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Abstract

Our research focuses on the question of classifiers that are capable of processing images rapidly and accurately
without having to rely on a large-scale dataset, thus presenting a robust classification framework for both facial
expression recognition (FER) and object recognition. The framework is based on support vector machines (SVMs) and
employs three key approaches to enhance its robustness. First, it uses the perturbed subspace method (PSM) to
extend the range of sample space for task sample training, which is an effective way to improve the robustness of a
training system. Second, the framework adopts Speeded Up Robust Features (SURF) as features, which is more
suitable for dealing with real-time situations. Third, it introduces region attributes to evaluate and revise the
classification results based on SVMs. In this way, the classifying ability of SVMs can be improved.

Combining these approaches, the proposed method has the following beneficial contributions. First, the efficiency of
SVMs can be improved. Experiments show that the proposed approach is capable of reducing the number of samples
effectively, resulting in an obvious reduction in training time. Second, the recognition accuracy is comparable to that
of state-of-the-art algorithms. Third, its versatility is excellent, allowing it to be applied not only to object recognition

but also FER.
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1 Introduction

During the past decade or two, significant effort has been
put into developing methods of training algorithms for
pattern recognition, which is an attractive research sub-
ject in the field of computer vision due to the great
potential for it to be used in many applications in a vari-
ety of fields, including object recognition, biological fea-
ture recognition, and human behavior analysis. Therefore,
the need for this kind of technology in various differ-
ent fields keeps propelling research forward year after
year.

As the main detectors, AdaBoost and SVMs are widely
used in this field of research. In 1997, Freund and
Schapire [1] supplied the AdaBoost algorithm for realiz-
ing the learning framework of boosted trees, which could
be derived from the Probably Approximately Correct
(PAC) learning proposed by Valiant [2]. Since then, great
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advances have been made based on AdaBoost, especially
a milestone work by Viola and Jones [3].

But some ideal strong classifiers usually require a large
number of training samples and very time-consuming
training experiments. Even now, many researchers are
still trying to solve these problems. Li et al. [4] proposed
a new learning SURF cascade for ameliorating boosting
cascade frameworks. It improved the training efficiency,
but the need for large-scale data gathering and exten-
sive preparation creates a critical bottleneck. On the other
hand, similar problems also exist in methods based on
SVMs. There are too many examples, which will not be
enumerated one by one here. Therefore, collecting many
training samples and the associated long training time
lead to considerable work and difficulty for researchers in
the field of pattern recognition. Since training is a crit-
ical infrastructure for recognition engines, the research
on training is significant for learning machines. Hence,
there is a great need to solve the problem mentioned
above.
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Unfortunately, some researchers usually ignore these
problems and argue that they just care about the recogni-
tion speed because the training is an offline task. However,
diverse data appear everyday, and some may not be well
covered by existing classifiers; thus, we have to update
these classifiers frequently. This problem of having to
retrain and refresh classifiers for unknown image data to
alleviate possible hit-miss results is well known.

Similarly, we believe Google is a powerful search
engine, and one of the most important reasons is that
it refreshes its pagerank and indexing frequently. More-
over, its superior technological background guarantees its
update speed is fast enough. Therefore, it is still very
important that research on solving both the problems
associated with collecting many training samples and
those associated with long training time continue until
effective, practical solutions are developed.

This paper proposes a robust classification framework,
which brings together effective normalization measures,
visual features, and image attributes to construct a use-
ful system. The overview of the proposed framework is
shown in Figure 1. There are three main approaches with
emphasis on reducing training samples and improving
the efficiency of learning machines. First, PSM is used to
extend the training data space, which allows us to gen-
erate ideal strong classifiers without having to collect a
large number of training samples. Second, the features
are described by local multi-dimensional SURF descrip-
tors [5], which are spatial regions with windows that are
good at processing real-time scenes. Moreover, the recog-
nition window is scanned across the image at all scales by
conventional methods. This paper, however, concentrates
on the recognition patches based on SURF interested
points. In this way, the framework can become much
faster and more efficient. Third, the region attributes
of images are adopted to revise incorrect recognition
of classifiers relying on visual features, which are repre-
sented by feature vectors in a segmented region. There-
fore, the discriminative capability can guarantee that the
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proposed framework will be more robust. After the PSM
approaches, the framework will generate the extended
sample space as vector data files. In practice, SVMs can
process these vector data files better and faster than the
other model classifiers. Therefore, the classifier of our
method is based on SVMs.

There are three main ways that the research described in
this paper will contribute to the research being carried out
in this field. The first is that the efficiency of SVM learn-
ing can be improved. Experiments show that the proposed
approach is capable of reducing the number of samples
effectively, resulting in an obvious reduction in training
time. The second benefit is that the recognition accu-
racy is comparable to state-of-the-art algorithms. Third,
this new system’s versatility is excellent, allowing it to
be applied not only to object recognition but also facial
expression recognition.

Some examples of expression recognition results are
shown in Figure 2. The experimental results show that,
despite using a mini-sized database of training samples,
our approaches can also construct a robust recognition
system, which is comparable to state-of-the-art meth-
ods. Moreover, versatility is one of its outstanding traits
because, in our experiments, it could succeed in both
object recognition and facial expression recognition appli-
cations. We believe applying the proposed method to
different fields is a good idea because training efficiency
and recognition accuracy play very significant roles in
machine learning. Also, without a doubt, versatility is
equally important.

In the remainder of this paper, we first revisit related
works in Section 2. Then, we describe the normalization
of samples in Section 3 and the classifying framework
in Section 4, respectively. Section 5 describes the experi-
ments, and conclusions are drawn in Section 6.

2 Related work
We will first revisit related works on object recognition
and facial expression recognition in this section. On one
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Figure 1 An overview of the proposed framework. First, the sample space is extended by PSM. Then, the generated vector data files are used for
OVR-SVM learning. Furthermore, the classification ability of SVMs classifier is evaluated by region attributes, of which the details are indicated in
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Figure 2 Examples of facial expression recognition results.

hand, facial expression recognition is a typical multi-
class classification problem in computer vision. There are
many precursors who have focused on FER research, and
the latest ones, such as, Liu et al's STM-ExpLet [6] and
Huang et al’s new feature extraction algorithm for FER
[7] have pushed the research forward. But many diffi-
culties still exist in this research, because the subjects
in the images usually have variable facial appearances
and they can adopt a wide range of head poses. These
problems are difficult to be overcome. Moreover, clas-
sifiers usually have to rely on a large-scale dataset for
training. Unfortunately, current approaches of FER usu-
ally ignore these problems and do not present a robust
feature set and a corresponding robust classifying frame-
work that allows the expression to be discriminated
cleanly under these situations. Reviewing [8] makes it
clear that this situation has not been well improved.
Looking deeper into the experimental reports of these
works [9-13], we also find that the best precision achieved
by any of these state-of-the-art methods is no higher
than 31.7%, when the method is evaluated by real-world
scenarios. Therefore, FER is still an extremely challeng-
ing task in computer vision. The first need is a robust
feature and the corresponding high-quality training
framework.

On the other hand, object recognition is also another
hot research topic in computer vision due to its many
applications. Great advances have been made in the past
decade, especially since the milestone work by Viola and
Jones [3]. But we must note that, even with the Viola-Jones
method, in order to realize good generalization perfor-
mance, more training data are required in the learning

procedure. Although it is quite easy to collect many train-
ing samples from the Internet nowadays, collecting a large
number of samples for training these object detectors [14-
16] by search engines is easier said than done. To our
knowledge, almost all existing object detectors require
large amounts of data for training. Meanwhile, many
methods are based on boosting cascade frameworks, and,
as we know, almost all existing cascade frameworks are
trained based on two conflicted criteria (false-positive-
rate and hit-rate) for the detection-error tradeoff. Also
known is the fact that training is usually required to
achieve a very low false-positive rate per scan window
(FPPW) such as 107° [17], which means that hundreds
of millions or even billions of negative samples should
be processed during the training procedure. Therefore,
training ideal classifiers is a very time-consuming task.
Usually, many researchers have to obtain mirror images of
samples for training with the help of third-party software
tools.

Our approach outperforms the methods advocated in a
recent line of papers that use third-party software tools
to obtain mirror images of samples for training in their
object/facial-expression recognition systems, which we
briefly review here. To the best of our knowledge, our
approach is the first to apply the proposed method to
both object recognition and facial expression recognition.
Also, our approach is the first to employ the PSM directly
for detector training without using any tools. Experiments
show that this has the greatest impact on the performance
of training efficiency, because time can be saved which
would otherwise be spent on collecting vast amounts of
data from the Internet or using third-party software to
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deal with the samples in order to get mirror images of
these samples.

3 PSM for extending sample space

The PSM is derived from the perturbation method, and
it can be applied to reducing the size of processing data.
For example, it can be used to normalize facial and object
data, which is usually adopted as a many-one mapping
model. However, in this paper, what we are proposing is
a one-many mapping model. Namely, we use it to extend
the subspace of samples and the technical details of this
one-many mapping model are discussed in this section.
In addition, there are also many existing methods based
on virtual images, which seem similar to ours, but most
of them rely on pixel-level transformation (such as [18,19]
etc.). Therefore, after processing with this approach, some
features might be damaged easily. Moreover, they require
some manual work; and in the training period, the pro-
gram has to read a large number of virtual image files
again, which leads to time waste. Our approach involves
a classification framework that is capable of comput-
ing robustly and effectively while avoiding the problems
mentioned above.

3.1 Training-sample normalization

In order to reduce the noise, the size of the images is
unified by m x n pixels, and the original samples are
normalized by mean value and variance of pixel transfor-
mation. Therefore, the image I after normalization can be
obtained according to the following equation:

I(x,y) —
Zﬁo

where o is the standard deviation at the locations x and y,
which can be calculated via

o= |3 > Uy — w2 @)

x=1y=1

I'(x,9) =a + b, (1)

(a, D) is used to adjust the value of pixels. In this paper,
we used regular samples in experiments; therefore, a was
set as 1, and b was set as 0. u is the mean value of pixels,
and it can be computed through image traversal using the
following equation:

p= Y Y I,

x=1y=1

3)

3.2 Changing orientational factors

After the calculation of subsection 3.1, we can thus extend
the subspace of samples by changing the facial directions
of the images. In this paper, we use the method that is pro-
posed by Chen et al. [20] on the Procrustes analysis [21] to
reconstruct three-dimensional face model and the obtain
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three-dimensional data. We indicate it in Algorithm 1. For
more details, please refer to Appendix.

Algorithm 1 Reconstruct three-dimensional model
Require:
Input: two-dimensional shape vector: Syp € R?;
Output: three-dimensional shape vector: S3p € R>;
Initialization: set 8o = 0,i = 0, so = 0;
whilei < K or E, > ¢ do
1. Let

m
S3p <=s0+ ) Bisi

i=1
2. Alignment: Syp is aligned with the two-
dimensional shape, which is obtained by projecting
the frontal three-dimensional shape (s;) onto
the x — y plane.
3. Minimize

IP(RgS3p + T) — Sap|?

4. Reconstruct (S3p); using the shape parameter §;.
5. Update Rg and T with the fixed shape parameter
and

E; < |PRsS3p + T) — Sop®
6. Let
i<=i+1
end while
7. Reconstruct three-dimensional shape using the final

shape parameters.
8. Output S3p.

In Algorithm 1, when E, is below a threshold ¢
or K landmarks are processed over, the while loop would
be stopped and the three-dimensional data will be out-
put. Here, B = (B1,B2,- -+ , Bm)” is the shape parameter
and m is the dimensionality of the shape parameter, which
is used to adjust three-dimensional shape data. S3p isa 3 x
n matrix, P is a 2 x 3 orthographic projection matrix, 7 is
a 3 x u translation matrix consisting of # translation vec-
tors t =[ty, ty, t,] T and Ry isa 3 x 3 rotation matrix where
the yaw angle is 6. In this paper, 6 is set as £15°, =+ 30°,
and £60°. Thus, through Algorithm 1, we can reconstruct
the three-dimensional data X = (x,7,z)” from the origi-
nal images. Hence, according to the transformation matrix

formula,
X’:Tz-Ty-Tx~S-Rz-Ry-Rx-X, (4)

we can convert the facial directions to extend the sub-
space of the training samples. Here, T and R are the
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shear mapping transformation matrix and the rota-
tion matrix respectively, and S represents the scaling
matrix.

3.3 Changing illumination attributes
The illuminative change is conducted according to the
following equation:

K
Vit =V el (5)
m=1

where V; is the changing feature, V5 is the result after the
changes, n is the dimensionality of the feature vector, w is
the weight coefficient, and e is the basis of illumination-
change-factor vectors.

In this paper, e is obtained through processing the
luminance-normalized rendering images by principal
component analysis (PCA), wherein, m is the princi-
pal component (m = 1,---,8). The rendering images
are gained by the treatment of three-dimensional images
obtained in subsection 3.2.

4 Classifying framework

This section will provide the framework used for SVM
learning through adopting SURF features. Moreover, we
will also employ the region attributes of images to
revise the incorrect recognition of classifiers relying on
visual features. We will describe them separately in this
section.

4.1 Feature description

SUREF is a scale- and rotation-invariant interest point
detector and descriptor. It is faster than SIFT [22] and
more robust against different image transformations. In
this paper, we adopt an 8-bin T2 descriptor to describe
the local feature, which is inspired by [23]. Unlike [23],
however, we further allow different aspect ratios for
each patch (the ratio of width and height) because this
can make increase the speed of image traversal. We
also imported diagonal and anti-diagonal filters because
this can improve the description capability of the SURF
descriptors.
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Given a recognition window, we define rectangular local
patches within it, each patch with four spatial cells and
allows the patch size ranging from 12 x 12 to 40 x 40 pix-
els. Each patch is represented by a 32-dimensional SURF
descriptor. The descriptor can be computed quickly based
on sums of two-dimensional Haar wavelet responses, and
we can make an efficient use of integral images [3]. Sup-
pose d, as the horizontal gradient image, which can be
obtained using the filter kernel [ -1, 0, 1], and d, is the ver-
tical gradient image, which can be obtained using the filter
kernel [ —1,0,1]7; Define dp as the diagonal image and
dap as the anti-diagonal image, both of which can be com-
puted using two-dimensional filter kernels diag (—1,0, 1)
and antidiag (—1,0, 1). Therefore, 8-bin T2 is able to be
defined as v = (X (ldx| + dx), Y_(ldxl — di), > (|dy| +
dy), Y(|dy| —dy), Y (Idpl +dp), -(ldp| — dp), - (1dap| +
dap), Y _(ldapl — dap)). Here, dy, dy, dp, and d4p can be
computed individually by filters shown in Figure 3a(1),
a(2), b(1), and b(2) respectively in use of integral images,
the details about how to compute two-dimensional Haar
responses with integral images; please refer to [3].

The recognition template for SURF is 40 x 40 with
four spatial cells, allowing the patch size ranging from
12 x 12 to 40 x 40 pixels. We slide the patch over the
recognition template with four pixels forward to ensure
enough feature-level difference. We further allow differ-
ent aspect ratio for each patch (the ratio of width and
height). The local candidate region of the features is
divided into four cells. The descriptor is extracted in each
cell. Hence, concatenating features in four cells together
yields a 32-dimensional feature vector. About feature nor-
malization, in practice, L, normalization followed by clip-
ping and renormalization (LoHys) [24] is shown working
best.

4.2 C(lassifier construction

The classifier of our framework is built based on one-
versus-rest SVMs (OVR-SVMs). OVR strategy consists
of constructing one SVM per class, which is trained to
distinguish the samples of one class from the samples
of all the remaining classes. Normally, classification of
an unknown object is carried out by adopting the max-
imum output among all SVMs. The proposed method

a(1) a(2)

b (1)
Figure 3 Haar-type filter used for computing SURF descriptor. [a(1)] dy, [a(2)] d), [b(1)] dp, and [b(2)] dp.

b(2)
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is based on OVR-SVMs classifiers and implemented by
redeveloping liblinear SDK [25].

For OVR-SVM, the most crucial part is probability
estimation. Usually, most researchers estimate posterior
probability by mapping the outputs of each SVM into
a probability separately. The method was proposed by
Platt [26]. It applies an additional sigmoid function:

1
1+ exp (¢ifi(x) + d))’

H(wjlfi(x)) = (6)

f;(x) denotes the output of the SVM trained to separate the
class w; from the other classes (total samples are M). Then,
for each sigmoid the parameters, c; and d; are optimized
by minimizing the local negative log-likelihood:

N
= {plogy) + (1 — piolog(1 — ). (7)

k=1

Here are N outputs of the sigmoid function, where /1 is
the output of the sigmoid function with the probabil-
ity px event. In order to solve this optimization problem,
Platt [26] applied a model-trust minimization algorithm
based on the Levenberg-Marquardt algorithm. But in [27],
Lin et al. pointed out that there are some problems in this
method, meanwhile they proposed another minimization
algorithm based on Newton’s method with backtracking
line search.

But unfortunately, there is nothing to guarantee that:

M
Y H(jlfi®) = 1. (8)

j=1

For this reason, it is necessary to normalize the proba-
bilities as follows:

H(wjlfi(x))

H(w;j|x) = .
wj Zj}/le H(a)/ lf// (x))

)

Thus, we use another approach to estimate posterior
probability, using OVR-SVMs to exploit the outputs of
all SVMs to estimate overall probabilities. In order to
achieve this goal, we apply the softmax function, regard-
ing it as a generalization of sigmoid function for the
multi-SVM case. Hence, in the spirit of the improved
Platt’s algorithm [28], this paper applies a parametric form
of the softmax function to normalize the probabilities
by:

exp (cifj(x) + dj)
Il exp (cpfy (®) + dy)

H(wjlx) = (10)
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The parameters c; and d; are optimized by minimizing

the global negative log-likelihood.

N
— ) log(H(wklxi))-
k=1

(11)

The optimization of parameters ¢; and d; is done
with the intention of obtaining the lowest error rate on
testing dataset. The reason why we use the negative log-
likelihood is not only because it can optimize the parame-
ters c; and d; but also because it can be used for comparing
the various probability estimates; in other words, it can
evaluate the error rate on machine learning and reject
some of the unsatisfactory candidate expression regions
described by SURF features.

4.3 Region attribute estimation

The detected face/object region is divided into C = n x m
blocks, and the feature vector of each block is computed.
These vectors are used to construct a matrix X, which is
named as region attributes. Each column data of X can
be extracted from each block that is normalized by equal-
izing the value and variance of the luminance, while the
norm is set as 1. The region attribute is estimated using
the following score equation.

C
- A _
d =X = X" = 3 e - )%
i=1

(12)

where ¢ is the eigenvector of X, A is the eigenvalue
of X, and 82 denotes the image noise correct divisor.
When §2 = 0, it means that the distances of all feature
vectors of the current image projecting into subspace are
unified; in the other words, the noise is negligible. X is
estimated image region attributes, and X is the average
feature vector (AFV) of samples. If the value of distance
is smaller, the score is higher, namely, the probability of
miss-recognition is lower.

In this paper, the most significant way to enhance the
learning efficiency of OVR-SVM classifiers is based on
two conflicted criteria. This method is inspired by the
boosting cascade (see Algorithm 2): As an error rate eval-
uating threshold e (¢” = (1 — d)), its function is similar
to false-positive rate in the boosting cascade [2]. Recog-
nition rate is evaluated by d; i.e., it is a meter threshold,
whose function is similar to the hit rate in the boosting
cascade. They are used for the recognition-error tradeoff
where e < 0.5. The classifying result will be consid-
ered as a miss recognition, and the OVR-SVMs classifying
model is executed repeatedly until a given Boolean con-
dition (d < 0.2) is met. In this way, it can guarantee
that the classification results remain the same between
the SVM classifiers and the distance metric on region
attributes.
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Algorithm 2 Region attributes for SVM learning.
Require:

1. I—th category AFV: X; ;

2. Error rate evaluating threshold: e;

3. Positive class samples: ST, samples number: M;

4. Negative class samples: S~, samples number: M;

Initialize:ep =1, d =1, j = 0;

for(i=0;i <M;i=i+1)do

while (¢; > 0.5) do
lj=j+1
2. Train a set of classifiers H(wj|fj(x)) on samples St
and S~ via the approaches of subsection 4.2;
3. Using Equation 12 to obtain region attributes score
d;
4.Evaluate the model H (wj|f;(x)) on the whole training
set; if d > 0.2, skip over the step 5 and 6;
5. Update the parameters c; and d; through minimizing
the global negative log-likelihood on Equation 7;
6. Update the recognition-error tradeoff: ;11 = €; x
1 —d;
7. Empty the set §7;
8. while (e;1; > e; and size |ST| # [S7|) do
Adopt classifier to scan non-target images with sliding
window and put false-positive samples into S~;
end while
end while

end for

8. Output the probabilities model H and overall error rate

tradeoff parameter e.

In order to make the framework more robust, we also
adopt two important approaches. 1) If their results are
coincident, the region attribute score d and recognition-
error tradeoff parameter e will be updated for the next
stage (Algorithm 2, step 3 and step 5); 2) When the results
are not coincident, the current image will be put into the
negative sample set automatically (Algorithm 2, step 7),
so that the classifier can be updated at the next learning
iteration stage. Therefore, the proposed framework is an
adaptive learning framework that can cover the new data
better than the conventional SVM-based methods. At the
same time, this framework presents a mutual feedback
mechanism for SVMs and the distance metric, which is
more robust than a single classifying model. This is very
important for avoiding some miss-recognition results that
are individually categorized by the classifiers.

5 Experiments

At first, our method was proposed for facial expression
recognition. But in practice, we found that it can be
successfully applied to not only facial expression recog-
nition but also object recognition. Therefore, this section
will summarize the experimental data for both expres-
sion recognition and object recognition. The details of
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the implementation, dataset, and evaluation results will be
shown here.

5.1 Implementation

We implemented all training and recognition programs
in C++ on RHEL (Red Hat Enterprise Linux) 6.5 OS. In
expression recognition, the facial detection part used the
source code of Open CV, which was based on the Viola
and Jones framework [3]. The expressional recognition
part was implemented based on the proposed framework.
In object recognition, all of the recognition systems were
based on the proposed approaches. The experiments were
done on the PC (Core i7-2600 3.40 GHz CPU and 8 GB
RAM), and the training procedure was fully automatic.
For SURF extraction, we adopted the integral image to
speedup the computation as described in subsection 4.1.
For machine learning, we built the OVR-SVMs through
redeveloping liblinear software [25].

In facial expression recognition, there are neutral-,
happy-, anger-, and surprise-expression recognition, and
some expression recognition results are shown in Figure 2;
In object recognition, the proposed method is designed
for classifying faces, cars, and sheep. Some tested exam-
ples are shown in Figure 4, where the red patches are
SURF interest points. After training, we observed that the
SUREF interest points mainly lay in the regions of the eyes,
mouths, teeth, and noses in face recognition; the regions
of the wheels, windshields, and doorknobs in car recogni-
tion; and the regions of the ears, noses, and the open space
between the legs in sheep recognition.

5.2 Experimental dataset

In the training stage, it is necessary to construct a mini-
sized training set for machine learning, which will be
applied to fix the parameters of sigmoid and softmax func-
tion. In the testing stage, we also need to build the testing
set for evaluation. The easiest way to do this is to apply
the same dataset to both the training and testing stages in
a way of cross-validation. But, as pointed out by Platt [26],
using the same data twice can sometimes lead to a dis-
astrously biased estimate. Moreover, it cannot be proved
that the approach is broadly practical. Therefore, in exper-
iments, we used different datasets in the training and
testing stages separately. The details of the training set and
testing set are shown as follows:

Training database set

1) Expression recognition: We used the
Cohn-Kanade expression database (CK+) [29],
which is a set of frontal face images posed by 123
people, but not all of the people posed each type of
expression we needed. Therefore, we also collected
some samples online using an image search engine.
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Figure 4 Examples of object recognition results.

Finally, we obtained 240 initial facial samples for each
type of emotion. All of these facial samples were
normalized to 90 x 100 pixels.

2) Object recognition: a) 213 samples of

JAFFE [30] were used for face training, which were
normalized to 90 x 100 pixels; b) 600 side view
car-training samples from the PASCAL

VOC 2007 dataset [31] were used for car training,
which were normalized to 100 x 250 pixels; c) 600
samples were collected using the Google search
engine for sheep training, which were normalized to
200 x 200 pixels.

In the training stages, the training data of current pro-
cessing category were adopted as positive sample data; the
other categories’ data were used for negative data.

Testing database set

1) Expression recognition: In order to evaluate both
of the real-life and ideal situations, we used two parts
of testing sets. One part was obtained from soap
operas, because many public databases were
processed by providers in advance or for the other
reasons, such as the images cannot represent real-life
scenes, because they are not continuous images etc.
Hence, we had to use some video clips from comedy
dramas, which had a total of ten persons whose facial
expressions were similar to the training samples. The
images of these actors and actresses are on eight
video clips having a length of 120 s. We marked this
set as Test Set A. The other testing set was the JAFFE
database [30], whose facial samples are totally
different from the CK+ database. The 213 JAFFE
images were mixed randomly, and one image could

be used repeatedly (to ensure that there are enough
images for different video making). These images
were also made into eight 120-s-long videos, and we
marked this set as Test Set B.

2) Object recognition: 80 facial samples collected
from the FDDB [32], 80 car-testing samples collected
from the PASCAL VOC 2005 database [31], and 80
samples of sheep collected from NUS-WIDE [33]
were mixed and made into three clips of 9-min-long
videos. All of the testing videos were normalized to
the size of 640 x 480 and the frame rate of 60 frames
per second (FPS). These videos were used to do
evaluation experiments.

5.3 Experimental evaluation
5.3.1 Expression recognition
Training experiments The training database of all meth-
ods was mentioned above, but only the proposed method
did not adopt any process to obtain plenty of mirror
samples. Hence, it reduced a mass of samples and took
only 49.8 min to complete the whole process. Besides,
the training procedure was fully automatic. The training
results are shown in Table 1.

However, in order to enhance the generalization per-
formance of comparison methods, we had to deal with
the samples by some transformations (mirror reflec-
tion and rotate the images by horizontal and vertical
angles £15°, =+ 30° and = 60° etc.). Finally, we obtained

Table 1 Training efficiency evaluation results
Method LSH-CORF [9] 3D LUT[20]
318 min 172.5 min

Proposed LBP-TOP [10]

49.8 min

Time cost 73 min
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each class 30,960, total 123,840 facial samples for training
classifiers. Therefore, they are very time-consuming tasks.

Testing experiments Figure 5 indicates the expression-
recognition rate for different feature detectors based on
the proposed framework. The aim of this experiment
was evaluating the performance of the proposed detec-
tor using different methods of feature extraction. Hence,
this experiment was done without a PSM model. The
results showed that feature detectors using SURF and
SIFT obtained more accurate recognition rates, but the
average speed of the SIFT detector’s version was only
16.8 FPS. In comparison, the speed of the SURF’s version
reached 39.4 FPS. Theoretically, 16.8 FPS is too slow to
deal with complex scenes, such as real-time scenes. Our
framework adopted an 8-bin T2 descriptor as the descrip-
tor. It obtained similarly accurate recognition results com-
pared to the accuracy of the original SURF’s version and
even the SIFT’s one, but it surpassed the others in regard
to feature extraction speed. In fact, in our experiments, 8-
bin T2 descriptors had almost the same accuracy as the
original SURF; however, the speed of original SURF ver-
sion was only about 19 FPS, which was also extremely
slow. Therefore, the feature descriptor based on 8-bin T2
SURE is the best choice for our framework.

In Figure 6, the component selection of the proposed
method was carried out to investigate how each compo-
nent contributes to the recognition rate. As a result, the
OVR-SVMs + PSM + SURF model was the most accurate
version.

Figure 7 shows the results of the evaluation experi-
ments for expressional region attributes. Figure 7a shows
the results for Test Set A videos, and Figure 7b shows
the results for Test Set B. In the experiments, we found
that after introducing the region attributes model, the

70%

—-—Haar_like «=ill=LBP
SIFT =>e=SURF

x\/(\x

60%

50%

40%

30%

Recognition Rate

20%

10%

0%

Happy Anger Surprise Neutral

Figure 5 Expression-recognition rates on different features.
Green: recognition rate for OVR-SVMs with SIFT. Purple: recognition
rate for OVR-SVMs with SURF. Blue: recognition rate for OVR-SVMs
with Haar-like. Red: recognition rate for OVR-SVMs with LBP. Features
using SURF and SIFT obtained the more accurate results, but the
feature extraction speed of SIFT was low.
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Figure 6 Expression-recognition rates based on different
component selection. Top: recognition rate for proposed method.
Middle: proposed method without PSM; i.e., the OVR-SVMs + SURF
model. Bottom: OVR-SVMs adopting the image RGB pixel value.
OVR-SVMs + PSM + SURF (proposed method) is the most accurate
version of our detector.

recognition accuracy of Test Set A improved approxi-
mately by 7%. On the other hand, the results of Test Set
B were almost unchanged, since the videos in Test Set B
consisted of JAFFE images, and these images had been
normalized by the supplier [30]. But the videos of Test Set
A were used without any normalization. Therefore, this
approach is capable of dealing with original images better;
i.e., it is good at processing real-life videos.

Tables 2 and 3 indicate the recognition accuracies, and
they show the performance of the proposed method com-
pared to some state-of-the-art methods: 3D LUT [20] and
LSH-COREF [9] are the latest methods for facial expres-
sions recognition; LBP-TOP [10] is a well-known and
classical expression recognition method. All of the com-
parison methods were conducted using their released
codes, and the data had been tuned to better adapt for
our experiments. Note that in this paper, the average pre-
cision was evaluated on the root mean square (RMS) of

each expression accuracy, namely, average = ,/ Zle p?/L
(pi denotes the accuracy of ith expression, and L is the
total of expressional categories). Because it can denote the
mean level of recognition rate better than mean average
precision (mAP) for the event containing different sample
numbers in each independent class.

Table 2 shows the recognition rate of evaluation exper-
iments for Test Set A. Since the human races and facial
expressions of Test Set A’s people were similar to those
of the training samples, meanwhile, the region attribute
model was effective for Test Set A in which there are
videos from real life. Consequently, its accuracy was quite
better than the Test Set B’'s. The maximum recognition
precision of the proposed method was 86.3%, and the
worst result was 69.3%.

On the other hand, Table 3 shows the recognition accu-
racies for Test Set B. Due to the variation and complexity
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Figure 7 Evaluation results for expressional region attributes.
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of facial expressions across different cultures and races,
the region attribute model was not effective for facial
recognition. The results for this test set were not better
than Test Set A’s. But on the whole, the results of both
test sets show that the proposed method was the more
accurate version of these methods. Note that the proposed
method used training samples without any image-mirror
process here. Namely, based on the mini-size training set,
the proposed method can also obtain a better result; thus,
this model allows for generating ideal strong classifiers
without the need for large volumes of training samples.
Hence, under these experimental conditions, the validity
of the proposed methods was proved.

5.3.2 Object recognition

Training experiments As our methods effectively
reduce a great number of samples, it took very little time
to complete the training process: 2.3 min (face), 10.1 min
(car), and 10.6 min (sheep), respectively. The related data
are shown in Table 4.

Testing experiments Figure 8 shows the experimen-
tal results. In Figure 8a, the component selections of
the proposed method were evaluated. The middle one
denoted the results of the proposed method without PSM,
namely, the OVR-SVM + SURF model. The bottom one
indicated the recognition result based on OVR-SVM.

Table 2 Experimental results of expression recognition for
Test Set A

The OVR-SVM + PSM + SURF model was also the
most accurate version of our object classifier. This also
proves the outstanding versatility of the proposed method
because it can analyze both human behaviors and object
categories.

Figure 8b shows recognition results evaluated by the lat-
est detectors. Li et al. [4] claimed they took about 47 min
on their PC (Core i7 3.2 GHz CPU and 12 GB RAM) to
obtain their ideal facial detectors, which could obtain a
precision of 94% (the total of their training samples was
63,000). However, with our approach, using just 213 sam-
ples, we were able to achieve similar results. In the other
experiment, we gained a little better result, using the same
database as Li et al. did for car recognition. On the other
hand, for sheep recognition, [34] adopted SIFT features
based on SVM to obtain the best accuracy of 81.7% (ver-
sus our 86.7%). They did not provide their training time,
but there is a reason to believe that the proposed method
is better because the amount of their samples is hundreds
of times more than ours. We applied similar classifiers;
moreover, it was demonstrated that SURF extraction is
much faster and more efficient than SIFT in [5].

6 Conclusions

This paper brings together effective normalization mea-
sures, visual features, and image attributes to construct
a robust classification framework that minimizes the

Table 3 Experimental results of expression recognition for
Test SetB

Items Proposed LSH-CORF[9] 3D LUT[20] LBP-TOP[10] Items Proposed LSH-CORF[9] 3D LUT[20] LBP-TOP[10]
Happy 69.3% 61.6% 61.2% 71.6% Happy 62.4% 65.3% 57.7% 69.4%
Anger 70.9% 56.3% 50.9% 52.1% Anger 64.2% 52.0% 482% 333%
Suprise 86.3% 73.8% 68.6% 336% Suprise 79.3% 58.4% 68.4% 423%
Neutral 78.3% 70.3% 65.6% 423% Neutral 66.5% 71.2% 71.6% 11.7%
Average (RMS) 76.5% 65.9% 61.9% 51.9% Average (RMS) 68.4% 62.1% 62.2% 44.3%
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Table 4 Total of samples and learning time for object
recognition

Method Time cost Sample quantity

Face: 213
Proposed 23~10.6 min Car: 600

Sheep: 600

. Face: 63,000

SURF_Ada [4] 47 min (face) -

Car: 92,00
SIFT_SVM [34] --- Sheep: 964,849

amount of training data needed while also improving the
training efficiency. It can solve the question how to make
classifiers be capable of processing images rapidly and
accurately even without having to rely on a large-scale
dataset. Hence, it is important to those with closely related
research interests.

PSM is an effective approach for alleviating the trou-
ble of collecting large amounts of training samples. By
carrying out a large number of experiments, we found
that SURF is the most suitable feature descriptor for our
classifier, and the region attributes of images can revise
some incorrectly detected classifiers caused by visual fea-
tures. Combining these approaches, a robust classification
framework can be constructed, which offers three major
advantages. First, it can minimize the amount of train-
ing data and improve the training efficiency. Second, the
recognition accuracy is comparable to state-of-the-art
algorithms. Third, this framework can apply to not only
facial expression recognition but also object recognition.
The experiments proved the proposed method was valid
in regard to training efficiency, recognition accuracy, and
versatility.

In future research, considering a possible implementa-
tion in a real-life scenario, we are inclined to consider
these points: 1) we will try to use region attributes as
binary latent variables, which are incorporated into the
SVM model for inference, and 2) we will ameliorate meth-
ods for the construction of SVMs to improve accuracy and
to make our method capable of handling more complex
tasks.
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7 Appendix

7.1 Additional explanation for Algorithm 1

Procrustes analysis is a statistical tool for analyzing geo-
metrical shapes. A shape (or equivalently a figure) P in R”
is represented by / landmarks. Two figures P : [ x p and P":
[ x p' are said to have the same shape, if they are related
by a special similarity transformation:

P =aPT + Iyt (13)

where the parameters of the similarity transformation are
arotation matrix I": p x p/, |T'| = 1, a translation matrix y:
P’ x [, a positive scaling factor «, and I is a vector of ones.
By using the generalized Procrustes analysis, it is possible
to derive a consensus shape for a collection of figures [21],
which is then used in registering new shapes into align-
ment with the collection by an Affine transformation. In
a 3D model, the geometry is defined as a shape vector
S3p € R3, which contains the x, y, and z coordinates of
vertices. And Equation 13 is adjusted as follows

S=so+ Y PBisi. (14)
i=1

where 8 = (B1,82,- -+, Bm)” is the shape parameter and
m is the dimension of the shape parameter which was
determined to represent the shape of the 3D model. Given
the input image indicated as Sop = (%1,¥1,- - , %, ¥u) €
R?, the shape parameter 8 needs to be determined such
that it minimizes the shape residual between the projected
3D facial shape generated by the shape parameter and
the input 2D facial shape. The optimal shape and pose
parameters (8, Ry, T') are obtained from

E, = |[P(RgS3p + T) — Sap*. (15)

where S3p is a 3 x n matrix that is reshaped from the 3n x 1
model shape vector obtained using Equation 13, Pisa2x3
orthographic projection matrix, T is a 3 x # translation
matrix consisting of # translation vectors ¢ =[t,, £, 17,
and Ry is a 3 x 3 rotation matrix where the yaw angle is 6.
The 3D shape creation is indicated as follows:

1. Initialization: set 8o = 0 and k = 1.

100%

W Proposed method B SURF_Ada [4] mSIFT_SVM([34]
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Figure 8 Experimental results for object categories classification. (a) Evaluation of the component selection. (b) Recognition results.
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2. Alignment: Syp is aligned with the 2D shape
obtained by projecting the frontal 3D shape (s;) onto
the x — y plane.

3. Update Ry and T with the fixed shape parameter
by min ||P(RpS3p + T) — Sop |2, and reconstruct
(S3p)« using the shape parameter Sy.

4. Verify whether E, < ¢ or k > N; if not, go to step
3andk=k+ 1.

5. Reconstruct S3p using the final shape parameters.

When E, is below a threshold (e.g. in [21], Gower sug-
gested setting ¢ = 10™%) or the landmarks are processed
over, the reconstruction would be stopped, and the con-
sensus shape would be output.

Note: Part content of this Appendix was published in the
ACM International Conference on Multimedia 2013.
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