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Abstract

Adequate models of the bread crumb structure can be critical for understanding flow and transport processes in
bread manufacturing, creating synthetic bread crumb images for photo-realistic rendering, evaluating similarities, and
establishing quality features of different bread crumb types. In this article, multifractal analysis, employing the
multifractal spectrum (MFS), has been applied to study the structure of the bread crumb in four varieties of bread
(baguette, sliced, bran, and sandwich). The computed spectrum can be used to discriminate among bread crumbs from
different types. Also, high correlations were found between some of these parameters and the porosity, coarseness,
and heterogeneity of the samples. These results demonstrate that the MFS is an appropriate tool for characterising the
internal structure of the bread crumb, and thus, it may be used to establish important quality properties it should have.
The MFS has shown to provide local and global image features that are both robust and low-dimensional, leading to
feature vectors that capture essential information for classification tasks. Results show that the MFS-based classification
is able to distinguish different bread crumbs with very high accuracy. Multifractal modelling of the underlying
structure can be an appropriate method for parameterising and simulating the appearance of different bread crumbs.
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1 Introduction
The goals of this research are (1) to evaluate if the MFS
[1] can be applied to characterise and discriminate the
bread crumb structure for different bread types from dig-
ital images and (2) to investigate the effectiveness of the
method in the classification of these structures.
One of the most important factors to evaluate the qual-

ity of a bread loaf is related to its crumb structure. Close
examination of different slices reveals considerable varia-
tion in the cell (air bubble) size even within a single sample
of the same bread type.
Fractal and multifractal analysis of images has proved

to be able to capture useful properties of the underlying
material being represented. These features have been suc-
cessfully applied in different areas, such as medicine [2,3]
and texture classification [4]. In food research, fractal and
multifractal analysis has been applied in the study of apple
tissues [5], pork sirloins [6], and also in chocolate, potato,
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and pumpkin surfaces [7]. Through several procedures
[8,9], it is possible to obtain different fractal dimensions
(FD), each of them capturing a different property of the
material (e.g. porosity, rugosity).
Data analysis of the results of the feature extraction

process is useful for obtaining key properties of mate-
rials. This information could then be used in quality
measurements of real samples and in the validation of
synthetic representations of them. In other words, these
processes are useful to determine if a given image presents
the observed features in that material, allowing to asso-
ciate quality measure parameters to it. In [10], a bread
crumb quality test based on Gabor filters was performed,
obtaining good quality assessment. Nevertheless, a small
database was used (30 images). In [9], several fractal fea-
tures were obtained for one type of bread, demonstrating
that a vector of FDs would be capable of obtaining key fea-
tures of the crumb texture more accurately than using a
single FD.
In this work, we propose the application of the mul-

tifractal spectrum (MFS) to describe and classify differ-
ent bread crumb types. One of the main features of the
MFS is its bi-Lipschitz invariance, that is, invariance to
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perspective transforms (viewpoint changes) and smooth
texture surface deformations. It is shown that the MFS
is also locally invariant to affine changes in illumination.
In other words, MFS analysis is in theory a robust fea-
ture extractor, what makes it specially adequate for the
purposes of our study.
Food classification has already been applied using frac-

tal and other techniques in [11,12], but these works do
not address the intra-class problem, i.e. the classification
ismade among different foods and not bymaking different
classes out of the same food.
In a previous work [13], we showed that the MFS in

combination with other fractal features was able to clas-
sify different bread crumb types with high accuracy. The
present work aims to simplify the model and strengthen
these results by comparing only the MFS with other state-
of-the-art features and using different classifiers and also
to study the correlations of the features obtained with the
procedure and different texture features obtained from
the images.
The proposed method is compared to other state-of-

the-art features for texture classification. The results of
this feature extraction procedure show that the classifier
is robust and presents good discrimination properties to
distinguish between different bread types and also bread
from non-bread images.
This paper is organised as follows. In Section 2, the

theory underlying fractal sets is introduced, and the mate-
rials and methods employed in this work are presented.
In Section 3, the results obtained in the characterisation
and classification procedures are shown and discussed.
In Section 4, the conclusions are summarised, as well as
possible future works.

2 Materials andmethods
2.1 Fractals andmultifractals
The term fractal was first employed by the mathematician
B. Mandelbrot in [14]. Fractal objects have the prop-
erty of self-similarity (i.e. the geometrical or topological
properties are invariant at different scales), and they are
characterised by a non-integer dimension. Fractal objects
can have one or more FDs. Most of the famous fractal sets
(i.e. the Cantor set, the Von Koch curve, and the Sierpinski
gasket) can be characterised by a single exponent that
relates how their geometrical properties vary under scale
changes. On the other hand, there are cases where the
fractal object exhibits different exponents under different
scales. Those are called multifractals [15] and are char-
acterised by a sequence of FDs or even a function that
establishes the local variance of the geometrical properties
under scale changes. It is assumed that these structures
are composed by different fractals coexisting simultane-
ously. The self-similarity, then, can be characterised by a
multifractal spectrum that establishes the specific fractal

behaviour of the set at a given scale. The multifractal
approach characterises better the objects than the frac-
tal one, since variations in local regions are captured in a
more accurate manner. A particular definition of dimen-
sion, the so-called box dimension, is employed in fractal
and multifractal analysis.

2.1.1 Box dimension
On the one hand, mathematical objects such as the
Koch curve and the Sierpinski triangle have exact self-
similarity. Natural phenomena, on the other hand, are
better described by statistical self-similarity. In such cases,
the box FD is used. Box FD is a simplification of the
Hausdorff (originally Minkowski-Bouligand) dimension
for non-strictly self-similar objects [8]. Given an image I,
it is subdivided in a regular grid of boxes of side ε. If Nε

represents the amount of boxes that contain at least one
point of I for that ε, then the box dimension Db is defined
as:

Db � lim
ε→0

log (Nε)

log (1/ε)
. (1)

A practical algorithm for computing Db in digital bina-
rised images establishes different partitions of the original
image in regular grids of side ε (in pixels) and counts for
each partition the amount Nε of boxes that contains at
least one pixel of the object of interest. It uses a bina-
rised image and selects different values of ε in it, making
a count of the boxes that contains pixels in each case.
Since this procedure is not invariant under translations,
an average of grid counting is performed under several
translations at a given grid size ε. With the previous steps,
a set of {1/ε,Nε} pairs is obtained, with which a lin-
ear fit is performed in log-space. Finally, the slope of the
resulting straight line is by definition the box dimension
of the image. In Figure 1, an image of the bread type
bran is shown (left), with an example of binarisation (cen-
tre) and its corresponding box dimension computation
(right).

2.2 The theory behindmultifractal analysis
In [9], several procedures were applied to analyse the
bread crumb structure showing that a vector of FDs
could better characterise those structures. Based on that
assumption, in this work, a multifractal analysis of the
bread crumb is carried out. The idea behind multifractal
analysis is to examine, in the limit, the local behaviour of
a measure μ at each point of the set under study.
Let E be a structure divided in disjoint substructures Ei

of size ε in such a way that:

⋃
i
Ei = E. (2)
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Figure 1 Box dimension computation. A bread image (left) with its binarisation (centre) and its computed box dimension (right).

Each substructure Ei is characterised by a measure
μ(Ei). From the point of view of multifractal analysis,
it is useful to define the Hölder exponent, αi, for each
substructure Ei, as a function of ε, i.e.,

αi �
ln (μ(Ei))
ln (ε)

, (3)

and to take the limit when ε tends to 0. The limit α rep-
resents the value of the Hölder exponent at a point in the
structure, that is:

α = lim
ε→0

αi. (4)

This exponent characterises the local regularity of the
structure at a point. To obtain a global characterisation
of the regularity of the structure, it is necessary to obtain
the distribution of α in E. Then, the multifractal spectrum
related to the value of ε, fε(αi), is obtained by counting the
Nε boxes characterised by αi, in the form:

fε(αi) = − ln(Nε(αi))

ln(ε)
. (5)

When ε tends to 0, the limiting value is the FD of the
structure E characterised by α (the Hausdorff dimension
of the α distribution). It is also known as the multifractal
spectrum f (α) (MFS) [16], i.e.,

f (α) = lim
ε→0

fε(α). (6)

2.2.1 Practical procedure for theMFS
There are several techniques described in the literature to
obtain the MFS, which lead to different representations of
the multifractal information present in the structure. Usu-
ally, the method of moments is used [5,6], but it produces
a feature vector which is not always suitable for classifica-
tion tasks. In this work, the procedure presented in [1] is
employed, due to its better classification performance.

The technique first computes α(x) for each pixel x of
the image. Denote with B(x, ε) the closed disk of radius
ε > 0 centred at x, then, α(x) is defined as a straight line
fit of the values log(μ(B(x, ε))) and log(ε). Then, a discrete
sample set {αi, i = 1, . . . ,M} is taken from the interval
[0, 1], and the point set corresponding to that value of αi is
formed by grouping the pixels with values that are close to
that αi under some threshold. The FD for each point set is
computed as the straight line fit of the values log((Nε(αi))
and log(ε). The valueM determines the vector length, i.e.
the number of FDs of the MFS.
As previously stated, the f (α) spectrum (MFS) and the

method of moments produce vectors which contains the
same information, but in this work, the first is employed,
since it also outperforms the method of moments in
classification tasks. This process produces a finite vector
which is used as the feature vector later in this paper. In
the next sections, the vector length (the number of FDs)
is chosen based on the classification performance of the
computed feature vector.

2.2.2 Multifractal measures
Defining different μ functions accounts for different
image features. The first approach is to define μ in the
intensity domain (I), i.e.,

μ (B(x, ε)) =
∫
B(x,ε)

(Gε ∗ I)dx, (7)

where ∗ is the 2D convolution operator and Gε is a
Gaussian smoothing kernel with variance ε, i.e. μ is the
weighted average intensity value in the disk of radius ε

centred at x (B(x, ε)). This is the density of the intensity
function, and it describes how the intensity at a point
changes over scale.
The definition of μ could serve to specific purposes. For

instance, if robustness to illumination changes is needed,
one choice is to define μ(B(x, ε)) on the domain of the
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energy of the gradients. Let fk , k = 1, 2, 3, 4 be four direc-
tional differential operators along (respectively) the ver-
tical, horizontal, diagonal, and anti-diagonal directions.
Then, we define a measure function μ(B(x, ε)) for the
image I as follows:

μ(B(x, ε)) =
(∫

B(x,ε)

∑
k

(
fk ∗ (Gε ∗ I)

)2 dx
)1/2

. (8)

Another choice is to define μ(B(x, ε)) as the sum of the
Laplacians of the image inside B(x, ε), that is:

μ(B(x, ε)) =
∫
B(x,ε)

|∇2(Gε ∗ I)|dx. (9)

All these alternative measures modify the computed
FD and MFS (except for trivial or monofractal images)
and therefore are valuable choices in finding adequate
features, as will be shown below.

2.3 Image acquisition
For testing our characterisation and classification proce-
dures, 20 images of 4 different commercial bread types
(baguette, sliced, bran, and sandwich), counting 80 images,
were obtained in the same day of purchase using an HP
PSC 1210 scanner with the following settings: highlight
190, shadows 40, and midtones 1, and they were saved
in TIFF format. Images were acquired at a resolution of
380 × 380 pixels (the maximum possible area for the four
bread types) and 350 dpi (1 pixel= 0.00527

[
mm2]). Then,

the images were converted to grey scale (8 bits). In addi-
tion, 20 other images of each bread type were acquired
with a digital camera, using the same spatial resolution.
The illumination conditions of these images were dif-
ferent from that of the scanner in order to test for the
robustness of the method. In Figure 2, four examples of
bread images obtained with the camera are shown. We
also employed 100 randomly selected images from the
CalTech101 dataset [17] in order to test the method’s
performance with non-bread images.

The void fraction (VF), mean cell area (MCA), and stan-
dard deviation of mean cell area (stCA) were computed in
order to study the relationship of the MFS with the poros-
ity, coarseness, and heterogeneity of the different bread
crumbs. For this purpose, the scanned images (in grey
scale) were binarised using the algorithm presented in
[18]. This algorithm applies a local thresholding scheme,
which showed better results than using a global threshold-
ing scheme. Particularly, the algorithm presented in [19]
and used in [9] showed poor results when the illumination
conditions vary in the image. In Figure 3, an image of each
bread type used in this work (top row) and its resulting
binarisation using the proposed algorithm (bottom row)
are shown. Small elements of 1 and 2 pixels were elimi-
nated by an opening operation (erosion and dilation) using
a 2 × 2 structuring element. The method showed good
results even for different illumination conditions varying
in the same image.
In order to determine the result of the binarisation at a

given pixel, the algorithm obtains an average from the grey
levels in a window surrounding the pixel and compares it
to a threshold determined by the actual grey level of the
pixel multiplied by a bias factor, i.e.,∑

x,y∈W f (x, y)
Wsize

≥ f (xc, yc) × bias, (10)

where xc, yc are the coordinates of the actual pixel, and
W is the window surrounding that pixel. Two parameters
must be set in the algorithm: the size of the window (Wsize)
and the bias. It was found that different values for the
bias are needed for better results when different captur-
ing methods are used. The optimal values for the scanner
samples were 80 for the window size and 1.15 for the bias.
In the case of the digital camera samples, the optimal val-
ues found were 80 for the window size and 1 for the bias.
These differences seem to be caused by the different illu-
mination conditions present in the images resulting from
these different capturing conditions. Further research is
required in order to determine automatic values for these
parameters.

Figure 2 Images from a digital camera.
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Figure 3 Images from a scanner. Baguette, sliced, bran, and sandwich bread types (top row) with their corresponding binarisations (bottom row).

3 Results and discussion
In this section, we will attempt to show how the MFS
behave adequately as a feature descriptor able to distin-
guish bread from non-bread images. For this purpose, the
MFS, using 20 FDs, was computed for each of the 200
images (i.e., 40 images of each bread type and 40 randomly
selected non-bread images, getting 5 balanced classes). In
the next subsections, we show how the computed data is
analysed and used for classification purposes.

3.1 Data analysis
Self-organising maps (SOM) [20] of the feature vectors
associated with each bread image were useful to rep-
resent them in a lower dimensional view, in order to
better understand the meaning of their respective MFS. A
SOM maps high-dimensional data into a (typically) two-
dimensional representation, using neighbourhood infor-
mation. Topological information of the original data is
preserved.
Unsupervised SOM of the multifractal representation

of bread and non-bread images are shown in Figure 4 in
a grid of 10 × 10 cells (the behaviour observed is simi-
lar for different grid sizes). In the left image, the 5 classes
(e.g. baguette, sliced, bran, sandwich, and non-bread) are
shown, while in the right image, the non-bread class has
been removed, and then, the SOMwas recomputed for the
remaining 4 classes, in order to highlight details among
the MFS of the different bread types. The multifractal
feature SOM appears to show easily separable classes.
It seems that a classifier could potentially obtain low

classification errors using the multifractal features, since
the numbers representing different classes are clearly sep-
arated to each other, i.e. there are almost no cells with two
or more different numbers in it. A classifier can define
regions of space (group of cells) for each class.
In Figure 5, boxplots of the four different bread types

are shown with the medians of each FD (in red) joined by
a dashed line. Each FD corresponds to a value of αi. In
our experiments, the MFS vector has 20 FDs (for reasons
that will be explained in the classification section). From
this plot, it could be pointed out that in the first half of
the MFS (first 10 FDs, α ∈[0, 0.53)), the dispersion of the
FDs is higher than in the second half of the spectrum (last
10 FDs, α ∈[0.53, 1]). The spectrum in the last FDs tends
to have a shape that identifies better a particular type of
image. Usually, the spectra of the same class and the same
capturing method have, in this part of the spectrum, a
shape that is useful to characterise the class. Nevertheless,
the capturing method and the illumination conditions of
the image influence this shape, i.e. these two factors alter
the MFS of the image. In other words, there is no unique
shape for each class of bread type.
For the sake of completeness, in Figure 6, the mean val-

ues and the standard deviations of the MFS for the four
different bread types are shown. This image shows, sim-
ilarly to the SOM maps, that the MFS could potentially
characterise and classify the different bread crumb types,
since the mean values are different for each class. The
standard deviations are also consistent with the results
found in the boxplots.
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Figure 4 Self-organising maps (SOM). SOM of the bread and non-bread images (left) and SOM of the bread types only (right). (1) baguette, (2)
sliced, (3) bran, (4) sandwich, (5): non-bread.

The Spearman correlation coefficient (ρ) for the four
bread types between the fractal dimensions and the void
fraction, mean cell area, and standard deviation of mean
cell area (in

[
mm2]) are shown in Figures 7, 8, and 9,

respectively, as a function of fractal dimension. In order
to better describe the results, only the scanned samples

were employed to analyse these correlations. ρ is pre-
ferred over Pearson’s R coefficient since it does not require
a linear dependence to exhibit strong correlations in the
underlying data.
In Figure 7, it becomes clear that the coefficients behave

similarly for the first 5 dimensions (α ∈[0, 0.23]) in all the

Figure 5 Boxplots of the four different bread types. The FD medians are joined by a dashed line. Top: baguette (left), sliced (right), bottom: bran (left),
sandwich (right).



Baravalle et al. EURASIP Journal on Image and Video Processing  (2015) 2015:9 Page 7 of 10

Figure 6 Mean MFS and standard deviations of the FDs for the four different bread types. Left: mean MFS, right: standard deviations.

bread types but differently for the FD around 5 and above.
It could be concluded that the first 5 dimensions are highly
correlated with the void fraction (porosity) of the scanned
samples. This means that the first FDs increase when the
void fraction increases. Other FDs also have a high (pos-
itive or negative) correlation, but it depends on the bread
type which dimension is correlated.
From the plots of the correlation coefficients of the

MCA and stCA, in Figures 8 and 9, respectively, it could
also be pointed out that the MCA has a higher correla-
tion than the stCA with the FDs of the MFS. It means
that the coarseness of the bread crumb structure could be
better characterised by the features than its heterogeneity,
using theMFS. In addition, the last 5 fractal dimensions of
the spectra (α ∈[0.79, 1]) are highly (inversely) correlated

Figure 7 Spearman correlation coefficients for the FDs and the void
fraction of the scanned samples.

with the MCA of the scanned samples. This implies that
the last FDs increase when the MCA decrease. The same
observation could be mentioned for the stCA of the sam-
ples, but the correlations are lower. In both cases, the
correlation coefficients of the sandwich class are the lower
among the bread types.
To summarise, the dimensions of the MFS which corre-

sponds to α ∈[0, 0.23] are useful to measure the porosity
of the scanned samples. Also, coarseness and heterogene-
ity could bemeasured by the dimensions with α ∈[0.79, 1].
As was suggested in a previous work [9], the bread crumb
structure is better characterised by the use of a vector
of fractal dimensions, since the three properties could be
measured by theMFS, employing different sections of this
feature vector.

Figure 8 Spearman correlation coefficients for the FDs and the mean
cell area. (In

[
mm2

]
, scanned samples).
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Figure 9 Spearman correlation coefficients for the FDs and the
standard deviation of the mean cell area. (In

[
mm2

]
, scanned

samples).

3.2 Bread classification
In order to test for the discriminative capability of the
method, a classification experiment is made. Five classes
are defined, viz., baguette, sliced, bran, sandwich, and non-
bread, assigning 40 images to each class. A comparison
is made between the MFS and state-of-the-art features in
the computer vision literature. This classification scheme
corresponds to an intra-class problem, which is harder to
solve than an ordinary inter-class one.
K-fold cross validation is applied to the entire set (with

K = 4), employing three different classifiers: support vec-
tor machines (SVM), random forests (RF) [21], and near-
est neighbours (NN). Results show that the MFS presents
good classification performance regardless of the classi-
fier employed. The libsvm implementation [22] was used
for the SVM classifier (with RBF kernel). In the case of the
RF (100 trees) and the NN (1 neighbour) classifiers, the
scikit-learn python library was employed.
In Table 1, the classification performance of the method

is tested using different numbers of FDs. When 20 FDs
are used, a useful combination of performance and low di-
mensionality is achieved (it shows the best classification
results for the RF and NN classifiers), so this number of
FDs is used in the following computations.

Table 1 Bread crumb classification results with different
numbers of FDs for theMFS and different classifiers

#FDs 10 20 30

SVM 96% 94.5% 95.5%

RF 91.5% 93.5% 93%

NN 88.5% 90.5% 90%

Best results for each classifier appear in italics.

Table 2 Bread crumb classification results using different
combinations of theMFS and different classifiers

Method MFS MFS+L MFS+G CIELab

SVM 94.5% 95.5% 97.5% 97.5%

RF 93.5% 96% 95% 96%

NN 90.5% 90% 87% 92%

#FDs 20 40 40 60

Best results for each classifier appear in italics.

In Table 2, several combinations of different MFS
obtained from the images and their classification
performance are shown. The MFS used in the study were
computed based on the density of the intensity (MFS in
the table), the Laplacian of the intensity (L), and the gra-
dient of the intensity (G) (see section ‘Multifractal mea-
sures’). In addition, another test is made, using the CIELab
[23] colour space. The key advantage of this colour space
is that it tends to reduce the dependency of the resulting
image colour on the device used in the capture. The inten-
sity of the images is transformed to the CIELab space,
and the MFS of the three separated channels (L, a, and b)
are combined together, obtaining a vector of 60 FDs. This
combination showed the best classification performance.
It means that adding colour information in the a and
b channels is useful for better classification of different
types of bread crumbs, when different capturing devices
are used (in this case, a scanner and a digital camera).
In Table 3, state-of-the-art features (Haralick [24], local

binary pattern (Lbp) [25], and SIFT [26] features) are com-
puted for the images. The best classification performance
is obtained using the SIFT features, but a feature vector
of length 128 is required for every image, and, in addition,
computational space and time is needed to build internal
structures (e.g. a codebook).
For better understanding of the classification results,

confusion matrices of the classification procedures could
be plotted. As an example, the confusion matrix (from
the cross validation) of the best results, i.e. the CIELab
method, employing the SVM classifier, can be seen in
Table 4. In each column of the matrix, the output of the
classifier for the 40 images of each class is tested for cor-
rectness. The table shows that only in a few cases, the

Table 3 Bread crumb classification results for different
state-of-the-art features and different classifiers

Method Haralick Lbp SIFT

SVM 94% 78.5% 96.5%

RF 91% 71.5% 92%

NN 79% 70% 86%

#FDs 13 36 128

Best results for each classifier appear in italics.



Baravalle et al. EURASIP Journal on Image and Video Processing  (2015) 2015:9 Page 9 of 10

Table 4 Confusionmatrix for the best results (CIELab
method, using the SVM classifier)

Class Baguette Sliced Bran Sandwich Non-bread

Baguette 39 1 1 0 0

Sliced 0 38 0 0 0

Bran 0 0 39 1 0

Sandwich 1 1 0 39 0

Non-bread 0 0 0 0 40

classifier returns an incorrect result. For instance, among
the 40 images of sliced, only 2 are classified as images
from other classes, specifically as baguette and sandwich
(column with heading sliced). The other classes behave
similarly. Differentiation between bread and non-bread
images has no errors (i.e. no image of a bread class is
classified as non-bread and vice versa). The 97.5% of the
database is correctly classified (5 misclassifications out of
200).
The classification performance of the MFS for the bread

crumb database is the highest among the algorithms stud-
ied. The MFS captures robust and useful information for
classification in low-dimensional features. These results
also agree with results obtained in [12] for the classifica-
tion of other food products.

4 Conclusions
The visual appearance of different types of bread crumbs
can be successfully characterised by the multifractal
dimensions of their digital images. The FDs obtained from
theMFSmethod whose α ∈[0, 0.23] provided a goodmea-
sure of the bread crumb porosity, meaning that the higher
these FDs, the higher the measure. In addition, the FDs
whose α ∈[0.79, 1] are useful to measure coarseness and
heterogeneity of bread crumb. The MFS contains useful
data to characterise the three measures, combining the
information in one feature vector.
The use of multifractal features in bread crumb texture

classification showed excellent performance. The MFS
demonstrated to be accurate enough to perform a classi-
fication of different bread types and also to discriminate
non-bread from bread images. The classification perfor-
mance of the MFS for the bread crumb database outper-
forms other state-of-the-art techniques employed in the
computer vision literature. The information present in the
MFS of the L, a, and b channels of the CIElab colour space
obtained the best classification performance in all the
developed tests. This result appears to be a consequence
of the different capturing devices used in this work. Also,
it was shown that the MFS is sensitive to changes in the
illumination conditions during image acquisition.
The results found could also be applied to validate syn-

thetic samples, in the sense that they should have similar

features to the bread type they are trying to simulate. The
features found with the MFS could be employed to tune
bread crumb quality parameters.
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