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Abstract

Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide
variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is
a lack of research that aims to automatically tune such parameters, in this work, we have proposed an
optimization-based framework for such task based on social-spider optimization, harmony search, particle swarm
optimization, and Nelder-Mead algorithm. The proposed framework employed the well-known large displacement
optical flow (LDOF) approach as a basis algorithm over the Middlebury and Sintel public datasets, with promising
results considering the baseline proposed by the authors of LDOF.
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1 Introduction
Optical flow estimation is one of the most important
research areas in computer vision, and it aims at identi-
fying the patterns of motion of objects and surfaces in a
visual scene, i.e., to approximate the motion field from a
time-varying image intensity. The literature is wide, being
some very recent works related to optical flow estima-
tion using Laplacian mesh structures [1], total generalized
variation [2], probabilistic motion detection [3], and as
an optimization problem in a high-dimensional motion
field [4], just to name a few. The importance of optical
flow estimation can be evidenced in image segmenta-
tion [5], rigid object reconstruction [6], cell tracking [7],
video stabilization [8], among others. Some parallel-based
implementations can be found in [9-11] as well.
Recently, Sun et al. [12] stressed that the theoretical

foundations of a broad range of optical flow methods
have changed little since the seminal work of Horn and
Schunck [13]. Basically, they argued that, although the
results have improved over the past years, the vast major-
ity of optical flow methods rely on the same basis of the
work proposed by Horn and Schunck. Another short-
coming related to the optical flow-based techniques relies
on the estimation of their parameters, which poses a
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big challenge to the field. Since most of techniques are
parameter-dependent, a grid-search for a set of near-
optimal/optimal parameters in video content may not be
a viable task [14]. Therefore, many works often set the
parameters by hand, which may limit our understanding
about how well the considered optical flow method can
generalize unseen data. As a matter of fact, the problem
of estimating the parameters of optical flow techniques
may be seen as a large-scale learning problem. Albeit, we
usually need to estimate a few parameters only, the huge
amount of data to be processed for such estimation in
video datasets demands a high computational effort.
Although the reader can face several works that cope

with the problem of estimating/calibrating camera param-
eters, only a few of them deal with the problem of param-
eter estimation in optical flow techniques. Heas et al. [15]
and Krajsek and Mester [16], for instance, employed a
Bayesian optimization framework for such purpose, and
Li andHuttenlocher [17] presented an interesting stochas-
tic optimization approach based onMarkov random fields
for optical flow parameter estimation. The authors state
several arguments concerning the advantages of opti-
mizing an error criterion instead of using a maximum
likelihood approach for that, as employed by the work of
Roth and Black [18]. The reader can refer to a few other
works that model the task of optical flow parameter esti-
mation as an optimization task by means of metaheuristic
techniques. Delpiano et al. [19], for instance, proposed a
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multi-objective approach for parameter estimation aiming
at optimizing both the training loss and the computational
load. Later on, Pereira et al. [20] applied metaheuristic
optimization algorithms for the same task considering the
large displacement optical flow (LDOF) technique [21],
being the results of social-spider optimization (SSO) [22],
harmony search (HS) [23], and particle swarm optimiza-
tion (PSO) [24] compared against each other in the well-
knownMiddlebury dataset. Although one can find several
other optical flow-based implementations out there
[25-27], we opted to use LDOF due to its simplicity, relia-
bility, and good rank in Sintel website. LDOF implementa-
tion is very accurate, but computationally expensive, thus
being an interesting choice for applications that require
high accuracy, but does not require very short execution
times.
In order to fill the lack of research regarding model

selection in optical flow environments, we extended the
work of Pereira et al. [20] by adding two more optimiza-
tion techniques, being one of them based on exact compu-
tations called Nelder-Mead (NM) [28] and the other one
a ‘baseline’ using the parameters proposed by the authors
of the LDOF technique [21], as well as we added one more
dataset to the experimental section. Additionally, the work
of Pereira et al. [20] proposed a local approach to esti-
mate the parameters of LDOF: in short, the idea of their
work is to optimize each sequence separately and then to
employ the best set of parameters to optimize the remain-
ing sequences. We propose here to optimize the tech-
niques globally, which means we consider all sequences
from a given dataset for parameter optimization, being the
results more accurate than the ones reported by Pereira
et al. [20]. The remainder of this paper is organized as
follows: Section 2 presents a brief theoretical background
about optical flow, and Section 3 revisits the techniques
employed in this paper for comparison purposes. The
proposed methodology and experimental results are dis-
cussed in Sections 4 and 5, respectively. Section 6 states
the conclusions and future works.

2 Optical flow
Optical flow (OF) is a vector field representing ‘the dis-
tribution of apparent velocities of movement of bright-
ness patterns in an image’ [13]. The idea contains two
basic assumptions: the ‘grey value constancy’ and the
‘smooth flow of the intensity values’ between two succes-
sive images. Some articles still maintain the grey value
constancy (as an example, see [29]), while other works
report the necessity to loosen this assumption [30].
The OF constraint, given in Equation 1, is derived from

the ‘grey value constancy’ assumption. It relates the spa-
tial and temporal derivatives of a 2D image g at time
step t and the OF vector φ, and it has a strong anal-
ogy with mass conservation in fluid mechanics, shown

in Equation 2, where φ is the fluid speed and ρ is the
fluid density. As fluid mass, image intensity is often sup-
posed to remain constant under deformation and motion.
However, Equations 1 and 2 would be equivalent when
∇φ = 0 only. This condition matches the smooth flow
assumption that is considered when regularizing the flow
field:

∂g
∂t

+ φ∇g = 0, (1)

∂ρ

∂t
+ ∇(ρφ) = 0. (2)

The early work presented in [13] stated the need for an
extra constraint to compute the optical flow field from
an image sequence and proposed one ad hoc constraint
based on the assumption of flow smoothness. Another
research work [31] proposed to consider the OF equation
for several neighboring pixels in order to avoid the need
for an extra constraint. More than 10 years later, Barron
et al. [32] provided a comparison of several OF meth-
ods, mainly with respect to their average angular error
(AAE) when applied to some image sequences. The exper-
iments showed that the method in [31] was one of the
most reliable methods at the moment.
Recently, several image datasets have been compiled for

a more precise evaluation and comparison of OF methods
[33,34]. Many shortcomings of the original methods have
been overcome, and the accuracy of OF methods on the
top of the rankings has grown continuously. Additionally,
several researchers have tried to preserve the discontinu-
ity of natural motion fields [35], overcoming the original
assumption of OF smoothness in [13]. After the work by
[32], there have been further attempts to compare differ-
ent methods. Liu et al. [36], for instance, showed a trade-
off between computational time and angular error using
operation curves to compare different OF techniques. It
is also interesting to consider the time comparison among
OF algorithms given by [37], since the authors provide a
picture of the computational load of some OF algorithms.
More recently, a group of researchers presented a series
of real image sequences and their respective ground truth
obtained by tracking hidden fluorescent textures [33].
The authors also suggest a method to evaluate OF-based
algorithms.

2.1 Large displacement optical flow
Given a sequence of m frames I = {I1, I2, . . . , Im}, let
φ = (a, b)T be the optical flow for a pair of consec-
utive frames Ii, Ii+1, i = 1, 2, . . . ,m − 1, being such
frame pre-smoothed using a Gaussian filter with param-
eter σ . The large displacement optical flow method pro-
posed by Brox and Malik [21] solves the energy functional
given by:
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E(φ) = Ecolor(φ) + γEgradient(φ) (3)
+αEsmooth(φ) + βEmatch(φ,φ1)

+Edesc(φ1),

where the term Ecolor represents the common assump-
tion of grey value or color constancy; Egradient represents
gradient constancy, which is invariant to a uniform illumi-
nation change; Esmooth enforces regularity of the resulting
optical flow; Ematch stands for an energy related to point
correspondences; and the minimization of Edesc assures
descriptor matching. The quantity φ1 is an auxiliary vari-
able which allows integrating descriptor matching into a
continuous approach. The implementation available for
LDOF [38] has a reduced number of parameters, which
means we can consider all of them for optimization pur-
poses. Such implementation allows the user to fine-tune
four parameters: (i) σ is related to the Gaussian pre-
smoothing of the images (pre-processing parameter), (ii)
α controls the importance attributed to smoothness of
the resulting optical flow, (iii) β enforces the matching of
points in both images, and (iv) γ regulates the penaliza-
tion of violations to the gradient constancy assumption. It
is important to highlight that this set of parameters influ-
ences significantly the accuracy (consequently the error
metrics) and the computational load.

3 Optimization background
In this section, we describe the techniques employed in
this paper for comparison purposes. The methods can be
divided in two classes: (i) metaheuristic algorithms and
(ii) exact methods. Concerning the former approaches,
we used social-spider optimization, particle swarm opti-
mization, and harmony search, and with respect to exact
methods, we employed the Nelder-Mead, which is a deter-
ministic algorithm for convex functions that employs a
simplex for optimization purposes.

3.1 Social-spider optimization
Social-spider optimization is based on the coopera-
tive behavior of social spiders [22], and it takes into
account two genders of search spiders: males and females.
Depending on the gender, each agent is conducted by a
set of different operators emulating a cooperative behavior
in a colony. The search space is assumed as a communal
web, and a spider’s position represents an optimal (near
optimal) solution.
An interesting characteristic of social spiders is the

female-biased population. The number of male spiders
hardly reaches 30% of the total colony members. The
number of females Nf is randomly selected within a range
of 65% to 90% of the entire populationN , being calculated
as follows:

Nf =[ (0.9 − ξ0.25)N] , (4)

where ξ ∼ U(0, 1). The number of male spiders Nm is
given by:

Nm = N − Nf. (5)

Each spider i receives a weight φi according to the fitness
value of its solution:

φi = fitnessi − worst
best − worst

, (6)

where fitnessi is the fitness value obtained by the evalua-
tion of the ith spider’s position i = 1, 2, . . . ,N . The worst
and best mean the worst fitness value and best fitness
value of the entire population, respectively.
The communal web is used as a mechanism to transmit

information among the colony members. The information
is encoded as small vibrations and depends on the weight
and distance of the spider which have generated them:

Vi,j = φje−d2i,j , (7)

where di,j is the Euclidean distance between the spider i
and j. We can consider three special relationships:

• The vibrations Vi,c are perceived by the spider i as a
result of the information transmitted by the member
c who is the nearest member to i and possesses a
higher weight φc > φi;

• The vibrations Vi,b perceived by the spider i as a
result of information transmitted by the spider b
holding the best weight of the entire population;

• The vibrations Vi,f perceived by the spider i as a
result of the information transmitted by the nearest
female f .

Social spiders perform cooperative interaction over
other colony members depending on the gender. In order
to emulate the cooperative behavior of the female spider,
a new operator is defined in Equation 8. The movement of
attraction or repulsion ϕi of a female spider i at time step
t + 1 is developed over other spiders according to their
vibrations, which are emitted over the communal web:

ϕi(t+1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕi(t) + α ∗ Vi,c ∗ (sc − ϕi(t)) + β ∗ Vi,b∗
(sb − ϕi(t)) + γ ∗ (rand − 1

2 )
if θ < PF;
ϕi(t) − α ∗ Vi,c ∗ (sc − ϕi(t)) − β ∗ Vi,b∗
(sb − ϕi(t)) + γ ∗ (rand − 1

2 )
if θ ≥ PF,

(8)

where θ ,α,β , γ , and rand are uniform random numbers
between [ 0, 1], PF is an input parameter, and sc and sb rep-
resent the nearest member to i that holds a higher weight
and the best spider of the entire population, respectively.
The male spider population is divided into two classes:

dominant and non-dominant. The dominant class spi-
der has better fitness in comparison to non-dominant,
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and they are attracted to the closest female spider in the
communal web. On the other hand, non-dominant male
spiders tend to concentrate in the center of the male pop-
ulation as a strategy to take advantage of resources that
are wasted by dominant males. The movement of male
spiders is given by:

δi(t+1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δi(t) + α ∗ Vi,f ∗ (sf −δi(t)) + γ ∗ (rand− 1
2 )

if φNf +i > φ̃;

δi(t) + α ∗
(∑Nm

h=1 δh(t)∗φNf +h∑Nm
h=1 φNf +h

)
if φNf +i ≤ φ̃,

(9)

where sf represents the nearest female spider to the male
spider i and φ̃ is the median weight of male spider popu-
lation. Thus, the reader can observe that we have distinct
movement equations for male and female spiders. Notice
that we are using φNf +i to denote the male spiders, since
we consider φ as a vector containing the fitness of every
spider within the web, being the firstNf spiders the female
ones.
Mating is performed by dominant males and female

members in a social-spider colony. Considering r (cal-
culated by Equation 10) as being the radius, when a
dominant male spider locates female members inside r, it
mates, forming a new brood:

r =
∑n

j=1 l
high
j − llowj

2n
, (10)

where n is the dimension of the problem, and lhighj and llowj
are the upper and lower bounds, respectively. Once the
new spider is formed, it is compared to the worst spider of
the colony. If the new spider is better, the worst spider is
replaced by the new one.

3.2 Harmony search
Harmony search is ametaheuristic technique based on the
improvisation process of musicians searching for a good
harmony [39]. The main idea is to generate a new har-
mony hnew = (h1new, h2new, ..., hNnew) at each iteration, based
on memory considerations and pitch adjustment. In this
case, N stands for the number of decision variables to be
optimized.
The idea of the memorization step is to model the pro-

cess of creating songs, in which the musician can use
his/her memories of good musical notes to create a new
song. This process is modeled by the harmony memory
considering rate (HMCR), as follows:

hjnew←
{
hjnew∈

{
hj1, . . . , h

j
M

}
with probability HMCR

hjnew∈ψj with probability (1-HMCR),
(11)

where M and ψj are the number of harmonies and the
set of ranges for each decision variable j, respectively.
Therefore, HMCR ∈[ 0, 1] is the probability of choosing
one value from the historic values stored in the harmony
memory, and (1-HMCR) is the probability of randomly
choosing one feasible value. Further, if the new harmony
has been created with probability HMCR, every compo-
nent j of the new harmony vector hnew is examined to
determine whether it should be pitch-adjusted or not,
which is controlled by the pitch adjusting rate (PAR)
variable:

hjnew ←
{
Yes, with probability PAR
No, with probability (1-PAR). (12)

The pitch adjustment is often used to improve solutions
and to avoid local optima. This mechanism concerns shift-
ing the neighbouring values of some decision variable in
the harmony. As such, if the pitch adjustment decision for
the decision variable hjnew is Yes, then hjnew is replaced as
follows:

hjnew ← hjnew + δjτ , (13)

where τ is an arbitrary distance (bandwidth) for the con-
tinuous design variable, and δj ∼ U(0, 1) is an ad hoc
parameter.
Recently, several researches have focused on develop-

ing variants of traditional HS. In our implementation, we
employed the novel global harmony search (NGHS) [40],
which has demonstrated better results than vanilla HS in
our experiments. The NGHS does not employ PAR and
HMCR parameters, but it introduces a new parameter P
that denotes the probability of occurring an improvisation
schema during a new harmony’s creation, and therefore
modifies the improvisation process. Another difference
between NGHS and the HS is that a new harmony always
replaces the worst one, even when the new one does not
improve the worst harmony.

3.3 Particle swarm optimization
Particle swarm optimization can be seen as a search
algorithm based on stochastic processes [24], where the
learning of social behavior allows each possible solution
(particle) ‘fly’ onto that space (swarm) looking for other
particles that have the best features and thus minimizing
or maximizing the objective function.
Each particle has a memory that stores its best local

solution (local maxima or minima) and the best global
solution (global maximum or minimum). Besides, each
particle has the ability to imitate others that provide the
best positions in the swarm. This mechanism can be sum-
marized in three principles: (i) evaluation, (ii) comparison,
and (iii) imitation. Each particle can evaluate others within
your neighborhood through some objective function; it
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can compare with your own value and finally decide
whether it is a good choice to imitate it or not.
The swarm is modeled as a multidimensional space RN ,

where each particle li = (λi, κi) ∈ R
N has two main fea-

tures: (i) position λi and (ii) velocity κi. The best local λ̂i
and global Ĝ solutions (position in the swarm) are also
known. After setting the size of the swarm (the number
of particles), each particle is initialized with random val-
ues for both velocity and position. Each particle is then
evaluated with respect to some objective function, and
its local maxima/minima is updated. The global maxi-
mum/minimum value is updated with the particle that
reached the best position in the swarm. This process is
repeated until some convergence criterion is met. The
position and velocity of the particle li at time step t+1 are
updated by Equations 14 and 15, respectively:

λt+1
i = λti + κ t

i , (14)

and

κ t+1
i = �κ t

i + c1r1(̂λi − λti) + c2r2(Ĝ − λti) (15)

where � is the inertia force that controls the interaction
power between particles, and r1, r2 ∈ [0, 1] are random
variables that give the idea of stochasticity concerning
PSO. The constants c1 and c2 are also used to guide the
particles (input parameters for the algorithm) onto good
solutions.

3.4 Nelder-Meadmethod
The Nelder-Mead is an iterative heuristic of direct search
approach (it does not compute derivatives) used to find
stationary points (minimum or maximum) in multidi-
mensional unconstrained functions [28]. This approach is
commonly used in problems where the derivative is not
known, or when the computational cost to compute it is
prohibitive.
Given a function f : R

n → R and an initial guess
x0, the Nelder-Mead method creates a simplex S0 =
{p0, p1, ..., pn} ∈ R

n around the initial guess x0 with n + 1

sample points. There are different approaches to gener-
ate an initial simplex S0, and its size can influence the
solution to be obtained. In our implementation, we gen-
erate the initial simplex S0 using the classical approach
described by Equation 16:

p0 = x0and (16)
pj = p0 + s ej j ∈ {1, 2, ..., n},

where s is the step size that determines the simplex size
and e = {1, 1, ..., 1} ∈ R

n is a diagonal vector with size
√
n.

Thus, the initial simplex S0 has all edges with the same
size s.
After the construction of simplex S i, the Nelder-Mead

starts the iterative process to find a stationary point x∗.
The first step is to compute all sample values fj = f (pj)
∀ 0 ≤ j ≤ n. Next, we determine the indices w, v, and b,
which represent the worst, second worst, and best sam-
ples’ indexes, respectively. Soon after, we compute the
centroid c = 1

n
∑

j �=w pj of all sample points except the
worst once.
Further, we compute the reflect point pr = c+ϑ(c−pw):

if fb ≤ fr < fv, then we replace the simplex sample pw by
pr, and the iteration ends. Otherwise, if fr < fb, we com-
pute the expansion point pe = c+ς(pr −c) and its sample
value fe = f (pe). If fe < fr , then we select pe and discard
pw; otherwise, we accept pr and discard pw. Now, if fr ≥ fw,
we compute the contraction point pc (Equation 17) using
the best sample between pr and pv:

pc = c + ϕ(pr − c) if (fv ≤ fr ≤ fw) (17)
pc = c + ϕ(pw − c) if (fr ≥ fw).

We denote pbrv as the point with the lowest sample
value between pr and pv, i.e., pbrv = pr if fr ≤ fw, and
pbrv = pw otherwise. If fc ≤ fbpv, we accept pc; otherwise,
it is necessary to create a new shrink simplex, which can
be calculated by updating the vertices as follows:

pj = pj + ρ(pj − pb), ∀j �= b, (18)

where j = 1, 2, . . . , n. The iterative process is repeated
until the maximum number of iterations is reached,

Figure 1 Images from the Middlebury dataset used in the experiments. From left to right: Dimetrodon, Grove2, Grove3, Hydrangea, Urban2,
Urban3, RubberWhale, and Venus.
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Figure 2 Images from the Sintel dataset used in the experiments. From left to right: alley_1, ambush_2, bamboo_1, bandage_1, cave_2, market_2,
mountain_1, shaman_1, sleeping_1, and temple_2.

or some convergence criterion is met. Notice that the
Nelder-Mead algorithm has the following parameters:
ϑ ,ϕ, ρ, and ς .

4 Methodology
This section describes the experimental setup employed
in this paper to validate the optimization algorithms to set
up parameters of LDOF. We used two well-known public
datasets composed of image sequences and their respec-
tive ground truths: Middlebury [33,41] and Sintel [42,43],
which have been frequently used to evaluate different OF
methods [21,33]. The Middlebury dataset contains eight
synthetic and laboratory sequences with a dense ground
truth (Figure 1), and the Sintel dataset contains artificial
naturalistic video sequence (Figure 2).
We employed the LDOF technique (Section 2.1)

together with our implementation of SSO, NGHS, PSO,
and NM. The main reason behind the use of such tech-
niques is to alleviate the high computational burden often
required by optimization techniques. In light of such
shortcoming, we opted to use techniques with easy imple-
mentation, which usually reflects in their complexity. For
the sake of comparison, we computed the average of ‘end
point error’ (EPE) [44] values obtained over five runnings
for each optimization technique, which is basically the dif-
ference between the ground truth and estimated optical
flow.
Let ue = (ue, ve) be the estimated optical flow, and

ugt = (ugt , vgt) be the ground truth of the optical flow.
Therefore, the EPE can be calculated as follows:

EPE =
√

(ue − ugt)2 + (ve − vgt)2). (19)

Table 1 presents the parameters used for each of them:
NMparameters were set according to the work of Lagarias
et al. [45]. Additionally, we also employed LDOF with
the parameters recommended by Brox and Malik [21], in
which we refer here as the ‘baseline.’ SSO, NGHS, and
PSO parameters were fine-tuned according to the work of
Pereira et al. [20]. A search space with 20 agents and 200

iterations for SSO, NGHS, and PSO, and 100 iterations for
NM.a Since the solution of NM algorithm is strongly influ-
enced by the initial guess, we used random initial guesses
for that.
Roughly speaking, the main idea is to find out the set

of LDOF parameters that minimize the EPE measure.
Therefore, instead of employing a random or empirical
approach for that, we make use of an optimization frame-
work to perform a faster and more reliable search for
such parameters. As such, the fitness function to be mini-
mized is the one given by EPE measure. The experiments
were divided in two rounds, as depicted in Figure 3. In
the first round, we estimated the best set of parameters
(the ones with minimum EPE) using the aforementioned
optimization algorithms applied on the eight Middlebury
sequences. In the second round, we applied the same algo-
rithms on ten sequences of images from the Sintel dataset.
In order to compare the optimization algorithms, we also
employed a ‘baseline’ set of parameters proposed by Brox
and Malik [21].
The methodology employed in this paper differs from

the one used by Pereira et al. [20], which optimized each
dataset image individually, i.e., they aimed at fine-tuning
LDOF for each image, being the final result the average
over all images considering the AAE metric. In this work,
we conducted the optimization process over the whole
dataset, i.e., we aimed at fine-tuning LDOF considering all
images of the dataset at the same time. Therefore, the fit-
ness function adopted in this work was the one given by
the average of EPE values of all dataset images.

Table 1 Parameters used for each optimization technique

Technique Parameters

SSO PF = 0.5

NGHS P = 0.1

PSO c1 = c2 = 2.0 and ψ = 0.9

NM ϑ = 1, ϕ = ρ = 0.5 and ς = 2
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Figure 3 Methodology employed to validate the optimization algorithms.

5 Experimental results
This section presents the results obtained by SSO, NGHS,
PSO, and NM for optical flow parameter optimization
purposes. We would like to stress that we did not consider
the runtime (computational load), since our goal is tomin-
imize the EPE metric only. Furthermore, the parameters
to be optimized have a strong influence on both EPE and
runtime.
In regard to the first round of experiments, Table 2

shows the EPE values concerning SSO, NGHS, PSO,
NM, and LDOF baseline in the eight ground-truth image
sequences of the Middlebury dataset. In the first round,
PSO obtained the best average results with EPE equals
to 0.325, followed by SSO (EPE equals to 0.330). Notice
both methods presented better results than the baseline
approach. Additionally, PSO obtained the best results in
three out of eight Middlebury sequences (RubberWhale,
Urban3, and Urban2), SSO achieved the best results in
three out of eight Middlebury sequences (Dimetrodon,
Grove3, and Venus), and the baseline achieved the best
results for two sequences (Grove2 andHydrangea). NGHS
and NM did not achieve the best result in any image
sequence. Although Brox and Malik [21] did not present
the methodology used to find the baseline parameters,

this experiment highlighted the need for a fine-tune of
parameters using optimization algorithms.
In regard to the second round of experiments, Table 3

shows the EPE values concerning SSO, NGHS, PSO, NM,
and baseline on ten image sequences considering the Sin-
tel dataset. In this experiment, we used the first two
frames of the following sequences: alley_1, ambush_2,
bamboo_1, bandage_1, cave_2, market_2, mountain_1,
shaman_1, sleeping_1, and temple_2. We can observe that
the optimization techniques presented similar results,
being all of them more accurate than the baseline (except
for cave_2, where the baseline approach achieved similar
results to PSO). PSO obtained the best results in four out
of ten Sintel sequences (alley_1, bamboo_1, cave_2, and
temple_2), SSO achieved the best results in three out ten
Sintel sequences (bandage_1, market_2, and shaman_1),
NGHS obtained the best result in one out of ten Sintel
sequences (ambush_2).
Figure 4 depicts the average EPE values considering

all sequences for the Middlebury and Sintel datasets, as
well as the average between these two. Therefore, the
main idea of this work is to highlight the importance of
using optimization algorithms to fine-tune the parame-
ters for OF-based techniques. Considering the average

Table 2 Results obtained by SSO, NGHS, PSO, NM, and LDOF baseline [21] over Middlebury dataset

Sequences SSO NGHS PSO NM Baseline

Dimetrodon 0.108 ± 0.02 0.114 ± 0.01 0.114 ± 0.01 0.135 ± 0.03 0.115

Grove2 0.194 ± 0.00 0.205 ± 0.01 0.191 ± 0.01 0.224 ± 0.03 0.176

Grove3 0.670 ± 0.04 0.747 ± 0.02 0.685 ± 0.01 0.761 ± 0.05 0.701

Hydrangea 0.211 ± 0.00 0.211 ± 0.02 0.202 ± 0.01 0.235 ± 0.05 0.184

RubberWhale 0.126 ± 0.01 0.157 ± 0.00 0.117 ± 0.00 0.149 ± 0.04 0.129

Urban2 0.401 ± 0.04 0.426 ± 0.06 0.346 ± 0.01 0.459 ± 0.12 0.381

Urban3 0.614 ± 0.06 0.756 ± 0.11 0.561 ± 0.14 0.867 ± 0.14 0.818

Venus 0.319 ± 0.02 0.756 ± 0.01 0.381 ± 0.00 0.403 ± 0.03 0.377

Mean 0.330 ± 0.01 0.372 ± 0.00 0.325 ± 0.01 0.384 ± 0.02 0.360

The best EPE values for each sequence are in italics.
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Table 3 Results obtained by SSO, NGHS, PSO, NM, and LDOF baseline [21] over Sintel dataset

Sequences SSO NGHS PSO NM Baseline

alley_1 0.214 ± 0.02 0.263 ± 0.00 0.209 ± 0.01 0.226 ± 0.00 0.212

ambush_2 15.532 ± 0.50 13.947 ± 1.57 16.210 ± 1.39 14.53 ± 2.05 19.64

bamboo_1 0.246 ± 0.01 0.275 ± 0.02 0.236 ± 0.01 0.239 ± 0.00 0.238

bandage_1 0.740 ± 0.06 0.990 ± 0.04 0.915 ± 0.20 0.817 ± 0.04 0.785

cave_2 1.857 ± 0.07 1.992 ± 0.10 1.819 ± 0.04 1.899 ± 0.04 1.820

market_2 0.846 ± 0.00 0.928 ± 0.03 0.972 ± 0.16 0.853 ± 0.02 0.852

mountain_1 0.865 ± 0.06 0.798 ± 0.04 1.076 ± 0.33 0.741 ± 0.06 0.891

shaman_1 0.230 ± 0.02 0.297 ± 0.03 0.249 ± 0.01 0.278 ± 0.01 0.256

sleeping_1 0.114 ± 0.01 0.122 ± 0.01 0.110 ± 0.01 0.105 ± 0.01 0.102

temple_2 1.536 ± 0.05 1.612 ± 0.05 1.485 ± 0.01 1.563 ± 0.03 1.523

Mean 2.218 ± 0.05 2.122 ± 0.12 2.293 ± 0.16 2.185 ± 0.12 2.632

The best EPE values obtained for each sequence are in italics.

results of both experiments, all optimization techniques
obtained better results than the baseline. Furthermore, the
experiments show that the parameters shall be selected
specifically for each dataset or application.
An additional experiment showed the computational

load of each technique, which is measured here in terms
of the number of calls to the LDOF algorithm and pre-
sented in Figure 5. If we are interested in a fast model
selection, the best approach might be NGHS, since it has
obtained reasonable results with less computational effort
than swarm-based approaches. However, if we decide to
apply an off-line fine-tuning, both SSO and PSO seem to
be interesting approaches, being the former slightly more
accurate.

6 Conclusions
In this paper, we have validated the optimization algo-
rithms in the context of model selection in optical
flow-based applications, which play an important role
in computer vision systems. The experimental section
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Figure 4 The results obtained on Middlebury and Sintel datasets.

compared the baseline parameters obtained by Brox and
Malik [21] against with four optimization techniques:
SSO, NGHS, PSO, and NM. Two rounds of experiments
have been conducted over the well-known Middlebury
and Sintel datasets: (i) the first round aimed at learn-
ing the best set of parameters (i.e., the ones that mini-
mizes the end point error criterion) over the Middlebury
dataset and (ii) the second phase performed the same
over the Sintel dataset. In the first round, two optimiza-
tion algorithms (SSO and PSO) achieved better results
than the baseline parameters, and in the second round,
all optimization algorithms achieved better results than
the baseline. Therefore, this paper highlighted the need
for an automatic fine-tuning of the parameters of opti-
cal flow techniques. In addition, the computational load
of the compared techniques have been assessed in terms
of the number of calls to the LDOF technique, evidenc-
ing the lower computational burden of NGHS and NM
techniques.

Figure 5 The number of calls of each optimization algorithm.
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Endnote
aThe number of agents and iterations have been chosen

based on previous experiments [20].
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