecting
architectural styles [33], and extracting geo-informative
features [32, 34]. These methods attempt to automatically
discover and/or exploit the relationship between scene
appearance and geographic location. We address many of
the same issues but extend this line of research and exam-
ine the geo-dependence of facial appearance and facial
attributes.

3 GeoFaces
To build GeoFaces, a large dataset of geolocated face
patches, we downloaded geotagged imagery from Flickr
[35] with face-related tags (e.g., face, portrait, men, family,
friends). For each image, a commercial face detector [36]
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was used to detect faces and fiducial points. The detec-
tor was tuned to find frontal (or nearly frontal) faces.
From 3.14 million images, 3.8 million face patches were
extracted. For each face patch, the detector reported the
estimated pose direction and detection confidence and
also the locations and confidences of pre-defined fiducial
control points (e.g., eyes, nose, mouth). Each face patch
was automatically aligned to a common reference frame
using a similarity transform, with eye centers as control
points.

3.1 Dataset validation and cleanup
To eliminate false positives and non-frontal faces, we fil-
tered the original set of facial image patches. Initially,
we relied on the confidence values provided by the face
detection software. Specifically, we retained images with
an estimated pose of zero degrees (directly facing the
camera), and we empirically determined that a detection
confidence greater than 600 (the face detector assigns a
confidence value between 0 to 1000 to each of the detected
faces) filtered most of the non-face false positive detec-
tions. This simple thresholding preserved roughly 30% of
the face patches and eliminated most of the non-frontal
patches or face-like patterns that were initially detected.
While the detector was, in general, quite reliable, we

observed that the detection confidence values and pose
estimates were often unreliable for small image patches
(i.e., inter-pupillary distance of ≤10 pixels). For additional
filtering, we trained a classifier using the detected pose
and the correlation of the intensity gradient of the image
patch with a set of reference faces as features. Using
roughly 100 examples (split evenly between positive and
negative front-facing patches), we trained a C-support
vector machine (SVM) classifier with linear kernel (c = 1)
[37]. Of the 3.8 million original face patches, this process
resulted in 0.8 million face patches in GeoFaces. Visual
inspection of the resulting images suggests more accurate
filtering than relying solely on the confidence estimates
of the face detector. Figure 2 shows representative ini-
tial detections and final aligned patches from the dataset.
The geographic locations of these patches are shown
in Fig. 3.

3.2 Extracting facial attributes
For each face in our dataset, we extracted facial attributes
using IntraFace [10]. The software computes five facial
attributes: beard, mustache, gender, glasses, and race.
Except for glasses (“Eyeglasses”, “Sunglasses”, “No glasses”)
and race (“Asian”, “Black”, “Indian”, “White”), the attributes
are binary. The output is a real value for each attribute that
reflects the degree of confidence in the selected label.
Currently, we make a hard assignment to the partic-

ular binary/categorical label and discard the confidence
values. While it may be preferable in some cases to use

the confidence values, such as when an image is labeled
as “No beard” and “No mustache” but the person has
visible stubble, we find that the final labels are quite
accurate.

3.3 GeoFaces summary
The image processing pipeline (face detection, alignment,
attribute detection) took roughly 5 s per image, with most
of the computation spent on attribute detection. Geo-
Faces will evolve as we collect more images and improve
the methods for detecting, aligning, and filtering. The full
dataset, including face patches and visual attribute val-
ues, is freely available online [38]. The remainder of this
work describe various ways of using this dataset to better
understand the relationship between human appearance
and geographic location. See the Appendix for additional
non-geographic analysis of the dataset, such as how the
expected size of a face relates to the textual tags of the
enclosing image.

4 Geo-dependence of facial appearance and
attributes

Using GeoFaces, we visualized trends in facial appearance
and attributes both across the globe and within smaller
regions.

4.1 Geo-facial appearance
We explored the relationship between facial appear-
ance and geographic location using Principal Component
Analysis (PCA), a statistical model that is commonly
called Eigenfaces [39] when applied to facial image anal-
ysis. For computational efficiency and to remove back-
ground clutter, each face patch was resized to 200 ×
200 and pixels outside of a pre-defined elliptical region
were ignored. This elliptical mask has major and minor
axes of 157 pixels and 130 pixels, respectively, and has a
center at the middle of the face patch. We construct a vec-
tor from all RGB pixel values under the mask and use a
standard approach, based on the singular value decom-
position (SVD), to estimate the global average face, μ;
the PCA components (Eigenfaces), E; and the coefficients
for each image, Ci. Figure 4 shows the top three Eigen-
faces and corresponding distribution of PCA coefficients
mapped by image location. Based on observing multi-
ple regions of smoothly varying coefficients, the first and
third Eigenfaces appear to be related to geographic loca-
tion. The effect is less visible with the second Eigenface,
which appears to encode the direction of lighting on the
face.
Using the Eigenface representation, we estimated aver-

age faces for different parts of the world and observe,
perhaps unsurprisingly, that the expected appearance of
a face depends on geographic location. For a given loca-
tion, l, we computed a location-dependent average face,
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Fig. 2 Representative images before (a) and after (b) processing
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Fig. 3 Distribution of images in the GeoFaces dataset

Fig. 4 Geographic distribution of Eigenface coefficients. Each map shows the expected value of the coefficient of the corresponding Eigenface
image across the globe (blue) and indicates lower and higher values, respectively
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Fig. 5 A map of locally weighted average images. The spatial similarities demonstrate the geo-dependence of facial appearance

f̂l = E[ f |l], by estimating the weighted average of
nearby Eigenface coefficients (with a Gaussian weight
function centered at l with σ = 5°) and reconstructing
the corresponding image from the Eigenface coefficients.
Specifically, when computing the average face for a given
location, l, the weight for a face located at xi is wli =
e−(xi−l)2/σ 2 . We compute the Eigenface coefficients Cl of
the average image located at l as follows: Cl =

∑
wliCi∑
wli

.
Finally, we reconstruct the average face f̂l from Eigenface

coefficients Cl and global average face μ using the follow-
ing formula: f̂l = ECl + μ. The average images for a set
of locations around the globe are shown in Fig. 5. Loca-
tions with a low number of images are omitted by filtering
based on the total weight

(∑
wli < 50

)
. While it is clear

that average facial appearance depends on geographic
location, these images do not capture the wide variety
of facial appearances that can be seen in a particular
place.

Fig. 6 The mean images of clusters found using dictionary learning
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Fig. 7 The conditional distribution of geo-facial cluster members. False-color images representing the geographic distributions (redmore common,
blue less common) of images assigned to a given geo-facial cluster, together with the cluster center image (inset)

4.2 Geo-facial dictionary learning
The Eigenface representation used in the previous section
implicitly assumes that the distribution of face appearance
in a particular location is well represented by a Gaussian
distribution. In this section, we explore a model, based on
dictionary learning, that can capture multi-modal struc-
ture in the data.
For a subset of faces (n ≈ 250k), we used sparse dictio-

nary learning [40] to find k = 300 representative cluster
centers and assigned each face to one of the centers. For
computational reasons, we used the top 50 PCA coeffi-
cients as our feature representation. Figure 6 shows the 32
cluster centers with the largest membership, from largest
to smallest along rows. These average images capture
variations in gender, pose, lighting, and ethnicity.
We used a kernel density estimate (KDE) (using a

Gaussian kernel with σ = 5°) to approximate the geo-
graphic distribution of faces assigned to a particular clus-
ter. Figure 7 shows the difference between this conditional
distribution and the distribution of all faces, regardless of
cluster membership. For example, members of the top-
most cluster, which appear similar to an Asian female,
are more likely to be found in China and Japan than
in Europe or the Eastern United States. We also found
that many cluster centers shared similar spatial distribu-
tions. The primary visual difference between clusters with

similar spatial distributions appears to depend on gender,
viewpoint, and lighting differences. This motivated us to
group face clusters in a manner not based solely on image
appearance.
We form super-clusters by grouping clusters based on

the conditional geographic distribution of their mem-
bers. For each conditional KDE, we sampled it on a grid
and vectorized the resulting matrix. We then applied
non-negative matrix factorization (NMF) to the resulting
matrix and extracted three components, each of which
can be reshaped and visualized as a false-color map.
Figure 8 shows the three resulting geospatial components
and representative faces for the cluster centers that are
best described by the given distribution. Super-clusters
appear to differ primarily in ethnicity and skin tone, which
are known to depend on geographic location [1]. Within
a super-cluster, the dominant variations appear to be hair
style, pose, gender, and lighting conditions, which are less
dependent on geographic location.

4.3 Geo-facial attributes
Moving beyond appearance-based features, we also
explored the geo-dependence of the facial attributes
extracted using IntraFace [10]. We computed the relative
distribution of each pair of attribute values (e.g., “Male”
versus “Female”, “Beard” versus “No beard”) and plotted

Fig. 8 Visualizing geo-facial super-clusters. (top) The distribution of faces from super-clusters formed by grouping geo-facial clusters with similar
geographic distributions. (bottom) For each super-cluster, 16 representative geo-facial cluster centers



Islam et al. EURASIP Journal on Image and Video Processing  (2015) 2015:17 Page 8 of 17

Fig. 9 Visualizing the relative densities of paired attributes (a–c). In each false-color map, red represents higher concentrations of the first attribute
value, and blue represents higher concentrations of the second.White indicates an equal concentration of both of the attributes

the relative density histogram (Fig. 9), which shows the
relative density of pairs of attribute values. For fixed-sized
bins, the intensity represents the relative frequency, λ, of
a pair of labels:

λ (n1, n2) = (n1 − n2)
(n1 + n2 + p)

(1)

where n1 and n2 are the number of facial images in a
region of interest with a particular attribute value and p is
a pseudo-count (for this work, p = 20), which serves as
a prior that reduces noise in the visualization caused by
regions with few faces.
At the global scale, we first group images into 5° square

bins, an area roughly 340,000 km2 (about the size of

Fig. 10Maps showing the relative densities of paired attributes in selected cites (a–d). In each graph, red represents higher concentrations of the
first attribute value, and blue represents higher concentrations of the second.White indicates an equal concentration of both of the attributes
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Fig. 11 Visualizing the distribution of five facial attributes from ten major world cities (a–e)

Germany). For the set of images in each bin, the color of
the tile represents the relative frequency of the attribute
pair at that location. Many of the global attribute distri-
butions are unsurprising and follow expected geographic
distributions. For example, comparing the relative fre-
quency of the “Asian” and “White” attribute values for race

reveals distinct, and opposite, modes in Southeast Asia
and Europe. Other patterns are perhaps more unexpected.
Our dataset contains a higher proportion of “Female”
images in eastern Asia and Western United States and
a higher proportion of “Male” images in the Middle
East.

Fig. 12World-level clusters and average faces for each of the four largest clusters. From left to right: Western US, Eastern US, Europe, and Southeast
Asia
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Fig. 13 The top three location-dependent CCA component images. Each map shows the expected value of the coefficient of the corresponding
image across the globe. The distributions of the CCA coefficients are more strongly related to geographic location than the PCA coefficients (Fig. 4).
The color blue indicates lower values of CCA coefficients while red indicates higher values

For regions of high image density, we were able to
observe finer-grained patterns. Figure 10 shows the rel-
ative density histograms, with a bin size which was
about 6.5 km2, for several attribute pairs for London, Los
Angeles, New York, and the whole world. The red “hot
spots” in LA and NYC correspond to regions of these

cities with large Asian populations (e.g., Chinatown in
NYC). Also, there is a high proportion of “Beard” faces
(compared to “No Beard”) in the heart of downtown Lon-
don. On first glance, it is not always clear if these types of
observations are due to particular biases in the dataset or
cultural norms.

Fig. 14 A direction field estimated using CCA between face appearance and geographic location in local neighborhoods. The lines show the cardinal
direction that is most correlated with facial appearance change. The lines are color-coded by the correlation coefficients, from blue (low) to red (high)
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For the regions surrounding ten major cities (New
York, London, Paris, Mumbai, Rio de Janeiro, Hong Kong,
Sydney, Beijing, Los Angeles, Tokyo), the stacked bar
charts in Fig. 11 show the ratios of certain attribute val-
ues in each city. Despite inherent biases in the data due to
source (e.g., geotagged images uploaded to social media
sites), we observed that the ethnicity attributes distribu-
tion seem to follow expected patterns. Also, we observed
that facial hair is muchmore common in some cities (Paris
and Mumbai) than in others (Hong Kong and Tokyo).
To further explore the relationship between global loca-

tion and facial attributes, we sought to find groups of
faces that are nearby spatially as well as similar in terms
of attributes. Many well-known unsupervised clustering
techniques could be applied to this problem.We employed
the normalized cuts algorithm [41] on a graph-based rep-
resentation of the dataset, where nodes were facial images
and edges encode attribute similarity. Each node was con-
nected to its five nearest (spatially) neighbors and the
weight encodes the similarity between attribute values and
the pixel intensity of the corresponding facial regions. The
clustering process identified groups of faces from similar
regions that share similar attributes.
Interestingly, although the clustering process was unsu-

pervised, the discovered clusters tend to align with geo-
graphically meaningful regions. Figure 12, shows the
results of an experiment with 15 clusters. Regions such as
Eastern United States, Central America, and Europe are
evident in the clustering output. Average face images from
several groups illustrate the correspondence between
clusters and geographic regions.
These results demonstrate that facial appearance and

attributes are strongly dependent on the geographic loca-
tion where the image was captured. In this section, our
focus was on using unsupervised methods and visual-
ization, which is useful for human understanding of the
data. In the following section, we describe several exper-
iments that use supervised learning to relate appearance
and location and demonstrate how this can enable a novel
application.

5 Supervised geo-facial analysis
We used two supervised learning methods to better
understand the relationship between geographic loca-
tion and face appearance: canonical correlation analysis
(CCA) and linear discriminant analysis (LDA). We use
both methods to extract location-dependent features that
support observations about facial appearance in various
world regions and, for LDA, enable the novel application
of estimating the geographic location of a face.

5.1 Location-dependent component images
CCA is a multivariate statistical tool for exploring
relationships between paired sets of variables. Given

two datasets A ∈ Rm×n and B ∈ Rp×n containing
paired observations, CCA finds sets of projection vec-
tors (u1,u2, . . . ) and (v1, v2, . . . ) such that the random
variables

(
uT1A, vT1B

)
are maximally correlated. That is,

it finds u1, v1 such that ρ = corr(uT1A, vT1B) is max-
imized. The pair of vectors (u1, v1) is called the first
canonical pair, and subsequent canonical pairs are defined
similarly.
For geo-facial analysis, we sought to find a set of com-

ponent images and corresponding coefficients that are
strongly location dependent. Let A be our set of Eigen-
face coefficients, one for each image. Let B be an indi-
cator variable encoding image location. The non-zero
entry corresponds to the latitude/longitude bin where
the image was captured (we use 6° square spatial bins).
Performing CCA on this paired data resulted in a pro-
jection of our PCA basis and a projection of our loca-
tions, as represented by our bin structure. The results
of this method applied to our full dataset are shown
in Fig. 13. The top three components and their corre-
sponding geographic distribution show a strong location
dependence. Based on the distribution maps, it appears
that the first three components correspond to the extent
to which the face is East Asian, African, or Indian,
respectively.

5.2 Directions of facial appearance variation
In the previous section, CCA was used to convert weakly
location-dependent Eigenfaces into strongly location-
dependent components. This analysis was dominated by
global population patterns and obscured some of the
local structure in facial appearance variation. Here, we
focus our analysis on local facial appearance variations.
Instead of using a global indicator variable to repre-
sent geolocation, we performed CCA on the images
from small spatial areas and used a linear model for
geolocation.
For a given location, l, we created a filtered dataset, Al,

of all faces within 10°. We used the latitude and longi-
tude of these faces as the paired dataset, Bl. From CCA,
the element of the first canonical pair that corresponds
to Bl is a vector, vl, which represents the direction with
the most significant face appearance change. Figure 14
shows the resulting direction field for this analysis over
multiple locations overlaid on a world map. Visually, the

Table 1 The average accuracy for continental-level one-vs-all
classifiers for different combinations of features and classifiers

PCA HOG LBP

LDA 62% 62% 63%

RF 61% 61% 61%

SVM 61% 54% 55%
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Table 2 The accuracy for all one-vs-all continental-level classifiers

Continent Acc. (%)

Asia 73%

Africa 70%

Europe 60%

Americas 56%

Oceania 56%

computed gradients match our intuition. For example,
in the area around the Mediterranean, the directions
are mostly vertical because of the strong differences in
appearance between Africa and Europe. We see similar
patterns between the USA and Mexico and between India
and East Asia.

5.3 Location-dependent face classification
We address the novel application of estimating the
geographic location of an image using only a face it
captures. We compared three commonly used classifiers
linear discriminant analysis (LDA) [42], random decision
forests (RF) [43] (150 trees), and a SVM [37] (C-SVM,
linear kernel with c = 1) using three feature representa-
tions: PCA, one based on histogram of oriented gradients
(HOG) [44, 45], and another based on local binary pat-
tern (LBP) [46, 47] features. For the PCA feature vector,
we used the top 50 features. For the HOG-based feature,
we used a cell size of 8 × 8 pixels and a block size of 2 × 2
and computed the features from a 210 × 168 region from
the center of patch. The final, concatenated feature vector
is 17,360 dimensional. In order to reduce the dimensional-
ity of the feature, we selected the top 300 PCA coefficients

Table 3 The sub-continental regions with the highest accuracy
classifiers

Sub-Continent Acc. (%)

Middle Africa 86%

Western Africa 83%

Eastern Africa 80%

Eastern Asia 78%

Southern Asia 76%

South-Eastern Asia 74%

and use that as our HOG-based feature representation.
We used a similar approach to compute the LBP-based
descriptors with 21 × 21 cells.
We trained a one-vs-all (OVA) classifier for each clas-

sification method and each feature representation. For
each class, the training set for each consisted of 1500
positive examples and 1500 negative examples sampled
from the rest of the world. The remainder of the dataset
was used for testing. Table 1 shows the average accuracy,
across all continents, for all methods. The results show
that LDA+LBP outperformed all others. In the remainder
of this section, we analyze the performance of this method
in greater detail.
Table 2 shows the overall accuracy of each OVA clas-

sifier. The respective classifiers for Africa and Asia were
significantly more accurate than the others. Figure 15
shows the proportion of faces from different continents
(columns) that were classified as being from a particu-
lar continent (rows). This affinity matrix shows that, for
example, fewer people from Asia were misclassified as
being from Europe (25%) than were misclassified as being

Fig. 15 Continental-level affinity matrix. The proportion of faces classified as positive for different continents (columns) when trained one-vs-all for a
particular continent (rows). For example, for a classifier trained to distinguish between European and non-European faces (row 3), we found that
46% of the faces in the Americas (column 2) were labeled as being European
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Fig. 16 Sub-continental-level affinity matrix. The proportion of faces classified as positive for different sub-continents (columns) when trained
one-vs-all for a particular sub-continent (rows). The block diagonal structure of the matrix shows four distinct clusters corresponding to the most
common ethnic groups in the world

from Africa (41%). There is clearly a pattern, but overall,
the accuracy is fairly low. We speculate that one signifi-
cant source of error is the large spatial area and diversity
of a continent.
We also trained classifiers on 23 sub-continental regions

[48]. Table 3 lists the sub-continent regions and classi-
fication accuracies of the classifiers with the best per-
formance. Figure 16 shows the affinities (proportion of
positives) between the sub-continental regions. The block
diagonal structure of the matrix shows four distinct clus-
ters. For example, Australia, New Zealand, Europe, North
America, and Central and West Asia form a cluster indi-
cating that faces from these regions look similar. Finally,
we trained OVA classifiers at the country-level, mainly
a political, rather than geographic, partitioning. Table 4
shows the ten countries with the highest classifier accu-
racy. Figure 17 shows maps for the ten target countries
color-coded based on the percentage of faces labeled as
positive by the given country’s OVA classifier.

6 Conclusion
We used a large dataset of geotagged face patches, col-
lected from the Internet, to explore the geo-dependence

of human facial appearance. We applied statistical tech-
niques to explore this geo-dependence and found that
there is rich structure in this relationship that is not
fully explained by differences in the distribution of
ethnic or racial groups. In our analysis, we rely on

Table 4 Countries (identified by ISO country code) for which the
one-vs-all classifier had the highest (a) and lowest (b) localization
accuracy

(a) Most distinctive (b) Least distinctive

Country Acc. (%) Country Acc. (%)

GHA 82% SWE 55%

ETH 81% FRA 55%

TWN 77% ARG 55%

NGA 75% BEL 54%

KHM 74% NZL 54%

MMR 74% GBR 54%

HKG 73% USA 54%

BGD 73% DEU 53%

GTM 73% AUS 51%

LAO 72% CAN 49%
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Fig. 17 False-color maps depicting the country-level affinity of facial appearance for selected target countries (a–j). Colors vary from white (≤30%
positives) to green (≥70% positives)
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Table 5 The distribution of number of frontal faces per image for
different tags

Tags 0 1 2 3 ≥4

Face 85.9% 13.6% 0.3% 0.1% 0.1%

Family 78.6% 18.4% 1.5% 0.7% 0.8%

Friends 75.7% 21.1% 1.7% 0.8% 0.8%

Group 84.8% 11.8% 1.3% 0.8% 1.3%

Party 74.0% 22.9% 1.7% 0.7% 0.7%

Portrait 78.9% 20.0% 0.6% 0.3% 0.3%

Wedding 68.7% 25.6% 2.6% 1.4% 1.7%

existing techniques for face detection, pose estimation,
appearance normalization, and attribute estimation. Our
work with the GeoFaces dataset highlights the need for
continued improvements to these core algorithms. Such
improvements will increase the number and quality of
facial image patches we can use, which will increase the
accuracy of our higher-level analysis.
There are many potential future applications of this

type of analysis, both within computer vision and in
other domains. In computer vision, we envision the
learned models supporting the creation of algorithms
for facial image detection, recognition, and align-
ment that are tailored for particular geographic loca-
tions. Outside of computer vision, we envision a wide
range of users posing questions to our system. Such
questions could come from sociologists (e.g., “What

are current trends in facial hair?” [49]), security offi-
cers (e.g., “Where is this person probably from?” [50]),
or school children (e.g., “What do people look like in
Bangladesh?”).
This work was made possible by the availability of large

repositories of geotagged images and thematurity of facial
image analysis algorithms. In addition to the immediate
applications to facial imagery, we envision that this work
will motivate similar work for other types of objects, both
natural and man-made.
We continue to expand the GeoFaces dataset, improve

the underlying computer vision tools, refine our analysis
techniques, and attempt to reduce dataset bias by finding
alternative sources of geotagged face imagery. For future
work, we plan to investigate the time-varying aspects of
facial appearance by collecting geotagged images with
known capture time. As a long-term goal, we plan to
enable interactive analysis, at finer geographic scales and
over a wider variety of attributes.

Appendix
Non-geographic data analysis
In addition to analyzing the geo-dependence of face
appearance, the GeoFaces dataset enables us to explore
non-geographic dependence. Here, we focus on the rela-
tionship between facial appearance and the textual tags
applied to images, which are often added by the individual
that uploaded the image.
Table 5 shows, for various textual tags, the distribution

of the number of faces found in an image. For example,

Fig. 18 Visualizing the expected face location in images with different tags. Red (blue) pixels are more (less) likely to be the center of a face
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Fig. 19 Visualizing the distribution of relative face size in images with different tags. The horizontal axis corresponds to inter-ocular distance relative
to the image size, and the vertical axis shows relative frequency

for images tagged “Wedding,” 25.6% of the images con-
tained a single face, and 5.7% contained two or more
faces. For images tagged “Portrait” 20.0% of images con-
tained a single face, but only 0.6% contained two or
more faces. For all tags, a large percentage of images
(generally 70–80%) contained no images due to our
aggressive filtering. This type of analysis could be used
in the future to guide the selection of search keywords
that are likely to result in a large number of high-quality
faces.
Figure 18 shows the differences in the expected

location of detected faces for different tags. Each heatmap
was formed by counting the number of images that con-
tained a face centered at each pixel and then convolving
the resulting 2D histogram with a Gaussian kernel. For
example, in images tagged “Face,” most of the faces are
centrally located in the upper half of the image but for
images tagged “Family,” “Friends,” “Group,” or “Party,”
faces are more frequently found on the left and right sides
of the image. In images tagged “Portrait,” the typical hor-
izontal position of a face is much more constrained than
the vertical position.

Figure 19 shows the expected size, in terms of the frac-
tion of the image width between the eyes, of a face for
different tags. This shows, for example, that images tagged
“Face” are more likely to occupy a large part of the image
than in images tagged “Family”. There is also a pronounced
increase in probability at around 0.1 for each tag, likely
due to the popular posing of full-body portraits.
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