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Abstract

In this paper, we extend the Richardson-Lucy (RL) method to block-iterative versions, separated BI-RL, and interlaced
BI-RL, for image deblurring applications. We propose combining algorithms for separated BI-RL to form block
artifact-free output images from separately deblurred block images. For interlaced BI-RL to accelerate the iteration,
we propose an interlaced block-iteration algorithm on down-sampled blocks of the observed image. Simulation
studies show that separated BI-RL and interlaced BI-RL achieve desired goals in Gaussian and diagonal deblurrings.
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1 Introduction
The image deblurring problem has many applications in
science and engineering fields, and many methods have
been proposed for it [1]. Among them, the Richardson-
Lucy (RL) method, which was proposed independently
by Richardson [2] and Lucy [3] in 1970s, has been one
of the most widely used iterative deblurring methods.
Applications of RL in microscopy, astronomy, or motion
deblurring can be found in [4, 5] and references therein.
Variants of RL with specific purposes such as adaptiv-
ity, parallel implementation, acceleration, suppression of
ringing/boundary artifacts, or edge-preserving can be
found in [6–12].
In the paper by Shepp and Vardi [13], the same algo-

rithm was re-derived from the maximization likelihood
principle in the application to emission tomography and
the expectation maximization (EM) method in [14]. In
the paper by Hudson and Larkin [6], the ordered subsets
expectation maximization (OSEM) method was proposed
as an acceleration technique for EM. Since its introduc-
tion, OSEM has been successfully used for many applica-
tions in emission tomography [15, 16].
The use of RL in image deblurring is, however, computer

intensive and often suffers from slow convergence. To deal
with these obstacles, block-iterative RL (BI-RL) methods
have been proposed [17, 18]. BI-RL decomposes the main
problem into several sub-problems by grouping pixels of
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the observed image into several subsets and applies RL to
each sub-problem. In this paper, image parts defined on
those grouped pixel subsets will be called blocks. In [17],
the observed image was decomposed to four rectangu-
lar blocks, RL was applied to each block separately, and
the final image was obtained by combining four deblurred
block images. In [18], an OSEM-like method was pro-
posed to accelerate the iteration by using multi-views of
the image. The term ‘multi-views of the image’ means
that the image to be recovered is observed several times
under different imaging environments. The observed data
at each imaging environment is often called a view of
the image. The problem of deblurring images from multi-
views is also calledmultiple image deconvolution [4].
In this paper, we extend methods in [17, 18] to sepa-

rated BI-RL and interlaced BI-RL, for image deblurring
applications.
The goal of separated BI-RL is to combine separately

deblurred sub-image blocks into the resulting output
image without block artifacts. Obviously, this is not a
new approach. What is new in the proposed separated
BI-RL is that the proposed method can suppress block
artifacts efficiently for arbitrarily shaped blocks. This flex-
ibility is important for the success of separated BI-RL;
simulation results of this paper will show that diago-
nally shaped blocks produce better results than rectangu-
larly shaped blocks for separated BI-RL in the deblurring
problem modeled by a diagonal point spread function
(PSF).
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The goal of interlaced BI-RL is the accelerated itera-
tion by using an OSEM-like method as in [18]. Image
deblurring problems of this paper, however, are assumed
to have only one view of the image, unlike in [18]. To over-
come this ‘one view’ limitation, the proposed interlaced
BI-RL decomposes the observed image into several down-
sampled blocks and treats those down-sampled blocks as
multi-views of the image. Interlaced BI-RL accelerates the
iteration by using the one-step RL block iterates as the
starting image in the next block iteration, as OSEM does
in emission tomography.
The performance of proposedmethods depends on how

blocks are formed. There are many possibilities for the
block partition. It is, however, not clear how blocks should
be formed for a specific PSF.
The work in this paper will be restricted to the test of

rectangular or diagonal sub-image blocks for separated
BI-RL and rectangularly- or diagonally-down-sampled
blocks for interlaced BI-RL in Gaussian and diagonal
deblurrings. While explaining test results, possible exten-
sions of proposed methods to general deblurring prob-
lems will be presented briefly.

2 Definition and background
2.1 Image deblurring problem
We assume that the true image f is defined on an index
set � and its observed version g on an index set �. We
also assume that g is blurred from f by a linear operator
T : �2(�) → �2(�) and further corrupted by pixel-wisely
independent Poisson noise:

gi1,i2 ∼ Poisson
(
(T f)i1,i2

)
, (i1, i2) ∈ �. (1)

Here, gi1,i2 represents the intensity of the image g at
the pixel (i1, i2). We will use the same convention, the
use of boldface alphabet for the image and the nor-
mal alphabet with the pixel subscript for the intensity,
throughout this paper. Notations �2(�) and �2(�) are
used to denote image spaces defined on � and �, respec-
tively. Here, inner products of �2(�) and �2(�) are the
usual dot product of two images (sums of pixel-by-pixel
multiplications).
In (1), we assume that the blurring by T represents a

truncated convolution with a known PSF k = (ki1,i2): For
any image p ∈ �2(�),

(T p)i1,i2 =
∑

(j1,j2)∈(i1,i2)−Sk

ki1−j1,i2−j2pj1,j2 . (2)

Here Sk, the support of k, is {(j1, j2) | kj1,j2 > 0}. We
also assume that the PSF k is nonnegative, its components
have sum 1, and the point (0, 0) ∈ Sk; T p is defined on �,
where (i1, i2) ∈ � if and only if (i1, i2) − Sk ⊂ �. Thus,
� ⊂ �.

2.2 Computation of T and T ∗
Let T ∗ be the adjoint operator of T in (2), i.e., T ∗ is
defined by the relation

q · (T p) = (T ∗q) � p

for q ∈ �2(�) and p ∈ �2(�), and hence T ∗ : �2(�) →
�2(�). Here, notations · and � were used to denote dot
products of images defined on � and �, respectively.
The computation of T p can be carried out by the pixel-

wise definition (2) or by using the fast Fourier transform
(FFT) with a zero padding. In the case when the pixel-wise
definition is used for T p, then

OC(pixel-wise computation of T p) = |�| · |Sk|, (3)

since |Sk| operations (one operation = one multiplica-
tion + one addition) are required for the computation of
(T p)i1,i2 for each (i1, i2) ∈ �. Here, OC means operation
counts. On the other hand, with the assumption |Sk| <

|�|,
OC(FFT computation of T p) ≈ |�| log2 |�|. (4)

It is not difficult to show that T ∗ can be computed by

(T ∗q)j1,j2 =
∑

(i1,i2)∈((j1,j2)+Sk)∩�

ki1−j1,i2−j2qi1,i2 , (5)

for q ∈ �2(�).
Thus,

OC(pixel-wise computation of T ∗q) = |�| · |Sk|. (6)

It is also possible that the computation of T ∗q can be car-
ried out by using FFT with a zero padding. In that case,
with the assumption |Sk| < |�|,

OC(FFT computation of T ∗q) ≈ |�| log2 |�|. (7)

2.3 Richardson–Lucy iteration
For the image deblurring problem (1), one iteration of RL
takes

fn+1 = fn.∗ T ∗sn

T ∗I�
, sn = g

T fn
. (8)

Here, the notation IA means the all-one image on the
pixel subset A and .∗ is the pixel-by-pixel multiplication,
and the division between two images, g

T fn , is the image
resulted from the pixel-by-pixel division of g and T fn.
For future use, one-step iteration of RL (8) will be

denoted by

fn+1 = RL(g, fn, k,�).

Here, the PSF k was used instead of T and T ∗.
Performing RL as described in (8) often results in a

very slow convergence. For the acceleration of RL, several
methods have been suggested [7, 19–21]. Among them,
the technique in [7] has been noted for its success. For
example, the function ‘deconvlucy,’ the RL implementation
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of the software MATLAB® (The MathWorks, Natick, MA,
USA), uses the technique described in Section 2.3 and
2.4 in [7]. Interlaced BI-RL, the proposed method for the
acceleration of RL in this paper, will be compared with the
technique in [7] in Section 4.

2.4 Boundary artifacts
Boundary artifacts are one of key obstacles in the develop-
ment of BI-RL; block boundaries introduced by the block
partition may cause artifacts in combining deblurred
block images. It is also true that boundary artifacts are
one of key obstacles in many image deblurring problems
[22].
To reduce boundary artifacts in image deblurring, many

methods have been proposed. One group of methods
imposes certain conditions on pixels in � − �. Examples
include periodic, reflective, and anti-reflective boundary
conditions [23–27].
Other group of methods [17, 28, 29] does not impose

any conditions on pixels in � − �, and let the iteration
itself determine results in � − �. In [29], this approach is
called the free boundary conditionmethod.
Before we close this section, it is worth to mention some

research works related to fast direct deblurring methods.
It is well known that if the imposed boundary condition
is one of periodic, reflective, or anti-reflective bound-
ary conditions, then the image deblurring with symmetric
PSFs (for a periodic boundary condition, the symme-
try of PSF can be omitted) can be directly computable
by using FFT for periodic boundary condition, discrete
cosine transform (DCT) for reflective boundary condi-
tion, and discrete sine transform (DST) for anti-reflective
boundary condition [1, 23, 25].
These fast transform-based direct deblurring meth-

ods, however, often present severe boundary artifacts. To
reduce boundary artifacts, one can smooth the boundaries
of the observed image to decay to 0 (to make the imposed
boundary condition to be more feasible) before those
direct deblurring methods are applied to. This approach
can reduce boundary artifacts in some degree, but, at
the same time, makes it more difficult to recover near
boundary image pixels.
The performance of direct deblurring methods depends

heavily on the feasibility of imposed boundary conditions.
The difficulty of imposing correct boundary conditions is
the main reason why iterative deblurring approaches with
free boundary conditions have been considered, despite
the fact that fast direct deblurring methods are available
[17, 28, 29].
Considering these facts, we suggest the free bound-

ary condition-based RL approach for the image deblur-
ring problem (1). To reduce computational burden and
accelerate the slow convergence of RL, we will propose
block-iterative methods in the next section.

3 Proposedmethod
3.1 Block partition
BI-RL decomposes the original deblurring problem g =
T f (here the noise term is ignored for the simplicity of
the presentation) into several (say t) block deblurring
problems

g[i] = Tif[i], i = 1, . . . , t, (9)

by partitioning � into �i, where g[i] = g |�i , the restric-
tion of g on �i, and Ti = T |�i , the restriction of T on
some subset �i ⊂ �. Since only pixels that contribute to
the observation on �i can be recovered in (9), the subset
�i can be defined by

�i = {(j1, j2) ∈ � | (T ∗I�i)j1,j2 > 0}, (10)

for i = 1, 2, . . . , t. Notice that pixels only in �i can con-
tribute the observation g[i] (defined on �i) and �i ⊂ �i
for i = 1, 2, . . . , t.
Throughout this paper, �i are assumed to be mutually

disjoint, unless stated otherwise.
In any cases, �i are selected to satisfy

� = ∪t
i=1�i and � = ∪t

i=1�i.

3.2 Separated BI-RL
Separated BI-RL: Given N ,

S1 for i = 1, 2, . . . , t

S2 f[i],0 = I�i

S3 for m = 0, 1, . . . ,N − 1

S4 f[i],m+1 = RL(g[i], f[i],m, k,�i)

S5 end
S6 end

S7 f̂ = r[1]. ∗ f[1],N + . . . + r[t].∗ f[t],N

In the step S7, weights r[i] are defined by

r[i] = T ∗I�i∑t
i=1 T ∗I�i

. (11)

The weights r[i] in (11) are motivated by the following
interpretation. Recall that T represents the truncated con-
volution by the PSF k that is nonnegative and has 1 as its
sum of all components. Thus, with the assumption that
mutually disjoint blocks �i, i = 1, 2, . . . , t are selected to
form � = ∪t

i=1�i, (T ∗I�i)j1,j2 can be interpreted as the
probability with which the pixel (j1, j2) ∈ � contributes
the observation on �i. This argument shows that weights
r[i] make the intensity at the pixel (j1, j2) to depend on
f[i],N (the deblurred image from g[i] defined on�i) propor-
tionally to the probability of the contribution of the pixel
(j1, j2) to g[i] (the observation on �i).
For certain deblurring problems, it is desirable to use

overlapped blocks �i. In such case, separated BI-RL sep-
arately deblurs g[i] on overlapped blocks �i to produce
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a deblurred block image f[i],N for each i, and, after crop-
ping out some of overlapped pixels of f[i],N , i = 1, . . . , t,
combines them to the final output image.

3.3 Interlaced BI-RL
Interlaced BI-RL: Given N ,

I1 f0 = RL(g, I�, k,�)

I2 for m = 0, 1, 2, . . . ,N − 1
I3 for i = 1, 2, . . . , t

I4 fm+i/t |�i= RL(g[i], fm+(i−1)/t |�i , k,�i);
I5 end
I6 end

I7 f̂ = fN

To explain a key point of interlaced BI-RL, let us com-
pare interlaced BI-RL with RL. Notice that RL can be
obtained from interlaced BI-RL by replacing the inner for
loop (steps I3, I4, and I5) with fm+1 = RL(g, fm, k,�).
Suppose that selected blocks �i, i = 1, 2, . . . , t, satisfy

� ⊂ ∩t
i=1�i ≈ � (12)

where �i is computed by (10) from �i. In this case, one
iteration of interlaced BI-RL (from steps I3 to I5) updates
most pixel values on �, including all pixel values on �,
t times, while RL updates pixel values on � just once.
Notice that, in the algorithmic point of view, the described
benefit of interlaced BI-RL is identical to that of OSEM [6]
in emission tomography.
RL often uses the all-one image I� as the initial guess

f0. Interlaced BI-RL, however, uses f0 = RL(g, I�, k,�) as
the initial guess (see the step I1). This suggestion is made
to update pixel values of f0 on �i, without causing many
discontinuities.
Figure 1 illustrates the procedure of interlaced BI-RL. In

Fig. 1, the observed image g is decomposed into four block
images g[i], i = 1, 2, 3, 4, defined on 2 × 2 rectangularly-
down-sampled blocks �i, i = 1, 2, 3, 4. The initial guess f0
is computed by RL(g, I�, k,�). In m = 0 and i = 1, the
step I4 updates pixel values of f0 on �1 by RL(g[1], f0 |�1 ,
k,�1) (I4). The resulting image is denoted by f1/4. This
procedure makes pixel values of f1/4 on �1 to be already
quite close to the true image f at pixels on �1, but it does
not change pixel values on�−�1, i.e., f1/4 = f0 on�−�1.
Thus, the step I4 would cause many discontinuities if the
all-one image I� were selected for the initial guess f0.
In the next sub-iteration (m = 0 and i = 2), pixel values

on �2 are updated by RL
(
g[2], f1/4 |�2 , k,�2

)
. Once pixel

values are updated on remaining blocks, �3 and �4, the
resulting image is f1 as shown in Fig. 1.

3.4 Algorithmic limitations of proposedmethods
In the algorithmic point of view, separated BI-RL can be
used for any PSFs. Roughly speaking, the size of the PSF
determines the minimum size of blocks that can be used
for separated BI-RL, and the number of blocks deter-
mines the maximum gain in separated BI-RL by parallel
computations.
The usefulness of interlaced BI-RL, however, is lim-

ited to PSFs with small number of non-zero elements. To
explain this, let us recall that interlaced BI-RL uses point-
wise computations for convolutions, (2) and (5). Thus, one
iteration of interlaced BI-RL with t down-sampled blocks
requires 2|Sk| · |�| + 2t|�| operation counts, where |Sk|
is the number of non-zero elements in the PSF k. On
the other hand, one iteration of FFT-based RL requires
2C|�| log2 |�| + |�| operation counts, where C is a con-
stant which depends on the way of implementing FFT
algorithm. Therefore, in order for interlaced BI-RL with
t down-sampled blocks to be useful as compared with
FFT-based RL, the PSF kmust satisfy

(2|Sk| · |�| + 2t|�|)/t ≤ 2C|�| log2 |�| + |�|, (13)

where the denominator t in the left-hand side is used
by considering that interlaced BI-RL with well chosen t
down-sampled blocks accelerates iterations t times. The
condition (13) does not hold for PSFs with large numbers
of non-zero elements.
In our simulation, we used PSFs k with |Sk| ≤ 441 and

480 × 480 sized images. For such PSFs and images, the
FFT-based RL implementation optimized for 512 × 512
sized images was slower than the pixel-wise computation-
based RL implementation. The condition |Sk| ≤ 441
includes PSFs that are used in many important image
deblurring applications. For instance, any PSFs that have
not more than 441 non-zero elements (e.g., a PSF of the
form of the 441 × 441 diagonal matrix) satisfy this con-
dition. Thus, interlaced BI-RL is computationally more
efficient than FFT-based RL in those image deblurring
applications.

3.5 Free boundary condition
Proposed methods use the free boundary condition to
suppress block artifacts. This suggestion is based on the
observation that the free boundary condition success-
fully suppresses boundary artifacts for arbitrarily shaped
images; note that periodic, reflective, and anti-reflective
boundary conditions can be applied to rectangular-
shaped images only. For details, see [23–26].
The use of the free boundary condition appears in the

step S4 and the step I4 by imposing no restriction on pix-
els on�i−�i. The step I1 of interlaced BI-RL also uses the
free boundary condition, again, by imposing no restriction
on pixels on � − �.
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Fig. 1 Interlaced BI-RL with 2 × 2 rectangularly-down-sampled blocks. The observed image g of size 200 × 200, which is blurred by a Gaussian PSF
k of size 41 × 41, is decomposed to 2 × 2 rectangularly-down-sampled blocks. The starting image f0 is computed from g by RL. The first
sub-iteration of interlaced BI-RL updates pixel values on �1 by using g[1] as the observed data and f0 as the starting image. The resulting image of
this process is f1/4. The second sub-iteration of interlaced BI-RL updates pixel values on �2 by using g[2] as the observed data and f1/4 as the
starting image. The resulting image of this process is f2/4. Similarly, the third and fourth sub-iterations of interlaced BI-RL update pixel values on �3

and �4. This completes one iteration of interlaced BI-RL with four blocks

3.6 Examples of blocks
Examples of blocks in this section are selected by using
following two suggestions:

• For separated BI-RL, select blocks �i, i = 1, 2, . . . , t,
that make �j ∩ �n as small as possible for all pairs
(j, n), 1 ≤ j < n ≤ t.

• For interlaced BI-RL, select the block �i that makes
�i ≈ � and T ∗I�i to be uniform as much as possible
for each i.

Simulation results in Section 4 will show why these two
suggestions are important.
The work in this paper will be restricted to the test of

following blocks (illustrated in Fig. 2) in deblurring prob-
lems modeled by the Gaussian PSF kG (Fig. 3a) and the
diagonal PSF kD (Fig. 3b).

3.6.1 Rectangular blocks
Figure 2a shows 4 × 4 rectangular blocks of the observed
image (Fig. 5a). Separated BI-RL with 2×2, 4×4, 8×8, and
16 × 16 rectangular blocks will be tested in the Gaussian
deblurring.
Overlapped rectangular blocks can be formed by adding

several pixel rows and columns to boundaries of disjoint
rectangular blocks. This type of overlapped blocks will be
also tested in separated BI-RL.

3.6.2 Diagonal blocks
Figure 2b shows 8 diagonal blocks of the observed image
(Fig. 5b). Separated BI-RL with 2, 4, 8, and 16 diagonal
blocks will be tested in the diagonal deblurring.

3.6.3 Rectangularly-down-sampled blocks
Figure 2(c) shows 4 × 4 rectangularly-down-sampled
blocks of the observed image (Fig. 5a). To be specific, if the
pixel index at the left and upper corner of the observed
image is (0, 0), then 4×4 down-sampled blocks are defined
by

�4y+x+1 = {(i1, i2) ∈ � | i1 ∈ 4Z + y, i2 ∈ 4Z + x},
for x, y = 0, 1, 2, 3, where 4Z is the integer subset
formed by multiples of 4. With the same argument,
other rectangularly-down-sampled blocks can be defined.
Interlaced BI-RL with 2 × 2, 4 × 4, 6 × 6, and 8 × 8
rectangularly-down-sampled blocks will be tested in the
Gaussian deblurring.

3.6.4 Diagonally-down-sampled blocks
Figure 2d shows 8 diagonally-down-sampled blocks of the
observed image (Fig. 5b).
To be specific,

�n+1 = {(i1, i2) ∈ � | i1 + i2 ∈ 8Z + n},
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Fig. 2 Examples of block partitions. Different intensity scales were used to visualize block partitions. a 4 × 4 rectangular blocks, b 8 diagonal blocks,
c 4 × 4 rectangularly-down-sampled blocks, and d 8 diagonally-down-sampled blocks

for n = 0, 1, . . . , 7, form 8 diagonally-down-sampled
blocks.
Interlaced BI-RL with 2, 4, 6, and 8 diagonally-down-

sampled blocks will be tested in the diagonal deblurring.

4 Simulation results and discussion
We conducted simulation studies to test the performance
of proposed methods in Gaussian and diagonal deblur-
rings. In simulation studies, ‘cameraman’ (Fig. 4a) and ‘girl’
(Fig. 4b), of size 500×500, were used as true images. PSFs

kG and kD in Fig. 3 were applied to ‘cameraman’ and ‘girl’,
respectively, to produce blurred images of size 480 × 480
(both PSFs are of size 21 × 21).
Blurred images were further corrupted by the Pois-

sonian noise model in (1). Total sums of intensities of
noisy blurred images (Fig. 5) were 2.6 and 3.1 billions for
‘cameraman’ and ‘girl’, respectively.
As mentioned in Section 3, interlaced BI-RL is useful

only when pixel-wise computations (2) and (5), instead
of FFT-based ones, are used for T and T ∗. In simulation

Fig. 3 PSFs. Both PSFs are of size 21 × 21. a Gaussian PSF kG and b diagonal PSF kD
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Fig. 4 Test images. Both images are of size 500 × 500. a ‘Cameraman’ and b ‘girl’

studies, we used a personal computer equipped with
2.0 GHz Intel Core 2 Duo CPU and 8 GB RAM. In this
computing environment, one RL iteration with FFT-based
computations took 5.04 s both for Gaussian and diagonal
deblurrings. On the other hand, one round of interlaced
BI-RL (the for-loop in steps I3, I4, and I5) with pixel-wise
computations took 4.84 s for 4 × 4 rectangularly-down-
sampled blocks for Gaussian deblurring (|SkG | = 441)
and 0.88 s for 8 diagonally-down-sampled blocks for the
diagonal deblurring (|SkD | = 61). This result implies that
interlaced BI-RL is, at least computational point of view,
useful for both deblurring problems in our simulation.
Considering these facts, we used pixel-wise computations
(2) and (5) in our simulation.
Based on the experience that it is not easy to choose an

un-biased stopping rule, we selected the image that had
the smallest relative square error (RSE) within 1000 itera-
tions as the deblurred image of the tested method. Here,
the RSE is defined by

RSE =
∑

(i1,i2)∈� |f̂i1,i2 − fi1,i2 |2∑
(i1,i2)∈� |fi1,i2 |2

,

where f̂i1,i2 and fi1,i2 are intensities of the deblurred image
and the true image, respectively.

4.1 Standard RL
Figure 6a, b shows deblurred images by RL from Figs. 5a
and 5b, respectively. Figure 6a was obtained by 420 iter-
ations with RSE = 0.52 % and Fig. 6b by 102 iterations
with RSE = 0.65 %. All simulation results by BI-RL will be
compared with these images.

4.2 Separated BI-RL
4.2.1 Rectangular blocks for Gaussian deblurring
Table 1 shows results of separated BI-RL with rectangular
blocks in the Gaussian deblurring. For instance, compu-
tation times used for the block partition (‘BP’ column),
the single block iteration (‘SB’ column), and the combin-
ing of deblurred block images (‘CB’ column) were listed
in Table 1. The smallest RSEs and their corresponding
iteration numbers (‘IN’ column) were also listed in Table 1.
As ‘the number of blocks’ (hereafter abbreviated by

NB) increased, computation times for the block partition
(BP) and the combining of block images (CB) increased.

Fig. 5 Noisy, blurred images. Both images are of size 480 × 480. These images were obtained by applying the Gaussian PSF kG (a) and the diagonal
PSF kD (b) to true images in Fig. 4 and adding Poisson noises to have total sums of all pixel values of ‘cameraman’ (a) and ‘girl’ (b) to be 2.6 and 3.1
billions, respectively
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Fig. 6 Deblurred images by RL. These images were obtained at the 420th iteration with RSE = 0.52 % for (a) and 102th iteration with RSE = 0.65 %
for (b)

Increments in computation times were, however, very
small. The time for the single block iteration, however, lin-
early decreased as NB increased. There were also some
slight increments in RSE and IN as NB increased.
Figure 7 shows deblurred images by separated BI-RL

with 4×4 (a) and 16×16 (b) rectangular blocks. Figure 7a
was obtained at the 432th iteration with RSE = 0.53 %
and Fig. 7b at the 513th iteration with RSE = 0.55 %. No
noticeable block artifacts are shown in Fig. 7a, b. As differ-
ences in RSE results in Table 1might indicate, Fig. 7b looks
slightly smoother than Fig. 7a, while Fig. 7a looks slightly
smoother than Fig. 6a. As shown in Fig. 7a, however, the
degradation in Fig. 7a in the comparison with Fig. 6a is not
big enough to give up the efficiency of separated BI-RL in
parallel computations. See results in the ‘PC’ column in
Table 1.
Results in Table 1 and Fig. 7 show that separated BI-RL

with, at least up to 4 × 4, rectangular blocks achieves the
desired goal (combining deblurred block images to final
images without block artifacts, while maintaining deblur-
ring quality and approximation rate) in the Gaussian
deblurring.

Table 1 Computation times for separated BI-RL with rectangular
blocks for the Gaussian deblurring and their smallest RSE results

NB BP SB CB RSE(%) IN PC

1 × 1 n.a. 4.400 n.a. 0.52 420 1,848

2 × 2 10.1 1.098 0.0080 0.53 441 494

4 × 4 10.3 0.275 0.0093 0.53 432 129

8 × 8 10.6 0.068 0.0126 0.54 499 44

16 × 16 11.6 0.017 0.0208 0.55 513 20

Here, the following abbreviations were used: NB number of blocks, n.a. not applied,
BP seconds spent for block partitioning, SB seconds spent for the single block
iteration, CB seconds spent for the combining of deblurred block images, IN the
iteration number that attained the smallest RSE, and PC seconds spent for the
parallel computation in case when NB processing units are used.
The row starting with ‘1 × 1’ in NB column represents results by RL

4.2.2 Diagonal blocks for diagonal deblurring
Table 2 shows the same data as Table 1 for diagonal blocks
for diagonal deblurring. As in Table 1, the computation
time for the single block iteration linearly decreases as
NB increases, while there are some negligible increments
in computation times for the block partition and the
combining of deblurred block images. Unlike in Table 1,
however, RSE and IN results are virtually unchanged as
NB increases.
Figure 8 shows deblurred images by separated BI-RL

with 8 (a) and 16 (b) diagonal blocks. Figure 8a was
obtained at the 103th iteration with RSE = 0.65 % and
Fig. 8b at the 104th iteration with RSE = 0.65 %. Again,
no noticeable boundary artifacts are shown in Fig. 8. As
RSE results in Table 2 might indicate, visual differences in
Figs. 6b and 8a, b are hardly noticeable.
Results in Table 2 and Fig. 8 show that separated BI-

RL with, at least up to 16, diagonal blocks achieves
the desired goal (combining deblurred block images to
final images without block artifacts, while maintaining
deblurring quality and approximation rate) in the diagonal
deblurring.

4.3 Interlaced BI-RL
4.3.1 Rectangularly-down-sampled blocks for Gaussian

deblurring
Table 3 shows results of interlaced BI-RL with
rectangularly-down-sampled blocks in the Gaussian
deblurring. The computation time in the ‘BI’ column
slightly increases as NB increases; one RL iteration took
4.40 s, while the one round of interlaced BI-RL iter-
ation with 4 × 4 rectangularly-down-sampled blocks
took 4.84 s (see Table 3). The increment from 4.40 to
4.80 s was caused by updating pixel values on �i for all
i = 1, 2, . . . , 16 (see step I4) in interlaced BI-RL.
RSE results in Table 3 show that as NB increases, inter-

laced BI-RL reaches its smallest RSE at an earlier iteration
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Fig. 7 Deblurred images by separated BI-RL a with 4 × 4 and b 16 × 16 rectangular blocks. In combing deblurred block images in a and b, weights
in (11) were used. These images were obtained at the 432th iteration with RSE = 0.53 % for (a) and the 513th iteration with RSE = 0.55 % for (b)

in the Gaussian deblurring (the iteration is accelerated by
about NB times).
Figure 9 shows deblurred images by interlaced BI-RL

with 4 × 4 (a) and 8 × 8 (b) rectangularly-down-sampled
blocks. Figure 9a was obtained at the 26th iteration with
RSE = 0.52 % and Fig. 9b at the second iteration with
RSE = 0.91 %. The comparison with Fig. 6a, obtained at
the 420th iteration with RSE = 0.52 % by RL, shows that
interlaced BI-RL with 4 × 4 rectangularly-down-sampled
blocks (Fig. 9a) maintains the deblurring quality compara-
ble to RL, while interlaced BI-RL with 8×8 rectangularly-
down-sampled blocks (Fig. 9b) produces severe ringing
artifacts.
Results in Table 3 and Fig. 9 show that interlaced

BI-RL with up to 4 × 4 rectangularly-down-sampled
blocks achieves the desired goal (the accelerated itera-
tion, with deblurring quality maintained) in the Gaussian
deblurring.
Poor results by interlaced BI-RL with 8 × 8

rectangularly-down-sampled blocks for the Gaussian
deblurring can be explained by the following argument.
The performance of the ith interlaced BI-RL sub-iteration
(the step I4),

fm+i/t = fm+(i−1)/t |�i .∗
T ∗
i s

T ∗
i I�i

, s = g[i]

Ti(fm+(i−1)/t |�i)
,

Table 2 Computation times for separated BI-RL with diagonal
blocks for the diagonal deblurring and their smallest RSE results

NB BP SB CB RSE(%) IN PC

1 n.a. 0.658 n.a. 0.65 102 67

2 2.2 0.327 0.0074 0.65 104 36

4 2.2 0.163 0.0076 0.65 104 19

8 2.2 0.082 0.0079 0.65 103 10

16 2.2 0.040 0.0086 0.65 104 6

The same abbreviations in Table 1 were used here. The row starting with ‘1’ in NB
column represents results by RL

highly depends on the denominator T ∗I�i (often called
normalization term in emission tomography). As men-
tioned earlier in Section 3.2, (T ∗I�i)j1,j2 can be inter-
preted as the probability with which the pixel (j1, j2) ∈
�i contributes the observation on �i. It is true that the
value at the pixel (j1, j2) ∈ �i with bigger (T ∗I�i)j1,j2 is
often recovered faster or more accurately than the value
at the pixel with smaller one. Thus non-uniform and small
T ∗I�i often leads to slow convergence and a non-uniform
deblurring effect in the ith interlaced BI-RL sub-iteration.
Figure 10 shows T ∗

i I�i , where�i are one of pixel subsets
formed by 4 × 4 (a) and 8 × 8 (b) rectangularly-down-
sampled blocks and Ti is the blurring transform associ-
ated with the Gaussian PSF kG and �i. The argument
in the preceding paragraph implies that more uniform
and higher intensities in Fig. 10a than in 10b give the
main reason why Fig. 9a, deblurred by interlaced BI-RL
with denominators whose intensities look like Fig. 10a, is
better than Fig. 9b, deblurred by interlaced BI-RL with
denominators whose intensities look like Fig. 10b.

4.3.2 Diagonally-down-sampled blocks for diagonal
deblurring

Table 4 shows the same data as Table 3 for diagonally-
down-sampled blocks for the diagonal deblurring. Again,
as in Table 3, the computation time for the one round
of interlaced BI-RL iterations slightly increases as NB
increases and interlaced BI-RL reaches its smallest RSE
at an earlier iteration, with the acceleration rate of NB
times.
Figure 11 shows deblurred images by interlaced BI-RL

with 4 (a) and 8 (b) diagonally-down-sampled blocks, and
their zoomed parts in (c) and (d). Figure 11a was obtained
at the 26th iteration with RSE = 0.65 % and Fig. 11b at the
12th iteration with RSE = 0.67 %. The comparison with
Fig. 6b, obtained at the 102th iteration with RSE = 0.65 %
by RL, shows that interlaced BI-RL with 4 diagonally-
down-sampled blocks (Fig. 11a) maintains the deblurring
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Fig. 8 Deblurred images by separated BI-RL with a 8 and b 16 diagonal blocks. In combing deblurred block images, weights in (11) were used.
These images were obtained at the 103th iteration with RSE = 0.65 % for (a) and 104th iteration with RSE = 0.65 % for (b)

quality comparable to RL, while interlaced BI-RL with
8 diagonally-down-sampled blocks exhibits some ringing
artifacts (see zoomed parts Fig. 11c, d) with a slightly
larger RSE.
Results in Table 4 and Fig. 11 show that interlaced BI-

RL with up to 6 diagonally-down-sampled blocks achieves
its desired goal (the accelerated iteration, with deblurring
quality maintained) in the diagonal deblurring.
Interlaced BI-RL with diagonally-down-sampled blocks

for the diagonal deblurring did not accelerate the iteration
as much as interlaced BI-RL with rectangularly-down-
sampled blocks did for the Gaussian deblurring. This phe-
nomenon can be explained, again, by the uniformity and
the largeness on denominators. Figure 12 shows T ∗

i I�i ,
where �i are one of pixel subsets formed by 4 (a) and 8
(b) diagonally-down-sampled blocks and Ti is the blurring
transform associated with the diagonal PSF kD and �i.
The uniformity comparison between Figs. 10a and 12a
gives a partial reason why the diagonal deblurring is not
easy to be accelerated as much as the Gaussian deblurring
by interlaced BI-RL. It is also true that more uniform and
higher intensities in Fig. 12a than in 12b makes Fig. 11a to
be better than 11b.

Table 3 Computation times for interlaced BI-RL with
rectangularly-down-sampled blocks for the Gaussian deblurring
and their smallest RSE results

NB BP BI RSE(%) IN TC

1 × 1 n.a. 4.40 0.52 420 1,848

2 × 2 10.3 4.51 0.52 107 492

4 × 4 10.8 4.84 0.52 26 136

6 × 6 11.3 5.40 0.60 11 70

8 × 8 12.1 6.22 0.91 2 24

The abbreviation ‘BI’ represents the seconds spent for the one round of block
iterations, while ‘TC’ shows the seconds spent for the total computation. The same
abbreviations in Table 1 were used here

4.4 Miscellaneous results
Simulation studies described so far were repeated with
Gaussian and diagonal PSFs of size 11 × 11, 35 × 35, and
51 × 51, different test images, different image sizes, and
Gaussian noise models. We briefly report results of those
simulation studies as follows.

• In Gaussian deblurrings, as the size of Gaussian PSF
increased, separated BI-RL maintained the
convergence rate of RL to smaller ranges of
rectangular blocks.

• In diagonal deblurrings, separated BI-RL maintained
the convergence rate of RL at least up to 16 diagonal
blocks for all diagonal PSFs.

• In Gaussian deblurrings, as the size of Gaussian
PSF increased, interlaced BI-RL accelerated iterations
to wider ranges of rectangularly-down-sampled
blocks.

• In diagonal deblurrings, as the size of diagonal
PSF increased, interlaced BI-RL accelerated iterations
to wider ranges of diagonally-down-sampled
blocks.

• Smoother images had more chance of exhibiting
block artifacts in separated BI-RL with rectangular
blocks for Gaussian deblurrings. In separated BI-RL
with diagonal blocks for diagonal deblurrings, the test
image did not affect block artifacts.

• The use of Gaussian noise models itself did not affect
the performance of proposed methods.

• Deblurring with noisier data had less chance of
exhibiting block artifacts in separated BI-RL with
rectangular blocks for Gaussian deblurrings. In
separated BI-RL with diagonal blocks for diagonal
deblurrings, the noise level did not affect block
artifacts.

• Separated BI-RL worked better for larger sized
images, while the performance of interlaced BI-RL
did not depend on the image size.
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Fig. 9 Deblurred images by interlaced BI-RL with a 4 × 4 and b 8 × 8 rectangularly-down-sampled blocks. These images were obtained at the 26th
iteration with RSE = 0.52 % for (a) and the second iteration with RSE = 0.91 % for (b)

We tested proposed methods with an image taken from
a real camera. Figure 13a shows a blurred and noisy image
taken by the famous photographer Robert Capa [30].
Figure 13b, c, d shows deblurred images by RL, separated
BI-RL with 4 horizontal blocks, and interlaced BI-RL with
4 horizontally-down-sampled blocks, respectively. Here,
horizontal blocks for separated BI-RL and horizontally-
down-sampled blocks for separated BI-RL were selected
by following two suggestions explained in Section 3.6
(the estimated PSF for Fig. 13a is known to be spread
horizontally [30]).
Figure 13b, c shows 100th iterates of RL and separated

BI-RL with 4 horizontal blocks, respectively. No notice-
able difference between Fig. 13b, c indicates that separated
BI-RL achieved its desired goal (the block artifact-free
block deblurring) in this simulation. Figure 13d shows
the 25th iterates of interlaced BI-RL with 4 horizontally-
down-sampled blocks. Again, no noticeable difference
between Fig. 13b, d indicates that interlaced BI-RL
achieved its desired goal (the accelerated iteration) in this
simulation.

We tested proposed methods with an image taken from
a real camera. Figure 13a shows a blurred and noisy
image (of size 316 × 480) taken by the famous photogra-
pher Robert Capa [30]. Figure 13b, c, d shows deblurred
images by RL, separated BI-RL with 4 horizontal blocks,
and interlaced BI-RL with 4 horizontally-down-sampled
blocks, respectively. Here, horizontal blocks for separated
BI-RL and horizontally-down-sampled blocks for sepa-
rated BI-RL were selected by following two suggestions
explained in Section 3.6 (the estimated PSF for Fig. 13a is
known to be spread horizontally [30]; see Fig. 15a).
Figure 13b, c shows 100th iterates of RL and separated

BI-RL with 4 horizontal blocks, respectively. No notice-
able difference between Fig. 13b, c indicates that separated
BI-RL achieved its desired goal (the block artifact-free
block deblurring) in this simulation. Figure 13d shows
the 25th iterates of interlaced BI-RL with 4 horizontally-
down-sampled blocks. Again, no noticeable difference
between Fig. 13b and 13d indicates that interlaced BI-RL
achieved its desired goal (the accelerated iteration) in this
simulation.

Fig. 10 Backprojected images T ∗
i I�i of a 4 × 4 and b 8 × 8 rectangularly-down-sampled �i . Here, Ti is the blurring transform associated with the

Gaussian PSF kG and �i



Lee EURASIP Journal on Image and Video Processing  (2015) 2015:14 Page 12 of 17

Table 4 Computation times for interlaced BI-RL with
diagonally-down-sampled blocks for the diagonal deblurring and
their smallest RSE results

NB BP BI RSE(%) IN TC

1 n.a. 0.65 0.65 102 66

2 2.2 0.69 0.65 52 38

4 2.3 0.75 0.65 26 21

6 2.3 0.81 0.65 17 16

8 2.4 0.88 0.67 12 12

Here, same abbreviations and conventions in Tables 1 and 3 were used

We also tested proposed methods with a color image
taken from a real camera. Figure 14a shows a color ’sum-
mer house’ image of size 946 × 952 in [30]. Figure 14b,
c shows 100th iterates of RL and separated BI-RL with
2 × 2 rectangular blocks, respectively. No noticeable dif-
ference between Fig. 14b, c indicates that separated BI-RL
achieved its desired goal (the block artifact-free block
deblurring) in this simulation. Figure 14d shows the 25th
iterates of interlaced BI-RL with 2×2 rectangularly-down-
sampled blocks. Again, no noticeable difference between
Fig. 14b, d indicates that interlaced BI-RL achieved its
desired goal (the accelerated iteration) in this simulation.

Figure 15 shows PSF images that were estimated from
observed images, Figs. 13a for 15a and Figs. 14a for 15b,
in [30].
We also conducted simulation studies on separated

BI-RL with ‘improperly chosen blocks.’ Figure 16 shows
deblurred images by separated BI-RL with diagonal
blocks for the Gaussian deblurring (a) and rectangu-
lar blocks for the diagonal deblurring (b). In com-
bining deblurred block images, weights r[i], i =
1, . . . , t, in (11) were used. Figure 16a did not show
block artifacts, while Fig. 16b suffered from block
artifacts.
Block artifacts in Fig. 16b were caused by boundary

artifacts generated in diagonal deblurrings of rectangu-
lar blocks. In fact, the Gaussian deblurring also gener-
ated boundary artifacts for both rectangular and diagonal
blocks. Those boundary artifacts were, however, confined
only in outermost part of �i − �i and did not appear in
the final image (Fig. 16a), since r[i] in (11) were very small
for image pixels (j1, j2) ∈ �i−�i where boundary artifacts
were strong. In diagonal deblurrings of rectangular blocks,
however, boundary artifacts appeared in the final image
(Fig. 16b) because of the exact opposite reason. The asym-
metrical and slow decay of the diagonal PSF kD makes
such difference.

Fig. 11 Deblurred images by interlaced BI-RL with diagonally-down-sampled blocks and their zoomed parts. a 4 and b 8 diagonally-down-sampled
blocks, c a zoomed part of (a) and d a zoomed part of (b). These images were obtained at the 26th iteration with RSE = 0.65 % for (a) and 12th
iteration with RSE = 0.67 % for (b)
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Fig. 12 Backprojected images T ∗
i I�i of a 4 and b 8 diagonally-down-sampled �i . Here, Ti is the blurring transform associated with the diagonal

PSF kD and �i

On the other hand, diagonal deblurrings of diagonal
blocks do not produce block artifacts, as shown in Fig. 8;
most of boundary artifacts from diagonal deblurrings of
diagonal blocks appear only in � − � and hence can be
easily removed by cutting out pixels in � − �. These
results show that, in case when the formula (11) is used
for the combining of deblurred block images, the shape of
blocks is important for the diagonal deblurring but not for
the Gaussian deblurring.
Selecting blocks depending on the PSF is not an easy

task. To deal with this problem, we suggest to use over-
lapped rectangular blocks �i for separated BI-RL, in
the case when it is not certain which blocks should be
chosen.
Figure 17 shows deblurred images by separated BI-RL

with overlapped rectangular blocks for Gaussian (a) and

diagonal (b) deblurrings. To be specific, Fig. 17a shows the
deblurred image by separated BI-RL with 16 × 16 over-
lapped rectangular blocks. These overlapped blocks were
formed from 16 × 16 disjoint rectangular blocks (the size
of each block is 30 × 30) by adding nine rows or nine
columns to boundaries of blocks.
Separated BI-RL with these overlapped rectangular

blocks produces 256 deblurred block images and com-
bines 256 deblurred block images of size 30 × 30, after
cutting out required amount of rows and columns from
256 deblurred block images, to the final image (Fig. 17a).
Figure 17b can be obtained by a similar procedure.
Both images in Fig. 17 do not show block artifacts (see

Fig. 18, which shows zoomed parts of Figs. 16b and 17b,
respectively, for a better comparison). These results indi-
cate that overlapped rectangular blocks can be used for

Fig. 13 Test of proposed methods with an image taken from a real camera. a The image (of size 316 × 480) taken by Robert Capa on 6 June 1944
[30], b the deblurred image by RL, c the deblurred image by separated BI-RL with 4 horizontal blocks, and d the deblurred image by interlaced BI-RL
with 4 horizontally-down-sampled blocks. Here, 100, 100, and 25 were used as iteration numbers for (b), (c), and (d), respectively
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Fig. 14 Test of proposed methods with a color image taken from a real camera. a A color ‘summer house’ image (of size 946× 952) taken from a real
camera [30], b the deblurred image by RL, c the deblurred image by separated BI-RL with 2 × 2 rectangular blocks, and d the deblurred image by
interlaced BI-RL with 2×2 rectangularly-down-sampled blocks. Here, 100, 100, and 25 were used as iteration numbers for (b), (c), and (d), respectively

separated BI-RL for any kind of PSFs, at the cost of addi-
tional computations caused by overlapped pixels; for the
Gaussian deblurring with 4 × 4 rectangular blocks, dis-
joint blocks took 0.275 s for the iteration for the one
block, while 4 × 4 overlapped rectangular blocks formed
by adding nine pixel rows and columns to boundaries took
0.337 s.

As mentioned in Section 2, interlaced BI-RL was com-
pared with the acceleration technique in [7]. Figure 19a
shows the result of the acceleration technique in [7],
which obtained the smallest RSE 0.54 % at the 41st iter-
ation in 182.4 s (= 4.45 s × 41). On the other hand,
Fig. 9a, obtained at the 26th iteration with RSE 0.52 % by
interlaced BI-RL with 4 × 4 rectangularly-down-sampled

Fig. 15 Estimated PSFs. a The PSF that was estimated from the observed image in Fig. 13a in [30]. Figure 13b, c, d was computed by using this PSF.
b The PSF that was estimated from the observed image in Fig. 14a in [30]. Figure 14b, c, d was computed by using this PSF. Here, both PSF were
displayed as images of size 101 × 101
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Fig. 16 Deblurred images by separated BI-RL with improperly chosen blocks. In combing deblurred block images, the formula (11) was used.
a Diagonal blocks for the Gaussian deblurring and b rectangular blocks for the diagonal deblurring

Fig. 17 Deblurred images by separated BI-RL with overlapped rectangular blocks. a Gaussian and b diagonal deblurrings

Fig. 18 Zoomed parts. a A zoomed part of Fig. 16b and b a zoomed part of Fig. 17b
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Fig. 19 Acceleration comparison. a Deblurred image by the accelerated RL method in [7], obtained at the 41st iteration with RSE = 0.54 %, b a
zoomed part of (a), and c a zoomed part of Fig. 9a, obtained by interlaced BI-RL with 4 × 4 rectangularly-down-sampled blocks at the 26th iteration
with RSE = 0.52 %

blocks, took 136.6 s (10.81 s for the block partition +
4.84 s × 26 for iterations). The comparison of Fig. 19a
with Fig. 9a shows that the technique in [7] provided a
slightly slower acceleration and larger RSE than interlaced
BI-RL with 4 × 4 rectangularly-down-sampled blocks. It
also shows that the technique in [7] produced slightly
more ringing artifacts and noise amplification than inter-
laced BI-RL. For a better visual comparison, see Fig. 19b,
c, which shows zoomed parts of Figs. 19a and 9a,
respectively.

5 Conclusions
In this paper, we extended RL to block-iterative versions,
separated BI-RL, and interlaced BI-RL, for image deblur-
ring applications. We conducted simulation studies to test
proposed methods in Gaussian and diagonal deblurrings.
Simulation results showed that separated BI-RL can have a
benefit of parallel computations for Gaussian and diagonal
deblurrings, with a wide range of rectangular and diagonal
blocks, respectively. Simulation results also showed that
interlaced BI-RL can accelerate the iteration for Gaussian
and diagonal deblurrings but only with a limited range
of rectangularly- and diagonally-down-sampled blocks,
respectively.
In this work, proposed methods were tested only for

Gaussian and diagonal PSFs, kG and kD in Fig. 3. It is clear
that proposed methods can be extended to other PSFs as
long as admissible blocks can be selected. But, as men-
tioned earlier, it is not clear how blocks should be formed
for a specific PSF. Simulation results in Section 4 indicates
that overlapped rectangular blocks can be used as uni-
versal admissible blocks for separated BI-RL, at the cost
of additional computations caused by overlapped pixels.
For interlaced BI-RL, however, such universal admissible
blocks are not known yet.
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