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Abstract

Many emerging applications in the field of assisted and autonomous driving rely on accurate position information.
Satellite-based positioning is not always sufficiently reliable and accurate for these tasks. Visual odometry can provide
a solution to some of these shortcomings. Current systems mainly focus on the use of stereo cameras, which are
impractical for large-scale application in consumer vehicles due to their reliance on accurate calibration. Existing
monocular solutions on the other hand have significantly lower accuracy. In this paper, we present a novel monocular
visual odometry method based on the robust tracking of features in the ground plane. The key concepts behind the
method are the modeling of the uncertainty associated with the inverse perspective projection of image features and
a parameter space voting scheme to find a consensus on the vehicle state among tracked features. Our approach
differs from traditional visual odometry methods by applying 2D scene and motion constraints at the lowest level
instead of solving for the 3D pose change. Evaluation both on the public KITTI benchmark and our own dataset show
that this is a viable approach for visual odometry which outperforms basic 3D pose estimation due to the exploitation
of the largely planar structure of road environments.
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1 Introduction
Visual odometry is an increasingly important research
domain in the field of intelligent transportation systems.
Many emerging and existing applications related to con-
sumer vehicles rely on accurate position estimation. Some
examples of these applications are navigation, lane assis-
tance, collision warning, and avoidance. Traditionally,
the positioning data for these applications is provided
by satellite-based systems such as GPS, GLONASS, or
GALILEO, sometimes augmented by closer-range com-
munication (as in DGPS) or additional sensors scanning
the local environment (e.g., a lane assist camera). How-
ever, the reliance of these applications on satellite nav-
igation is a threat to their full-time availability. Due to
the four-dimensional nature of the problem (3D position-
ing and time synchronization), signals from at least four
satellites must be received in order to obtain a positional
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fix. It is well documented that in certain urban scenar-
ios, large parts of the sky can be obscured by buildings or
road infrastructure, making the reception of four satellites
unlikely or even impossible formany seconds or evenmin-
utes [1]. In these cases, satellite navigation systems cannot
provide reliable position estimates.
In this context of assisted or autonomous driving, posi-

tioning solutions complementary to the satellite-based
systems are needed. One such solution is visual odometry:
the measurement of a vehicle’s trajectory using vehicle-
mounted cameras. Visual odometry is closely related to
simultaneous localisation and mapping (SLAM) in the
field of robotics, but there are clear distinctions between
the two. Whereas SLAM places equal emphasis on con-
structing a virtual map of the unknown environment as on
positioning relative to that environment, visual odometry
methods do not need to explicitly map the environment.
The two problems remain strongly intertwined, as posi-
tioning relies on finding fixed points in the environment
of the vehicle, but for visual odometry, the mapping itself
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is of little interest. In fact, in some cases (especially con-
sumer automotive applications), some information about
the environment may already be known (e.g., the local
road network layout).
Visual odometry only provides relative positioning, i.e.,

positioning relative to an earlier visited reference point.
As a consequence, estimation errors are cumulative, and
visual odometry methods are therefore susceptible to
drift. The greater the distance traveled from the last abso-
lute reference point (e.g., the known GPS coordinates
of the starting address), the greater the positional error
can become. While this may appear to limit the use of
visual odometry to a short distances, the drift error can
be bounded by combination with additional passive sen-
sors (e.g., a magnetic compass for dead reckoning) or a
priori known information (e.g., the local road map) [2,3].
As such, visual odometry is still a prime candidate to
supplement satellite navigation even for urban scenarios
where signal reception may be unreliable for prolonged
distances.
In the classical approach, visual odometry is a pose

estimation problem in a calibrated setting. Given a cam-
era with known intrinsic calibration parameters and the
images of a scene captured from two unknown view-
points, what is the relative camera pose between the two
viewpoints? In this calibrated setting, visual odometry is
achieved by estimating the essential matrix that relates
the homogeneous image coordinates of the same world
point in the two viewpoints up to a scale factor [4]. A
computationally efficient solution for this was published
in the 1990s by Philip [5] and improved upon by Nistér
[6]. In Nistérs solution, a RANSAC algorithm evaluates
sets of five correspondence points to find the best estimate
for the essential matrix. This type of method is therefore
called a five-point solver. The RANSAC algorithm is nec-
essary to cope with outliers that will arise from erroneous
feature matching and external circumstances (e.g., other
traffic). The essential matrix can be decomposed into its
rotation and translation components if necessary.
As a generalization of the classical setting, pose estima-

tion can also be performed for uncalibrated cameras. In
this case, the matrix that relates the image coordinates of
the two viewpoints is called the fundamental matrix [7]. It
is estimated in a similar way to the essential matrix; how-
ever, more point correspondences are necessary. Methods
of this type are called eight-point solvers. Even in the cali-
brated setting, there is merit in using an eight-point solver
as it yields only one solution, while the five-point methods
can produce up to ten valid solutions, requiring additional
constraints to be evaluated.
The aforementioned methods for estimating the essen-

tial or fundamental matrix are affected by the problem of
degenerate configurations. Two distinct cases of degen-
eracy arise: degeneracy in the motion, where the camera

undergoes only rotation and little or no translation, and
degeneracy in scene structure, where all or many of the
points are coplanar. In both cases, the accuracy of the pose
estimation will be severely degraded [8]. This is an impor-
tant drawback in real-world applications, where vehicles
will often make small incremental motions and where the
majority of the scene can consist of objects in or close to
the ground plane. To remedy the problems of degener-
acy, a stereo camera configuration is typically used, which
allows for much better triangulation of the feature points
even in the cases of motion or scene degeneracy.
Alternatives to fundamental matrix estimation for

stereo systems have also been proposed based on triangu-
lation through stereo disparity [9,10]. Typically, this class
of algorithms first estimates approximate 3D coordinates
from a stereo image pair and then links up feature tracks
over multiple pairs to estimate camera motion.
Stereo camera setups however have significant down-

sides for consumer automotive applications. They are
more expensive than a single-camera system and are more
difficult to integrate into the car’s design. Additionally,
they rely on very accurate calibration on account of the
long observation distance to baseline width ratio [11]. In
the vibration and shock-prone environment of a car, it
is generally accepted that long-term calibration stability
cannot be guaranteed, and online recalibration methods
have been proposed [12,13] in an effort to improve the
applicability. Monocular solutions are inherently less sus-
ceptible to calibration drift, as fewer assumptions about
the capture system’s geometry are made.
Monocular visual odometry algorithms that do not

employ fundamental matrix estimation and are there-
fore not impacted by the aforementioned degeneracies
have been proposed by Tardiff et al. [14] and Scaramuzza
[15,16]. However, these methods are only demonstrated
using an omnidirectional camera mounted atop the vehi-
cle, which is not practical for application on consumer
vehicles. More relevant is the work of Chandraker and
Song [17]. In this work, a five-point solver provides an
initial triangulation of image points captured over five
frames, after which new points are mapped to the known
3D structure and allow for four-point pose estimation.
The output of the pose estimation is combined with con-
tinuous ground plane estimation in a data fusion frame-
work, providing high accuracy as well as being unaffected
by planar scene degeneracy. This proves the merit of
combining different visual cues to improve the overall
odometry accuracy. We expect this data fusion approach
to be applied on other base odometry algorithms as well
in the future.
Recently, a different approach to monocular visual

odometry has emerged in literature, called direct or some-
times dense visual odometry. Instead of determining fea-
ture correspondences, these methods aim to recover the
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camera pose directly from the image data, by reconstruct-
ing a surface-based depth map for the image. While this
approach is not new, only recently has it become tractable
for real-time applications [18-21]. These methods per-
form very well for structure-rich indoor and outdoor
environments, but to the best of our knowledge, their
accuracy in sparsely structured open road scenes is yet to
be examined.
In this work, we will present and evaluate a monocu-

lar visual odometry method that does not depend strongly
on accurate camera calibration and does not suffer from
degeneracy in case of small incremental motion or planar
scene geometry. Furthermore, the method is suitable for
any standard camera that views part of the road surface in
front of or behind the vehicle. This is compatible with nor-
mal camera placement for other currently emerging auto-
motive vision applications such as traffic sign recognition
and obstacle detection. The method tracks ground plane
features, taking into account the uncertainty of the cam-
era viewing angle with relation to the ground plane. This
allows us to exploit the inherently two-dimensional char-
acter of vehicle motion while still retaining some of the
accuracy benefits of a fully three-dimensional approach.
Additionally, the use of uncertainty margins relaxes the
requirement of accurate camera calibration.
Two key components of the method provide robust-

ness against the common problem of outliers: a feature
matching method constrained by uncertainty zones and
a Hough-like parameter space vote. The combination of
these two mechanisms eliminates the need for a RANSAC
scheme and speeds up computation, while still producing
useful odometry for inlier ratios as low as 1:8 in real-world
experiments.
This work is a continuation of the concept first intro-

duced in our publication at IV2011 [22] and tested in a
real-world scenario at ITSC2012 [23]. The contributions
of this paper in addition to the prior work are an extended
literature review comparing the different approaches to
visual odometry and their relative merits, a proper anal-
ysis and justification of the proposed method’s underly-
ing assumptions about vehicle dynamics, evaluation on
two extended datasets, comparison against a reference
method, qualitative assessment of the method’s main ben-
efits, calibration sensitivity analysis, and quantification of
the effect of non-planarity of the road surface.
The proposed method is shown to produce reliable

visual odometry even for longer trajectories of several
kilometers, and its accuracy compares favorably to the
monocular instance of the eight-point solver of Geiger
et al. [24], both on the public KITTI dataset [25] and
on a 15-km dataset captured locally with the GrontMij
mobile mapping vehicle. This proves that approaching
visual odometry as a two-dimensional problem from the
bottom up not only offers practical benefits with relation

to robustness, execution speed, and calibration but also
provides accuracy competitive with the traditional 3D
pose estimation approach.
A detailed description of the method is given in

Section 2. Details about the calibration procedure and
sensitivity simulations are in Section 3. Experimental val-
idation is provided in Section 4, with a discussion of the
results in Section 5. Finally, conclusions about the viabil-
ity of this type of monocular visual odometry are drawn in
Section 6.

2 Algorithm description
At the core of the proposed method is the tracking of fea-
ture points in the world ground plane surrounding the
vehicle.Wewill perform this tracking not in image coordi-
nates of the perspective camera but in ground plane coor-
dinates. This is advantageous as consistency of motion
among features is much easier to assess in the latter. In
this respect, the method has similarities to the work of
Scaramuzza [15]. An overview of the proposed method is
shown in Figure 1.
The general structure of the method bears some resem-

blance to a Kalman filter in the sense that it uses a prior
vehicle state estimate to predict current feature locations
and then compares this prediction to current observations
to calculate an updated vehicle state. However, because
the accuracy of an observed feature depends strongly and
nonlinearly on its position, novel strategies for prediction
and update are implemented specific to this application.
In the prediction step, the previously estimated steering

angle and velocity of the vehicle are used to define search
regions in the ground plane where previously observed

Figure 1 Overview of the proposed method. Rectangles denote
procedures, rounded rectangles denote data. The only input is a
stream of camera images.
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features may be found. The details of this prediction will
be explained in Section 2.2.
The observation step is more complex, since we cannot

measure ground plane coordinates directly using the per-
spective camera. In order to relate the image coordinates
of features in the camera view to their ground plane posi-
tions, inverse perspective projection is performed. This
inverse perspective projection is only determined for fea-
tures originating from a plane with a known orientation
relative to the camera. In other words, we can only deter-
mine the inverse perspective projection if we know the
viewing angle of the camera to the ground plane. This
angle, however, is not static. The suspension of the vehicle
creates variability in the camera pose, and this translates
to uncertainty on the inverse perspective transform. We
will take into account this uncertainty and define plausi-
ble regions of ground plane coordinates for each feature
point. This process will be explained in more detail in
Section 2.1.
In the update step, the predictions of feature locations

are compared to the observations. In our method, this
corresponds to matching the predicted search regions for
previously seen features with the uncertainty regions per-
taining to the inverse perspective projection of currently
seen features. From these matches, a consensus is drawn
to update the vehicle state. In this match-and-update step,
several mechanisms will ensure robustness to outliers in
the input data. This is explained in Section 2.3.
Finally, the vehicle trajectory can be calculated from the

consecutive vehicle states.

2.1 Inverse perspective projection
To describe the inverse perspective projection, we first
need to define the forward perspective projection that
describes the image capturing process. Much of this
section follows the standardmodel for the projective cam-
era as described by Hartley and Zissermann [7]. This
model describes a transformation from the 3D world axes
to the 2D image axes of the captured video frame. This
transformation consists of two steps.
In the first step, the 3D world coordinates are trans-

formed into the 3D camera coordinate system. These axes
are defined as shown in Figure 2. The 3D camera coordi-
nate system has its origin in the center of projection of the
camera. The 3D world axes are affixed to the vehicle. Let
X = [X Y Z 1]T denote the homogeneous coordinates of
a point in world axes. The corresponding 3D coordinates
in the camera axes X′ = [

X′ Y ′ Z′]T are then given by:

X′ = [R|t]X (1)

in which [R|t] is the rotation matrix R that aligns the
world axes with the camera axes, augmented by the 3D
translation vector t between their origins.

X

X

X

Y Y

Y

Z

Z

World Axes

Camera Axes

Image Axes

Figure 2 Illustration of camera, world, and image axes. 3D camera
axes have the origin in center of projection of the camera. 3D world
axes have the origin in the ground plane below the center of the rear
axle of the vehicle.

By affixing the 3D world axes to the vehicle, the matrix
[R|t] is made independent of vehicle position, and R and
t can be determined by extrinsic calibration (e.g., using
Zhang [26] or Miksch et al. [13]). Vehicle motion will
now manifest itself as a change in coordinates of the fea-
ture points corresponding to static objects in the real
world.
The second step in the transformation from 3D world

to 2D image coordinates is the camera projection itself.
In this step, the 3D camera coordinates are projected
through the focal point onto the sensor image plane. For
a pinhole camera model, the projection of a point X′ =[
X′ Y ′ Z′]T in 3D camera axes onto its homogeneous 2D
image coordinates x = [

x y 1
]T is given by:

wx = CX′ (2)

in which

C =
⎡
⎣

αx 0 x0
0 αy y0
0 0 1

⎤
⎦ (3)

is the projection matrix consisting of the horizontal and
vertical focal lengths αx and αy and the coordinates of the
principal point (i.e., the projection of points on the Z axis)
(x0, y0). These intrinsic parameters can easily be estimated
using a standard camera calibrationmethod (e.g., Bouguet
[27]). The factor w serves to compress the 3D space onto
the sensor plane by scaling the X and Y coordinates by the
inverse of the Z coordinate.
To summarize, the complete perspective projection

from 3D world coordinates to 2D image coordinates is
given by:

wx = C[R|t]X. (4)
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In the special case where all feature points are con-
stricted to the ground plane (Z = 0), the transform can be
reduced to:

wx =
⎡
⎣
wx
wy
w

⎤
⎦ = C [RXY|t]

⎡
⎣
X
Y
1

⎤
⎦ (5)

in which RXY is the submatrix of R obtained by omit-
ting the third column. The inverse perspective projection
that maps homogeneous image coordinates back onto
homogeneous 2D world ground plane coordinates is then
the inverse of C [RXY|t]. Inverse perspective projection is
sometimes also referred to as backprojection.
An important remark with respect to backprojection is

that the calculated transform is only valid for features cor-
responding to objects in the ground plane. However, there
is no easy way to discern the Z coordinate of a feature in
the camera view.We therefore have no choice but to apply
the backprojection to any features we detect in the camera
image and sort out the above-ground features in a higher
level reasoning step.
Throughout this discourse, we assumed the matrix [R|t]

to be known from extrinsic calibration. In practice, how-
ever, the camera coordinate system is not rigidly affixed
to the axles of the vehicle. Instead, the camera is attached
to the body of the vehicle, which has a variable pose with
relation to the axles on account of the suspension travel.
The matrix [R|t] is therefore no longer static but changes
somewhat as the vehicle moves along. It is important to
take this pose variation into account as it directly affects
the estimated ground plane coordinates of all features.
Since we have no reliable way of measuring the attitude

of the vehicle, we model the uncertainty on the inverse
perspective projection arising from this attitude. To this
end, we determine realistic limits on the suspension travel
during normal driving and calculate the inverse perspec-
tive transforms corresponding to these limits. This yields
a region of possible ground plane coordinates for each
feature detected in the perspective view.
A typical road vehicle experiences in the range of 100 to

150 mm total suspension travel measured at each wheel.
With a track width of 1.4 to 1.5 m, this could theoretically
give rise to approximately 10◦ of lateral roll. Consider-
ing a wheelbase of 2.7 m on average, the maximum pitch
is approximately 5◦. However, these limits would be very
hard to achieve in practice even with extremely aggressive
driving, as the vehicle will tend to break traction first. In
typical town driving, more representative values for max-
imum roll and pitch are respectively 2◦ and 1◦ either side
of the level position. For highway driving, the expected
angles are even smaller.
The rotation matrix R can be considered approximately

linear in these roll and pitch angles due to the small range
of possible angles. This means that the region of possible

ground plane coordinates of a feature is also approxi-
mately convex, and it is sufficient to evaluate the four
extremal backprojections to delimit this region. We will
call these regions of possible ground plane coordinates
observation uncertainty regions as each region represents
the limits on the uncertain position of one of the observed
features. Examples of observation uncertainty regions are
shown in Figure 3. Note that for this typical camera posi-
tion, the observation uncertainty regions rapidly become
more elongated for more distant features, as pitch is
the major contributor to the uncertainty at distance. It
can therefore be beneficial to exclude features that are
too distant from the camera, as their larger associated
uncertainty may render them less useful for calculating
odometry.

Figure 3 Example of observation uncertainty regions (red
quadrilaterals, bottom) for some detected Harris corners in the
camera image (red dots, top). The background image in the bottom
picture was obtained by applying the inverse perspective transform
in the absence of pitch and roll to the entire camera image. It serves
as indication of feature context only, as it does not take into account
the backprojection uncertainty.
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A final remark concerns lens distortion. The above pin-
hole camera model does not take any distortion into
account. In order for this model to be a good approxima-
tion, the distortion must either be small or corrected in
pre-processing. Especially when using wider angle lenses,
it is recommended to estimate radial distortion param-
eters (e.g., using Bouguet [27]). As these parameters are
largely stable for a lens with fixed focal length, this kind
of calibration does not need to be recurrent. For con-
sumer vehicles, this means the distortion parameters can
be determined at the factory or even specified by the
supplier of the optics.

2.2 Feature matching
In the previous section, we have described how we can
relate the currently observed features to regions on the
ground plane. In this section, we predict where previously
observed features may be found on the ground plane.
Consider a feature with known ground plane coordinates
in the previous frame. The ground plane coordinates of
that feature in the current frame depend on two parame-
ters of the vehiclemotion: the steering angle and the veloc-
ity. When these parameters are known, we can use the
properties of Ackermann steering geometry to predict the
new coordinates of the feature. As illustrated in Figure 4,
the Ackermann principle ensures that the roll axles of all
wheels intersect in one point. A vehicle designed as such
describes at any moment a circular trajectory around this
intersection point. This point is called the instantaneous
center of rotation. The Ackermann vehicle model does not
take sideslip into account; it will therefore give rise to
small inaccuracies in the prediction during hard cornering
maneuvers, when the instantaneous center of rotation will
no longer lie on the extension of the back axle. In normal
road driving, however, sideslip angles are typically small
and the Ackermann model is a good approximation [28].
Assuming the instantaneous center of rotation remains

constant during the interval between two frames, we can
use this circularity of trajectory to predict the new ground
plane position of a feature with known position in the

Instantaneous 
center of rotation

Figure 4 Illustration of the Ackermann steering principle. The vehicle
will describe a circular arc around the intersection of the roll axles of
the wheels.

previous frame, for every combination of steering angle
and velocity. In practice, the steering angle and velocity
of the vehicle cannot change abruptly over time; at nor-
mal video frame rates, the amount of correction that can
be applied by the driver between consecutive frames is
very small. This means that if we have an estimate of
the rotation and velocity at the previous timestep, only a
small range of angle-velocity combinations is plausible at
the current timestep. By evaluating the circular trajecto-
ries corresponding this patch of angle-velocity parameter
space, we can delimit a search region in ground plane
coordinates for each feature with known ground plane
position in the previous frame. These regions will be
called prediction uncertainty regions as each region rep-
resents the limits on the uncertainty on the predicted
position of one of the tracked features. This is illustrated
in Figure 5.
Our method will use the rotation and velocity estimated

in the previous timestep to predict such a search region for
all currently tracked features. The prediction uncertainty

Figure 5 Prediction uncertainty regions for two features for a range
of possible vehicle positions. When the vehicle drives forward with a
certain initial velocity and steering angle, limited rate of change of
these two parameters means the vehicle can only end up in the dark
zone (red) in the central band (green). From the vehicle’s point of
view, the two features that were originally seen at the points of the
side bands (blue) will have moved to somewhere in the dark zone on
their band (red).
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region for each feature is closely approximated by the
quadrilateral defined by the predictions corresponding to
extremal combinations of steering angle and velocity.
The upper limit on the variability of the rotation angle

(i.e., the maximum of the second-order derivative of the
vehicle’s heading angle) cannot easily be calculated from
vehicle specification as it depends on the strength of the
driver as well as the power steering of the vehicle. In order
to obtain realistic limits for the angular acceleration, we
analyzed 22 km of GPS/INS ground truth data. The his-
togram of the angular acceleration is shown in Figure 6.
From this histogram, we observed that 97% of occur-
ring values are between ±20◦/s2. Of the values, 92% are
between ±10◦/s2. As a trade-off between search region
size and odometry accuracy in rapid maneuvres, we will
typically choose a limit of ±10◦/s2.
The theoretical maximum change in vehicle speed cor-

responds to an emergency stop and is around 10 m/s2.
Again though, typical values during normal driving are
much less extreme. Maurya and Bokare [29] measured
maximum deceleration for cars in hard braking from
motorway speeds to be 1.71 m/s2. For trucks, this value
is reduced to 0.88 m/s2. On our own data, obtained
using a family sedan and a van, we observed maximum
deceleration to be under 1.5m/s2. The maximum rate of
acceleration of a normal road vehicle is significantly lower
than the maximum rate of deceleration [30]; therefore, we
will assume acceleration in normal circumstances to be
under 1.5 m/s2 as well.
Using these limits, the previous estimate of vehicle

steering angle and velocity and the previous estimated
ground plane positions of each tracked feature, we calcu-
late a set of prediction uncertainty regions in the ground
plane for the current frame. An example of these regions
is shown in Figure 7. The prediction uncertainty regions
are not uniform in shape: closer to the vehicle, they are
narrower than further away.
These prediction uncertainty regions will now be used

to perform location-based matching with the observa-
tion uncertainty regions defined in Section 2.1. When-
ever a prediction uncertainty region overlaps with an
observation uncertainty region, a potential feature match
is generated. An example of the overlap of regions is
shown in Figure 8. Any current observation of a ground

Figure 6 Histogram of angular acceleration of a vehicle during
combined urban/suburban/highway driving.

Figure 7 Example of prediction uncertainty regions for current frame
based on previously tracked features. The background image was
again obtained by applying the inverse perspective transform in the
absence of pitch and roll to the entire camera image.

plane feature which is already being tracked will cause at
least one area of overlap between the two types of region
unless the previously specified limits on vehicle attitude or
maneuverability are exceeded. In case of too few overlap-
ping regions, those limits are extended until a minimum
number of matches is reached (typically chosen as 1/8th
of the number of features detected).
In a road driving context, location-based matching is

generally preferable to appearance-based matching, as it
is to be expected that many features on the road surface
will have the same general appearance and the number of
possible matches to be evaluated will therefore be much
higher than when using a location-based approach.
Another benefit of location-based matching is that it

will produce fewer spurious matches in the event of other
moving objects being present in the camera view. Features

Figure 8 Example of overlap between prediction uncertainty regions
(blue) and observation uncertainty regions (red).



Van Hamme et al. EURASIP Journal on Image and Video Processing  (2015) 2015:10 Page 8 of 21

detected on this moving object will, in general, not have
observation uncertainty regions that consistently overlap
with prediction uncertainty regions because the relative
motion of the object does not comply to the constraints
of the Ackermann model. This is a significant advantage
compared to an appearance-based matcher, which will
tend to match a large amount of features exhibiting a con-
sistent motion pattern which may be hard to discern from
the motion pattern of road surface features. Similarly, our
matching principle will not generally produce matches for
features that originate from a point significantly above
the ground plane, as these features will exhibit exagger-
ated motion compared to actual ground plane features
and therefore fall outside of the prediction uncertainty
regions.

2.3 Odometry estimation
From the feature matches obtained as described in
Section 2.2, we now need to remove any remain-
ing outliers and calculate the odometry. The odometry
calculation consists of recovering the two parameters that
characterize the motion of a vehicle according to the
Ackermann principle: rotation angle and velocity. The
rotation angle is defined as the difference in heading
between two consecutive observations, i.e., the angular
change between the start and end of the circle segment.
The velocity of the vehicle is measured from the length
of the circle segment. These two parameters are linked by
the location of the immediate center of rotation (ICR): a
higher rotation angle for the same speed means that the
ICR is closer to the vehicle. Let α be the difference in
heading between two consecutive vehicle states and v the
distance traveled between the two states. Since the vehi-
cle trajectory is circular around the ICR, the distance r
between the center of the vehicle and the ICR is the radius
of the circle segment, and the relation between the three
parameters is given by:

v = αr. (6)

The motion parameters and their relation are illustrated
in Figure 9.
Outliers may be caused by accidental matches of moving

objects in the scene, by overlapping of uncertainty regions
of multiple features with the same search region or vice
versa. Also, some of the matches may be inliers but still
unreliable for calculating odometry, on account of them
not originating from the ground plane. Features on slightly
elevated curbs, for example, will generally match, though
their uncertainty regions are inaccurate. A more in-depth
analysis of the degeneracy that occurs when many fea-
tures are in a slightly elevated plane is presented in the
Appendix.
In a traditional visual odometry framework, the cal-

culation of relative pose change from unreliable feature

Figure 9 Illustration of the motion parameters that need to be
recovered. Velocity v (red) is measured from the length of the circular
arc, rotation α (green) from the difference in heading between two
consecutive states.

matches consists of a RANSAC scheme to sort inliers
from outliers and find the best supported motion hypoth-
esis. However, RANSAC offers few advantages in our case,
as the majority of the outliers have already been elimi-
nated by the location-based matching, and any remaining
outliers are difficult to identify due to the uncertainty
of the observed feature coordinates associated with both
inliers and outliers.
Instead of relying on RANSAC, our method employs

a parameter space voting approach. This integrates well
with our uncertainty regions and will allow us to eas-
ily find a consensus among the matches. Let us revisit
the prediction uncertainty regions for each feature (as
seen in Figure 7). The edges of these predicted regions
correspond to the limits of change the driver can affect
on the vehicle state, while the center of the regions cor-
responds to an unchanged vehicle state. As such, each
prediction uncertainty region represents the same patch
in rotation-velocity parameter space, centered around the
last estimates for rotation and velocity. When an obser-
vation uncertainty region of one of the current features
overlaps with part of one of the predicted regions, the
overlap expresses a vote of this feature on a part of the
rotation-velocity parameter space patch. For example, if
the observation uncertainty region overlaps with the left
side of the prediction uncertainty region, this corresponds
to an increased likeliness that the vehicle has turned fur-
ther to the right or less to the left than in the previous
inter-frame interval.
In order to accumulate the votes of all features, we will

represent each prediction uncertainty region by a square
binary image, where each pixel corresponds to a bin in
the rotation-velocity parameter space. In this image, pix-
els are set to one when they are overlapped by at least
one observation uncertainty region and set to zero other-
wise. We can now sum these square images to count the
votes on each part of the prediction uncertainty regions.
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An example of the square images and their sum is shown
in Figure 10. As all prediction uncertainty regions rep-
resent the same patch of motion parameter space, every
pixel in the sum image corresponds to a specific bin in
the parameter space. Pixels with high-intensity value in
the sum image represent motion parameters supported by
many features. This gives us an efficient way to find a con-
sensus among all the feature matches: the best consensus
is found at the highest intensity of the image.
In practice, the discretized nature of the sum image and

the limited number of features means that the location of
the peak intensity is quite sensitive to noise (e.g., a single
feature that has shifted by one pixel in the camera image
between frames could have a significant impact on the
location of the maximum). In order to reduce this noise
sensitivity, we will not locate the absolute maximum but
the center of gravity of the area of highest intensity. We
define this area as the region in which the values exceed
a fraction (typically 70%) of the absolute maximum. The
center of gravity calculation is essentially an averaging
mechanism and therefore reduces noise sensitivity.
The location of the center of gravity can be easily related

to its corresponding values in rotation-velocity parame-
ter space, which define the current vehicle state. When
the vehicle state is known in every inter-frame interval,
the complete estimated trajectory of the vehicle can be
reconstructed using the circular motion model described
in Section 2.2.
An important remark should be made about the accu-

racy of this estimation. Due to the uncertain nature of the
observations (i.e., the significant size of the backprojected
regions) and the limited sampling density in the param-
eter space, the immediate frame-to-frame estimate is of
relatively low accuracy. The uncertainty on the pitch and
roll angles prevent us from refining this estimate further
through a closed-form calculation (e.g., a least squares
solution). However, our method is self-correcting in the
sense that an estimation error will result in a predic-
tion for the next frame that is biased in the direction of
the error. The observations will then accumulate votes

Figure 10 Example of square image representing search region and
its overlapped part (left) and sum of many such square images (right).

in an area offset in the opposite direction of the predic-
tion bias. As a consequence, the consecutive estimation
errors will not accumulate but compensate each other
instead. Therefore, the cumulative vehicle state over sev-
eral frames will prove more accurate than the fuzzy nature
of the data suggests. To illustrate this point, consider the
simplified example of overestimating the velocity at time t
as 0.45m/frame while the real velocity is just 0.4m/frame.
This overestimation of the velocity is equivalent to a mis-
estimation of the actual feature positions from the fuzzy
data by 0.5 m. The prediction for time t + 1 will assume
a constant velocity of 0.45 m/frame and use the misesti-
mated actual feature coordinates as a starting point. The
centers of the prediction uncertainty regions for time t+1
will therefore end up at a distance of 0.10 m to the actual
feature coordinates. When the actual velocity of the vehi-
cle at time t + 1 is again 0.4 m/frame, the observation
uncertainty regions will then each be centered on a pixel
corresponding to 0.10 m above the center of a prediction
uncertainty region. The method will then correct the esti-
mate for the second state to 0.35m/frame, and the average
estimated velocity over two states will be accurate. This
safety mechanism will only mitigate single-frame estima-
tion errors; in case of continuously poor feature matching,
errors may still accumulate.
Another remark should be made about the area of the

rotation-velocity parameter space that falls outside of the
predicted boundaries. This area is not taken into account
for the parameter space vote. By cutting off the parts of
the observation uncertainty regions at these boundaries
and not taking them into account for the center of gravity
calculation, we introduce a slight bias towards the cen-
ter of the rotation-velocity parameter space patch. This
bias is not a problem; as explained above, it is automat-
ically corrected for in the next estimation step as long
as the parameter space boundaries are chosen sufficiently
wide to accomodate this extra frame-to-frame variabil-
ity. The estimation bias towards the unchanged vehicle
state hypothesis also limits the error caused by low feature
quality. In such cases of low feature quality (caused, for
example, by excessive camera vibration), the sum image
will degrade into noise, and it is beneficial to overall
robustness to assume a stable vehicle state in this case that
can be corrected when feature quality improves.
As a final step in the odometry method, the feature

tracks need to be updated. In the discussion so far, we have
assumed the ground plane coordinates of each tracked
feature at the previous timestep to be known. Due to the
uncertain inverse perspective projection, however, these
coordinates cannot be determined exactly. As a best esti-
mate for the ground plane position corresponding to the a
feature observation, we will use the centroid of its obser-
vation uncertainty region. The estimated vehicle state
(rotation and velocity) is used to update this centroid at
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each timestep. Additionally, for any feature detected in the
camera image that did not match any prediction uncer-
tainty regions, a new track is initiated with the centroid of
its observation uncertainty region as starting coordinates.
Finally, tracked features which have not matched with any
observations for a number of consecutive frames (typically
chosen between three and five) are discarded.

3 Calibration
In this section, we will describe how the extrinsic cal-
ibration can be determined. The extrinsic calibration is
contained in the matrix [RXY|t] in Equation 5. RXY is a
submatrix of the 3D rotation matrix R that describes the
rotation between the world axes and the camera axes.
Homography-based methods can be found in literature to
estimate this rotation matrix, notably the work of Miksch
et al. [13], who determine the rotation matrix online
without using odometry data or known scene geometry,
but with known camera height, using inter-frame feature
correspondences on the ground plane.
The extrinsic rotation matrix can also be estimated iter-

atively from a single image using known scene geometry,
e.g., the known dimensions of a rectangular parking space.
When the rotation matrix R is known, the translation vec-
tor t can be easily measured in vehicle axes with a tape
measure and plumb rule and then rotated into camera
axes using R−1.
Regardless of the used calibration method, it is inter-

esting to examine the sensitivity of the proposed method
to calibration accuracy. To this end, we performed a sim-
ulation in which artifical video is generated for a vehicle
moving along an S-shaped point grid. The trajectory con-
sists of two 30-m long straight sections linked by one 180◦
turn left and one 180◦ turn right. The turns are mod-
eled as mirrored clothoids with an angular acceleration
of 5◦/s. The virtual camera was set in a similar config-
uration to the camera in our real-world dataset which
will be discussed in Section 4, with zero roll and heading
and −20◦ pitch. The simulation trajectory and an artifical
video frame are shown in Figure 11.
This simulation allows us to easily control the error in

each extrinsic calibration parameter and analyze its effect
on the global trajectory reconstruction by the proposed
method, as well as on the straight sections and bends
individually. In our experiments, we first determined the
best case scenario using the exact calibration parameters.
Then, we performed three tests in which 1◦ was added
to one of the rotation angles and three tests in which 10
cm was added to one of the translation components. The
results can be seen in Figures 12 and 13.
From the error graphs and reconstructed trajectories,

we can see that three parameters are especially important
for translation accuracy. The greatest translation error
occurs in the case of misestimated pitch (Figure 13, third

Figure 11 Simulation trajectory composed of two straights and two
clothoid turns (left) and sample artifical video frame from start of
bend (right).

from top), with a 1◦ error resulting in an overestimation
of travel distance by 13%. A 10-cm vertical or longitu-
dinal offset both result in a translation error of around
6% (Figure 13, bottom two). Inaccuracies in the other
parameters yield much smaller translation errors.
In terms of rotation error, the single most important

parameter is the heading angle (Figure 13, fourth from
top). An error of 1◦ in this parameter results in a rota-
tion error of 0.11◦/m. The roll angle is the second most
important influence on rotation accuracy (Figure 13, sec-
ond from top), with a 1◦ roll misestimation resulting in
a 0.04◦/m error. The other calibration parameters have
smaller effects on rotation error.
We can conclude that the proposedmethod is most sen-

sitive to pitch and heading angle, followed by roll angle,
vertical offset, and longitudinal offset. Generally, the off-
sets are easy to measure in practice, and an error of 10 cm
is not likely. Estimation of the extrinsic rotation angles is
more prone to inaccuracies. However, as each of the three
angles has a different effect on the evolution of the error
on our simulated trajectory, it is easy to identify an error
in one angle. In practice, this can be done by driving along
a known section of road featuring at least one straight
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Figure 12 Effect of extrinsinc calibration errors on reconstructed trajectory. Ground truth lines are almost entirely hidden behind the perfect
calibration result in the top plot and behind the lateral deviation result in the bottom figure.

section and a bend in each direction and comparing the
odometry result to the known ground truth. A roll error
causes a significant rotation bias on the straight sections,
but not in the bends. This property can be used to refine
the roll estimate. A heading error causes a constant bias
regardless of road curvature, making it easy to identify
and correct as well. Finally, a pitch error results in over-
or underestimation of rotation in bends only and a signifi-
cant constant bias on translation. If the longitudinal offset
(which has similar effects) is reliable, the translation error
by itself can be used to correct the pitch angle. Although
these principles have already been used to manually refine

the calibration estimate in some of our experiments, the
automation of the process for mixed calibration errors
remains future work.

4 Results
The proposed method was evaluated on two datasets
and compared to the monocular eight-point solver by
Geiger et al. [24]. The implementation is provided online
by the authors. In the KITTI odometry benchmark,
three monocular methods currently outperform this stan-
dard eight-point solver. The highest ranked method, by
Chandraker and Song [17], uses a standard five-point
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Figure 13 Influence of errors in one of the extrinsic calibration parameters on cumulative rotation and translation error. Straight sections are from 0
to 30 m and from 90 to 120 m. Note that Y-axis scale is different per figure.



Van Hamme et al. EURASIP Journal on Image and Video Processing  (2015) 2015:10 Page 13 of 21

solver as one of the base components, combined with
ground plane estimation and scene structure propaga-
tion. The secondmethod, called windowed structure from
motion (W-SFM) lists no publication but is described
as using a five-point solver and bundle adjustment. The
third method is the eight-point solver of Geiger et al.
combined with the ground plane estimation proposed by
Chandraker and Song. All three methods employ either
a five-point or eight-point solver to perform initial 3D
pose estimation. The aim of this research is to prove that
our 2D approach is a viable alternative to traditional 3D
pose estimation for visual odometry. We have therefore
chosen the basic eight-point solver as reference method.
The potential improvements afforded by bundle adjust-
ment and more precise ground plane estimation for the
proposed method are to be explored in future work.
The first dataset on which the eight-point solver and

our proposed method are compared is the KITTI odom-
etry benchmark itself [25]. This dataset consists of 22
sequences captured in urban, suburban, rural, and high-
way scenarios spanning approximately 35 km. The camera
offers a wide 1,241 × 376 pixel view straight ahead of
the vehicle, with approximately zero pitch and zero roll.
A sample frame from the KITTI dataset is shown in
Figure 14. The dataset offers the extrinsic and intrin-
sic camera parameters needed by the eight-point solver.
For the proposed method, the translation vector between
camera and the center of the rear axle is also used.
This was approximated using the methods described
in Section 3 (iterative refinement on a short section
of ground truth-annotated video). In keeping with our
emphasis on ease of calibration, we did not correct for lens
distortion. The parameters for the proposed method are
as follows. The far cutoff line for feature detection was set
at 12 m in front of the vehicle, as well as laterall cutoffs at

Figure 14 Sample frames out of KITTI dataset [25]. Note the
exceptionally wide field of view. Bottom image shows cutoffs for
feature detection overlaid on the perspective image. Features will
only be detected in the highlighted zone.

3 m left and right of the straightahead (to reduce the num-
ber of features detected on non-ground plane objects).
The cutoffs are illustrated in Figure 14. Within the cut-
offs, 32 Harris corners were detected on each side of the
straightahead. Features were considered lost in case of no
match for five consecutive frames.
The performance evaluation provided by the KITTI

benchmark is based on two metrics: translation error and
rotation error. These are calculated as follows. Let Pi and
Pj denote the ground truth poses corresponding to frames
i and j relative to the starting pose at the beginning of the
sequence. The ground truth pose changeQ between states
i and j is then given by:

Q = P−1
i Pj.

With P′
i and P′

j denoting the estimated poses for frames
i and j relative to the starting pose, the estimated pose
change is then given as:

Q′ = P′−1
i P′

j.

The pose estimation error is then calculated as:

Qerr = Q′−1Q.

From this 4×4 matrix, translation error and rotation
error are then calculated as:

�t =
√
Qerr[ 1, 4]2 +Qerr[ 2, 4]2 +Qerr[ 3, 4]2,

�r = acos(0.5 ∗ (Qerr[ 1, 1]+Qerr[ 2, 2]+Qerr[ 3, 3]−1)).

It can be easily verified that�r corresponds to the head-
ing angle difference between Q and Q′ when the rotation
is limited to the Z-axis.
The translation and rotation errors are calculated on all

subsegments of the ground truth trajectory of length 100,
200. . . 800 m. The errors is averaged per segment length.
Translation error is expressed as a percentage of segment
length, while rotation error is expressed in ◦/m.
The proposed method only estimates rotations along

one axis (the normal of the ground plane) and does not
measure elevation change, while the evaluation considers
full 3D poses and elevation change. The KITTI dataset
contains several sequences captured on hilly roads, and we
can expect the proposed method to be at a slight disad-
vantage in this benchmark as a result, while for real-world
navigation-related applications, the elevation changes are
largely irrelevant due to the planar nature of commonmap
data.
The accuracy comparison for the KITTI dataset is

shown in Figure 15. It can be seen that the translation
accuracy of the proposed method is markedly better than
that of Geiger et al. (8.98% compared to 11.94% average
over all segment lengths). The rotational accuracy of the
two methods is more similar, with the proposed method
slightly better 0.0217◦/m vs. 0.0234◦/m average over all
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Figure 15 Accuracy evaluated on KITTI dataset. Translation errors are shown in top row, rotation errors in bottom row, both in function of segment
length (left column) and speed (right column).

segment lengths. The average translation error of the pro-
posed method is smaller for any segment length, while
the average rotation error is smaller for segments longer
than 200 m. We may conclude that on the KITTI dataset,
the proposed method is significantly more accurate than
the eight-point solver, with a 24% reduced translation
error and 8% reduced rotation error. Some examples of
estimated trajectories are shown in Figure 16.
Both methods were able to process the data faster than

real-time on a desktop computer (Intel Core i5 3.40 GHz
×4), with the proposed method significantly outperform-
ing the eight-point method (86.4 vs. 17.2 fps). The feature
detection step in the proposed method is implemented to
make use of multi-core systems (in this case running on
four cores), while the remainder of the processing is sin-
gle threaded. The method of Geiger et al. runs completely
single threaded.
The second evaluation dataset consists of 15 km of

video captured in the urban and suburban areas of Has-
selt and Diepenbeek, Belgium, using one of the mobile
mapping vehicles of Grontmij Belgium. The vehicle uses
an Applanix POSLV420 GPS/INS unit for ground truth
positions and was equipped with a roof-mounted Pana-
sonic AG-HPX171 960x720 anamorphic HD camera, fac-
ing rearwards and pointing slightly down at an angle of
approximately 20◦. A sample video frame is shown in
Figure 17. The camera captures video at 50 fps and was
calibrated intrinsically using a checkerboard pattern and
the method of Bouguet [27]. The extrinsic calibration was
estimated iteratively as explained in Section 3.

The slightly downward pitch of the camera in these
video sequences is considered slightly better for the pro-
posed method, as it offers a denser coverage of the nearby
road plane. A second difference with the KITTI set is
the reduced horizontal angle of view of the camera. In
the KITTI set, the aspect ratio is about 3.3, significantly
wider than the standard 1.78 widescreen ratio of the HD
camera used for the Diepenbeek/Hasselt set. This nar-
rower field of view means that average feature displace-
ment for a given speed is reduced (since features off to
the sides have the greatest displacements), and therefore,
the triangulation accuracy is also expected to be slightly
lower.
While the camera captured the video at 50 fps, we dis-

carded four out of every five frames to attain the same
10 fps frame rate as in the KITTI sequences. The param-
eters for the proposed method were similar to those for
KITTI, with the exception of the far cutoff for feature
detection, which was set to 20 m as increasing down-
ward pitch shrinks the perspective uncertainty regions for
any given distance. The odometry results for the Diepen-
beek/Hasselt dataset were also processed with the eval-
uation code provided with the KITTI benchmark. The
accuracy for the Diepenbeek/Hasselt dataset is shown
in Figure 18. The translation accuracy of the proposed
method on this data is comparable to that on the KITTI
set, with an average error of 7.23% against 10.68%. In
terms of rotation accuracy, the advantage of the pro-
posed method increases significantly, with 0.0189◦/m vs.
0.0302◦/m.
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Figure 16 Examples of estimated KITTI trajectory according to
proposed method and Geiger et al. compared to ground truth. Axes
are in meters. Blue line represents ground truth, green dashed line
the proposed method, red dot-dashed line the eight-point solver.

Overall, the proposed method is markedly better than
the method of Geiger et al. in both metrics on both
datasets.
Some examples of reconstructed trajectories are shown

in Figure 19. A summary of translation and rotation accu-
racy on both sets is shown in Table 1.

Figure 17 Sample frame of Diepenbeek/Hasselt dataset.

5 Analysis
The results obtained on both datasets clearly illustrate the
main advantage of the proposed method over the eight-
point solver, namely, better recovery of scale. In several of
the sequences, the eight-point solver significantly mises-
timates the length of one or more straight segments (e.g.,
the final section in the left plot of Figure 16). This is due to
an inherent weakness in the monocular pose estimation.
Due to the projective nature of the camera, the transla-
tion can only be recovered from the fundamental matrix
up to a scale factor. As was noted in Kitt et al. [31], this
scale factor is susceptible to drift. Scale drift is remedied
in Geiger’s method by relating the triangulation of points
to a known length in the scene, specifically the height of
the camera above the ground plane (which is assumed
constant). The results both on the KITTI and the Diepen-
beek/Hasselt datasets clearly show that this corrected
scale is less accurate than the scale obtained by our robust
tracking of ground plane features. The fact that Geiger
et al. are better able to recover the scale on the Diepen-
beek/Hasselt dataset than on the KITTI dataset further
corroborates this explanation: in the Diepenbeek/Hasselt
set, the camera is placed significantly higher above the
ground plane, which means that similar absolute errors in
the estimation of the ground plane have a smaller effect
when divided by the longer fixed distance.
An important trend can be observed in the results of

both methods. Rotational error decreases with increas-
ing segment length. We may conclude from this that
there is some noise present on the immediate poses esti-
mated by bothmethods, which averages to zero overmany
estimations.
The effect of vehicle speed on the translation and

rotation errors is less clear from the plots, as the two
datasets show slightly different trends. The high errors of
both methods for low speeds on the Diepenbeek/Hasselt
dataset can be explained by the fact that the low speeds
mostly prevail in the busy city center, where the pres-
ence of other traffic degrades the results somewhat. In the
KITTI dataset, this correlation between speed and traffic
density is not present, and as such, the proposed method
does not exhibit significant sensitivity to vehicle speed.
Regarding sensitivity to other traffic, we may conclude

that both methods cope reasonably well with the busy
urban scenario in the Diepenbeek/Hasselt dataset. Only
in cases when an exceptionally large area of the image is
occluded by a vehicle (e.g., a street car or truck) is the
estimation significantly wrong. The nature of the error,
however, is different for both methods. While the eight-
point solver can produce an erratic motion estimate, the
proposedmethod assumes steady state as a fallbackmech-
anism. This is illustrated in Figure 20.
For the proposed method, we observed that meaningful

vehicle states were produced for inlier ratios as low as 1:8,



Van Hamme et al. EURASIP Journal on Image and Video Processing  (2015) 2015:10 Page 16 of 21

Figure 18 Accuracy evaluated on Diepenbeek/Hasselt dataset. Translation errors are shown in top row, rotation errors in bottom row, both in
function of segment length (left column) and speed (right column).

counted as features generating uncertainty region overlap
divided by total feature count. This proves the efficacy of
the location-based matching and the parameter space vot-
ing to extract odometry from noisy and unstable features.
Below inlier ratios of 1:8, assuming an unchanged vehicle
state proved better than using the state estimation, this 1:8
threshold on inlier ratio was added to the method.
A remarkable difference between the results of the two

datasets is that on the KITTI sequences, the translation
error of both methods is decreasing for increasing seg-
ment length, while on the Diepenbeek/Hasselt data, the
opposite is true. This can be explained by the fact that
the vehicle’s trajectory in the KITTI set is in general more
compact; many of the sequences contain multiple loops
and the starting and ending position are often close to
each other. The Diepenbeek trajectories are less circular
in nature. It can easily be seen that having loops or u-
turns in a segment will reduce the absolute error over this
segment compared to a segment of the same length but
with a larger offset between start and end position. We
consider the Diepenbeek/Hasselt set to be more represen-
tative of a typical car journey as it is a 15-km two-way
travel from Diepenbeek to Hasselt and back, rather than
an artificial data acquisition trajectory with the aim of cov-
ering as many streets and turns as possible in a short time
and small area.
Looking at the estimated trajectories in more detail,

we see that the proposed method has a significant rota-
tional bias on some segments. One examples can be seen
in the bottom left plot of Figure 19. This is due to the

non-planarity of the road environment in those segments.
A more in-depth analysis of these situations is given in
the Appendix. The method of Geiger et al. does not suf-
fer from this flaw. It is therefore to be expected that on
long, straight roads, the eight-point solver will provide
more reliable heading estimation. As both of the evaluated
datasets feature many turns in quick succession due to the
suburban environment, this is not readily apparent from
the performance numbers.
Another interesting observation is that the steering

angle and velocity estimates of the proposed method
exhibit quick oscillations around the ground truth val-
ues, while their running average tracks the ground truth
closely. As an example, the steering angle estimate for the
top right trajectory in Figure 19 is shown in Figure 21. This
corroborates our claims about the self-correcting nature
of the estimates as explained in Section 2.3: an error in
the immediate state estimate tends to produce an error
equal in magnitude but opposite in sign during the next
iteration.
Overall, we can observe that the proposed method is

often better than the eight-point method at recovering
macro-maneuvres present in the trajectory: at intersec-
tions and roundabouts, the eight-point solver sometimes
fails to accurately estimate the large changes in head-
ing. An example can be seen in the top right image of
Figure 19: the method of Geiger et al. misses most of the
roundabout. The ability to correctly estimate big maneu-
vres is especially important for the integration with offline
map data, as maneuvres are generally more reliable clues
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Figure 19 Examples of estimated trajectories on the Diepenbeek/Hasselt dataset. Axes are in meters. Blue line represents ground truth, green
dashed line the proposed method, red dot-dashed line the eight-point solver.
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Table 1 Summary of mean errors of bothmethods on both
datasets

Dataset Method Transl.err. (%) Rot.err. (◦ /m)

KITTI
Proposed 8.98 0.0217

Geiger et al. 11.94 0.0234

Diepenbeek Proposed 7.23 0.0189

Geiger et al. 10.68 0.0302

for map matching than gentle curves and straights. The
concept of map matching as a mechanism to eliminate
error accumulation has already been proven [2,23].

6 Conclusions
We have proposed a monocular visual odometry algo-
rithm that uses planar tracking of features rather than
traditional 3D pose estimation. It is demonstrated that
in a typical monocular setting, the method has a signifi-
cant performance advantage over traditional fundamental
matrix estimation.
The proposed method is applicable to both forward-

and rearward-facing cameras and is proven to work well

Figure 20 Left turn in dense traffic. Camera image (top) is almost
entirely composed of moving vehicles. Trajectory estimation (bottom)
of both methods suffers; Geiger et al. produces erratic motion while
proposed method assumes steady state during ambiguous period.

on camera pitch angles ranging from horizontal (zero
pitch) to 20◦ downwards. We may assume that similar
or higher performance will be achieved as long as the
camera view covers the ground plane up to a distance of
approximately 12 m (this is the nearest cutoff point used
for feature detection). The camera height over the two
datasets also differs significantly (1.5 and 2.7m) so wemay
conclude that our method is applicable to a wide range of
vehicles and camera mount points.
The improvement over the eight-point method brings

the translation error of the proposed method in a difficult
but representative real-world scenario down to around 15
per 200 m traveled on average. Several techniques have
already successfully been applied to improve the results
of the standard eight-point solver, such as bundle adjust-
ment and ground plane normal estimation [17]. In future
work, we expect these techniques to further improve the
proposed method as well.
As visual odometry will typically be only one compo-

nent in a mixed-data system (e.g., coupled with an offline
map andmagnetic compass), it is our opinion that the per-
formance improvement of the proposed method over the
standard eight-point solver is significant and can make a
large contribution to a navigation system which does not
depend on any outside communication.

Appendix
Degeneracy
In our work, we have made the assumption that the road
surface is planar. However, in reality, there are two impor-
tant scenarios in which this assumption is violated, but
in such a way that the outlier removal mechanisms of
the proposed method are ineffective. We therefore call
these scenarios degenerate configurations for the pro-
posed method.
The first scenario is that of a road with a raised kerb.

In urban and suburban environments, this is a common
occurrence, and its effects on the odometry estimation
must be analyzed and quantified. To this end, we have
adapted the simulation from Section 3 so that the point
grid is elevated on one side of the trajectory. Specifi-
cally, points in the zone from 2 to 3 m on the right side
were raised by 15 cm, a typical kerb height. To emulate
the worst-case scenario, points on the center section of
the road were removed, leaving only the points at the
left and right edge for odometry computation. An exam-
ple of the resulting artificial video is shown on the left
of Figure 22. The resulting odometry errors are shown
in Figure 23 (top). The effects in this worst-case sce-
nario are quite pronounced: a 0.078◦/m rotation error
and a 6.3% translation error. This is a logical result: the
height difference between the left and right side gives rise
to similar errors as an inaccurate estimation of the roll
angle.
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Figure 21 Oscillation of estimated steering angle (gray) around ground truth values (black), illustrating self-correcting nature of the estimation
method.

These errors are significantly mitigated when feature
points are present in the center section of the road as
well. In this case, the consensus is still formed primar-
ily by planar features, and the elevated features have a
smaller influence. A simulated video frame for this sit-
uation is shown in Figure 22 (right) and the resulting
errors in Figure 23 (bottom). The errors in this case are
insignificant at only 0.004◦/m for rotation and 0.1% for
translation.

Figure 22 Artificial video frames for the kerb simulations without
(left) and with (right) center points.

The second scenario is that of a road with a crown, i.e.,
a road with a crown in which the center line is higher
than the edges to improve water drain properties. On bidi-
rectional single-lane or two-lane roads, this is a common
property. On highways or unidirectional roads, a crown-
less sloped design is the norm. In the latter case, the
planarity assumption holds from the point of view of the
vehicle, as the axles of the vehicle remain parallel to the
entire span of road surface. In the case of a crowned road,
however, the two sides of the road are in different planes
and this will cause the inverse perspective transform to be
inaccurate for part of the features when the vehicle is driv-
ing on one side of the center line or for all of the features
when the vehicle is driving over the center line.
To quantify the deterioration of the odometry result in

these two cases, two simulations were performed similar
to those mentioned in Section 3. In the first simulation,

Figure 23 Errors for kerb simulations in worst-case scenario without
center section points (top) and typical scenario with center section
points (bottom).
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Figure 24 Odometry error in case of single lane road with crown
centrally across the lane.

points beyond the left side of the vehicle were sloped
downwards with a 4% slope. This corresponds to what
can be expected when a vehicle drives on the right lane
of a two-lane road crowned at the typical recommended
slope of 2% [32]. The odometry errors were only evaluated
on the straight sections, as superelevation (i.e., a single-
slope, banked turn) is generally used in bends instead of a
crowned design. In the worst-case scenario, with no fea-
ture points in the center section, the rotation error was
0.013◦/m and the translation error −0.5%. These errors
are an order of magnitude smaller than those caused
by the kerb scenario or in the calibration experiments.
We may conclude that for a typical two-lane road, the
crown does not cause significant errors in the odometry
estimation.
For the simulation of the single-lane road, where the

road cross section slopes down on both sides of the vehi-
cle at a rate of 2%, the errors are shown in Figure 24. As
a result of the features on average being below the plane
defined by the wheels of the vehicle, a translation error of
−2.6% is observed, similar to the effect of an underesti-
mated vertical offset. This type of road is uncommon in
urban and suburban settings but is often found in rural
regions across Europe.
We may conclude that while the outlier removal mech-

anisms in the proposed method cannot completely avoid
errors caused by non-planarity of the road, the impact
of these errors in typically occurring road geometries
is low. In the worst-case scenarios, performance is still
acceptable, although the non-planarity may become the
dominant error source.
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