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Abstract

The Chan-Vese model is very popular for image segmentation. Technically, it combines the reduced Mumford-Shah
model and level set method (LSM). This segmentation problem is solved interchangeably by computing a gradient
descent flow and expensively and tediously re-initializing a level set function (LSF). Though many approaches have
been proposed to overcome the re-initialization problem, the low efficiency for this segmentation problem is still
not solved effectively. In this paper, we first investigate the relationship between the L1-based total variation (TV)
regularizer term of Chan-Vese model and the constraint on LSF and then propose a new technique to solve the
re-initialization problem. In detail, four fast projection methods are proposed, i.e., split Bregman projection method
(SBPM), augmented Lagrangian projection method (ALPM), dual split Bregman projection method (DSBPM), and
dual augmented Lagrangian projection method (DALPM). These four methods without re-initialization are faster
than the existing approaches. Finally, extensive numerical experiments on synthetic and real images are presented
to validate the effectiveness and efficiency of these four proposed methods.
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1. Introduction
Image segmentation is a popular research topic in image
processing, as it has a number of significant applications
in object detection and moving object tracking, re-
sources classification in SAR images, organs segmenta-
tion and 3D reconstruction in medical images, etc.
Among the segmentation approaches, the variational
models [1-4] are one of the influential and effective
methods. In detail, the Snake model [5] and Mumford-
Shah model [6] are two fundamental models for image
segmentation using variational method. The first one is
a typical parametric active contour model based on
image edges and fast for segmentation. However, this
parametric model is not very effective for images with
weak edge and meanwhile fails to deal with adaptive top-
ologies. The second one is a typical region-based model,
which aims to replace the original image with a piece-
wise smooth image and a minimum contour for image
segmentation by minimizing an energy functional. The-
oretically, it is very difficult to optimize this Mumford-
Shah functional as it includes two energy terms defined
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in two-dimensional image space and one-dimensional
contour space respectively. In order to implement this
model numerically, Aubert et al. [7-9] introduced the
concept of shape derivative and transformed the two-
dimensional energy term into one-dimensional one.
Consequently, the original model becomes a parametric
active contour model. Different from [5], authors in
[7-9] developed a level set scheme [10] to achieve curve
evolution for adaptive topologies. Another routine to
optimize the Mumford-Shah model is to transform the
term in contour space into the one in image space,
which can be achieved via introducing a proper charac-
teristic function for each different phase that represents
different feature in an image. An equivalent energy func-
tional of the original Mumford-Shah model was pro-
posed in [11] via elliptic function approximation based
on Gamma-convergence theory. Then, this new Gamma-
convergence approximated Mumford-Shah model was ex-
tended to segment multiphase images [12-14], which
forms the first Gamma-convergence family for variational
image segmentation. The second family is variational level
set method (VLSM) [15] that combines classical LSM and
variational method. The most famous model of this family
is Chan-Vese model [16], the first one making use of
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Heaviside function of LSF to design characteristic function
and then realize two-phase piecewise constant image seg-
mentation. Also, this model has been successfully extended
for a great number of multiphase image segmentation
[17-19]. The third family is variational label function
method (VLFM) sometimes also called piecewise constant
level set method [20-22] or fuzzy membership function
method [23]. However, if the Heaviside function of LSF is
considered as a label function, the third family is actually
an extended version of the second one.
Technically, the energy functional minimization for

image segmentation results in a set of partial differential
equations (PDEs), which must be solved numerically.
Compared with other traditional methods, the computa-
tional efficiency of variational image segmentation
model is much slower, so developing its fast numerical
algorithms is always a challenging task in this area.
Traditionally, the models in the first two families are
usually solved by gradient descent flow. Therefore, the
resulting Euler equations always include complicated
curvature term, which usually leads to slow computa-
tional efficiency. Previously, some fast algorithms for op-
timizing L1-based total variation (TV) term have already
been efficiently applied to the models of third family
(VLFM). For example, novel split Bregman algorithm
[24,25], dual method [26,27], and augmented Lagrangian
method [21,22,28], and these fast algorithms all avoid
computing complex curvature associated with TV regu-
larizer term. Therefore, these proposed algorithms can
improve the convergent rate to a great extent.
For the second family, the VLSM for image segmenta-

tion usually uses zero level set of a continuous sign dis-
tance function (SDF) to represent a contour and the
geometric features (i.e., normal and curvature) can be cal-
culated naturally via SDF. Along this way, the post-
processing of curves and surfaces will be very convenient.
However, the LSF is not preserved as a SDF anymore in
the contour evolution and thus the geometric virtue on
zero level set will be lost. There are two methods [29,30]
to overcome this problem: the traditional one is periodic-
ally re-initializing the LSF as a SDF by solving a static
eikonal equation or a dynamical Hamilton-Jacobi equation
using upwind scheme [29,31-33]. However, this is very
expensive and tedious and may make the zero level set
moving to undesired positions. The novel one is by con-
straining LSF to remain a SDF during the contour evolu-
tion through adding penalty terms into the original energy
functional [30,34]. However, the penalty parameter limits
the time step for the LSF evolution due to Courant-
Friedrichs-Lewy (CFL) condition [35] and thus the SDF
cannot be preserved unless penalty parameter is very
large, which cannot guarantee the stability of numerical
computation. In order to avoid CFL condition, researchers
in [36] proposed completely augmented Lagrangian method
by introducing eight auxiliary variables and four penalty
parameters, leading to numerous sub-minimization and
sub-maximization problems for every introduced variable.
Therefore, the resulting models are very complicated.
In this paper, we investigate the relationship between

the TV regularizer term of Chan-Vese model and the
constraint of LSF as a SDF and then propose a new
model with fewer auxiliary variables in comparison with
[36]. In this case, we can transform the constraint into a
very simple algebra equation that can be explicitly im-
plemented via direct projection approach without re-
initialization. Based on this explicit model and novel
technique, three algorithms in the third family (i.e., split
Bregman algorithm, dual method, and augmented
Lagrangian method) for optimizing the variational
models can be conveniently extended to Chan-Vese model
in second family, and thus four fast algorithms are devel-
oped (i.e., split Bregman projection method, augmented
Lagrangian projection method, dual split Bregman projec-
tion method, and dual augmented Lagrangian projection
method). Technically, the resulting equations in the pro-
posed four algorithms include four components: (1): a
simple Euler-Lagrange equation for LSF and this Euler-
Lagrange equation can be solved via fast Gauss-Seidel iter-
ation, (2): a generalized soft thresholding formula in
analytical form, (3): a fast iterative formula for dual vari-
able, and (4): a very simple projection formula. These four
components can be used elegantly to avoid computing the
complex curvature in [16,30,34]. In addition, all the four
proposed fast projection methods can preserve full LSF as
a SDF precisely without a very large penalty parameter
due to the introduced Lagrangian multiplier and Bregman
iterative parameter. So a relatively large time step is
allowed to be employed to speed up LSF evaluation in
comparison with [30,34]. Most importantly, even if the
LSF is initialized as a piecewise constant function, it can
be corrected automatically due to the iterative projection
computation. Therefore, our proposed methods have both
higher computational efficiency and better SDF fidelity
than those reported in [30,34,36]. What is worth mention-
ing here is that our proposed algorithms are quite generic
and can be easily extended to all models using VLSM for
multiphase image segmentation, motion segmentation, 3D
reconstruction etc. For example, the case [37] for multi-
phase image segmentation has been investigated by using
augmented Lagrangian projection method in our recent
work.
This paper is organized as follows: in Section 2, we

first present the Chan-Vese model under VLSM frame-
work and then review some previous approaches with con-
straint of LSF as a SDF. In Section 3, the fast split Bregman
projection method (SBPM), augmented Lagrangian pro-
jection method (ALPM), dual split Bregman projection
method (DSBPM), dual augmented Lagrangian projection



Duan et al. EURASIP Journal on Image and Video Processing 2014, 2014:7 Page 3 of 16
http://jivp.eurasipjournals.com/content/2014/1/7
method (DALPM) are presented. In Section 4, extensive
numerical experiments have been conducted to compare
our proposed fast methods with some existing approaches.
Finally, concluding remarks and outlooks are given.

2. The Chan-Vese model and its traditional
solution scheme
2.1 Mumford-Shah model
We first introduce the Mumford-Shah model that is the
basic of this paper, and it can be discussed below. For a
scalar image f(x): Ω→ R, the Mumford-Shah model can
be stated as the following energy functional minimization
problem

Min
u;Γ

E u; Γð Þ¼ α

Z
Ω

u−fð Þ2dxþβ

Z
Ω=Γ

∇uj j2dxþγ

Z
Γ
ds

� �

ð1Þ

where f is the original input image. The objective of this
model is to find a piecewise smooth image u and a mini-
mum contour Γ to minimize (1). α, β, and γ are three
positive penalty parameters. This problem is hard to
solve due to inconsistent dimension μ and Γ. In order to
solve Equation 1 approximately, Chan and Vese [16] first
combined the reduced Mumford-Shah model [6] and
VLSM [10] and proposed the following Chan-Vese model
with an idea of dividing an image into two regions

Min
u;Γ

E u; Γð Þ ¼ α1

Z
Ω1

u1−fð Þ2dxþ α2

Z
Ω2

u2−fð Þ2dxþ γ

Z
Γ
ds

� �

ð2Þ

where u = (u1, u2) stands for piecewise constant image
mean value in regions Ω1 and Ω2, respectively, and Ω =Ω1

∪ Ω2, Ω1 ∩ Ω2 =∅.

2.2 Traditional LSM
In order to understand the Chan-Vese model clearly, let
us first recall some concepts of traditional LSM. Γ(t) is
defined as a closed contour that separates two regions
Ω1(t) and Ω2(t), and a Lipschitz continuous LSF ϕ(x,t) is
defined as

ϕ x; tð Þ > 0 x ∈ Ω1 tð Þ
ϕ x; tð Þ ¼ 0 x ∈ Γ tð Þ
ϕ x; tð Þ < 0 x ∈ Ω2 tð Þ

8<
: ð3Þ

where Γ(t) corresponds to zero level set {x:ϕ(x, t) = 0} and
its evolution equation can be transformed into zero level
set of ϕ(x,t). Then, we differentiate ϕ(x,t) = 0 with respect
to t and obtain the following LSF evolution equation

ϕt þ
dx
dt

⋅∇ϕ ¼ 0 ð4Þ
As the normal on {x : ϕ(x, t) = 0} is N
→¼ ∇ϕ= ∇ϕj j ,

Equation 4 can be rewritten as the following standard
level set evolution equation:

ϕt þ vN ∇ϕj j ¼ 0 ð5Þ
where normal velocity vN of Γ(t) is dx

dt ⋅
∇ϕ
∇ϕj j.

Usually, ϕ(x,t) is defined as a SDF

ϕ x; tð Þ ¼ d x; Γ tð Þð Þ x ∈ Ω1 tð Þ
ϕ x; tð Þ ¼ 0 x ∈ Γ tð Þ

ϕ x; tð Þ ¼ −d x; tð Þð Þ x ∈ Ω2 tð Þ

8<
:

ð6Þ
Where d(x, Γ(t)) denotes the Euclidean distance from

x to Γ(t). An equivalent constraint to Equation 6 is the
eikonal equation

∇ϕ x; tð Þj j ¼ 1 ð7Þ
In order to satisfy Equation 7, an iterative re-initialization

scheme [16] is used to solve the steady state of following
equation:

ϕt þ sign ϕ0ð Þ ∇ϕj j−1ð Þ ¼ 0 in Ω� R
ϕ x; 0ð Þ ¼ ϕ0 in Ω

�
ð8Þ

where ϕ0 is the function to be reinitialized and sign(ϕ0)
denotes the sign function of ϕ0.

2.3 The Chan-Vese model under VLSM framework and
its solution
By using Heaviside function of LSF and its total variation
form, Chan and Vese [16] transformed the model (2)
into VLSM. In fact, a Heaviside function is defined as

H xð Þ ¼ 1 x≥0
0 otherwise

�
ð9Þ

Its derivative in the distributional sense is the Dirac
function

δ xð Þ ¼ ∂H xð Þ
∂x

ð10aÞ

According to Equation 9, the characteristic function of
Ω1 and Ω2 can be defined as

χ1 xð Þ ¼ H ϕ xð Þð Þ ¼ 1 x ∈ Ω1

0 otherwise

�
ð10bÞ

χ2 xð Þ ¼ 1−H ϕ xð Þð Þ ¼ 1 x ∈ Ω2

0 otherwise

�
ð10cÞ

Based on the co-area formula [38] of characteristic
functions, the length term in Equation 2 can be approxi-
mately defined in image space Ω as
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γ

Z
Γ
ds ¼ γ

Z
Ω
∇H ϕð Þj jdx ¼ γ

Z
Ω
∇ϕj jδ ϕð Þdx ð11Þ

Therefore, Equation 2 can be rewritten as the follow-
ing VLSM:

Min
ϕ;u

�
E ϕ;u1;u2ð Þ ¼ α1

Z
Ω

u1−fð Þ2H ϕð Þdx

þ α2

Z
Ω

u2−fð Þ2 1−H ϕð Þð Þdx

þ γ

Z
Ω
∇ϕj jδ ϕð Þdx

�
ð12Þ

Equation 12 is a multivariate minimization problem
and usually solved via alternative optimization proced-
ure. First fix ϕ to optimize u and then fix u for optimiz-
ing ϕ. In detail, when ϕ is fixed, we obtain

u1 ¼

Z
Ω
fH ϕð ÞdxZ

Ω
H ϕð Þdx

; u2 ¼

Z
Ω
f 1−H ϕð Þð ÞdxZ

Ω
1−H ϕð Þð Þdx

ð13Þ

On the other hand, when u is fixed, the sub-problem
of optimization with respect to ϕ is as follows:

Min
ϕ

E ϕð Þ ¼
Z

Ω
Q12 u1; u2ð ÞH ϕð Þdxþ γ

Z
Ω
∇H ϕð Þj jdx

� �

ð14Þ
where Q12(u1, u2) = α1(u1 − f )2 − α2(u2 − f )2. In order to
solve Equation 14, we need to compute the evolution
equation of ϕ via gradient descent flow as

∂ϕ
∂t

¼ γ∇⋅
∇ϕ
∇ϕj j

� �
−Q12 u1; u2ð Þ

� �
δ ϕð Þ in Ω

∂ϕ

∂ n
→ ¼ 0 on ∂Ω

8>><
>>:

ð15Þ
In order to avoid singularity in numerical implementa-

tion for Equation 15, the Heaviside function and Dirac
function are usually approximated by their regularized
version with a small positive regularized parameter ε as

Hε ϕð Þ ¼ 1
2
þ 1
π
arc tan

ϕ

ε

� �
ð16aÞ

δε ϕð Þ ¼ 1
π

ε

ϕ2 þ ε2
ð16bÞ

As both the energy functional (12) and the evolution
Equation 15 do not include any exact definition of LSF
ϕ as a SDF, the ϕ will not be preserved as a SDF during
the contour evolution, which leads to accuracy loss in
curve or surface expression.
The first correction approach to preserve the LSF as a

SDF is solving Equation 8 using upwind scheme after
some iterations of ϕ using Equation 15. However, this
method is expensive and may cause the interface to
shrink and move to undesirable positions. In order to
make comparisons with other methods, we name this
re-initialization approach as gradient descent equation
with re-initialization method (GDEWRM).
The second correction approach, which was proposed

by [30] as following, is to add the constraint Equation 7
as a penalty term into Equation 14 in order to avoid the
tedious re-initialization process

Min
ϕ

�
E ϕð Þ ¼

Z
Ω
Q12Hε ϕð Þdxþ γ

Z
Ω
∇H ε ϕð Þj jdx

þ μ

2

Z
Ω

∇ϕj j−1ð Þ2dx
�

ð17Þ

Theoretically, μ should be a large penalty parameter in
order to sufficiently penalize the constraint |∇ϕ| = 1 as a
SDF. However, under such circumstance, we cannot
choose a relatively large time step to improve the com-
putational efficiency due to the CFL stability condition
[35]. Here, we name this method as gradient descent
equation without re-initialization method (GDEWORM).
As an extension of (17), an augmented Lagrangian

method (ALM) and a projection Lagrangian method
(PLM) are proposed by [34] to remain the LSF as a SDF
during the LSF evolution. These two extensions can be
expressed as follows, respectively:

Min
ϕ

�
E ϕ; λð Þ ¼

Z
Ω
Q12Hε ϕð Þdxþ γ

Z
Ω
∇Hε ϕð Þj jdx

þ
Z

Ω
λ ∇ϕj j−1ð Þdxþ μ

2

Z
Ω

∇ϕj j−1ð Þ2dx
�

ð18Þ

Min
ϕ;w→

�
E ϕ;w

→
� �

¼
Z

Ω
Q12Hε ϕð Þdxþ γ

Z
Ω
∇H ε ϕð Þj jdx

þ
Z

Ω
λ w

→
��� ���−1� �

dxþ μ

2

Z
Ω

w
→ −∇ϕ

� �2
dx

�

ð19Þ

Different from GDEWORM, ALM (18) enforces the
constraint |∇ϕ| = 1 via Lagrangian parameter λ. There-
fore, a relatively small penalty parameter μ can be
chosen to improve the stability of numerical calculation
of Equation 18. The PLM (19) is actually proposed by
combining variable splitting and penalty approach, so it
is more efficient than GDEWORM due to the split tech-
nique. However, one drawback still exists: as μ becomes
very large, the intermediate minimization process of
PLM becomes increasingly ill-conditioned as happened
for GDEWORM.
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Using the similar idea, [36] introduced four auxiliary
variables and four Lagrangian multipliers to deal with the
same constrained optimization problem. The minimization
problem is reformulated as following, and here, we name
it as completely augmented Lagrangian method (CALM).

E ϕ; φ; s; v
→
;w
→

� �
¼
Z

Ω
Q12sdxþ γ

Z
Ω

v
→
��� ���dx

þ
Z

Ω
λ2 s−Hε φð Þð Þdxþ μ2

2

Z
Ω

s−H ε φð Þð Þ2dx

þ
Z

Ω
λ
→

3
⋅ v

→ −∇s
� �

dxþ μ3
2

Z
Ω

v
→ −∇s

� �2
dx

þ
Z

Ω
λ1 φ−ϕð Þdxþ μ1

2

Z
Ω

φ−ϕð Þ2dx

þ
Z

Ω
λ
→

4
⋅ w→ −∇ϕ
� �

dxþ μ4
2

Z
Ω

w→ −∇ϕ
� �2

dx

ð20Þ

s:t w
→
��� ��� ¼ 1: ð21Þ

Note that all of the above methods, GDEWRM (8, 14),
GDEWORM (17), ALM (18), and PLM (19), only take
efforts in how to add the constraint |∇ϕ| = 1 into the
original functional and ignore the TV regularizer term ∫ Ω|
∇H(ϕ)|dx. Therefore, their resulting evolution equations
bring about complex curvature terms, and the com-
putational efficiency will be very slow due to such compli-
cated finite difference scheme for the curvature. Through
introducing eight variables in CALM (20), each sub-
minimization or sub-maximization problem of this model
becomes very simple because there is no curvature term
in these sub-problems. However, as we know, every vari-
able including Lagrangian multiplier is defined in the do-
main of image space, which implies the more variables the
model has, the less efficient it will become. Moreover,
there are five penalty parameters setting up in the CALM,
so the choices of these parameters are more difficult. In
order to avoid computing curvature and meanwhile de-
crease the number of the introduced variables and param-
eters, we will design fast algorithms in the next section, by
taking into full consideration the relationship between
regularization term ∫ Ω|∇H(ϕ)|dx and constraint term
|∇ϕ| = 1.

3. Four fast projection methods
The fast split Bregman method [24,25], dual method
[26], and augmented Lagrangian method [28] proposed
for TV model for image restoration have been success-
fully extended to the Chan-Vese model under VLFM
framework [20,38], but they cannot be directly applied
to Chan-Vese model under VLSM framework due to the
complex constraint |∇ϕ| = 1. In this section, inspired
by these fast algorithms, we aim to design some new
fast algorithms for Chan-Vese model [16] without
re-initialization under VLSM framework. Through
introducing two or three auxiliary variables, the con-
straint is transformed into a very simple projection for-
mula so that our proposed fast methods are able to
avoid both expensive re-initialization process and com-
plex curvature appearance in the evolution equations.
Therefore, the proposed methods are faster than their
counterparts with higher performance.
In order to state the problem clearly, we rewrite the

traditional Chan-Vese model (14) and the constraint (7)
as the following:

Min
ϕ

E ϕð Þ ¼
Z

Ω
Q12 u1; u2ð ÞHε ϕð Þdxþ γ

Z
Ω
∇ϕj jδε ϕð Þdx

� �

ð22aÞ
s:t: ∇ϕj j ¼ 1: ð22bÞ

Next, we will introduce each fast algorithm separately.

3.1 Split Bregman projection method
Unlike Equations 18 and 19, we do not put the constraint
Equation 22b directly into functional Equation 22a. In-

stead, we introduce an auxiliary splitting variable w
→

to re-
place the ∇ϕ in the TV regularizer term ∫ Ω|∇ϕ|δε(ϕ)dx.
Therefore, the constraint Equation 22b becomes con-

straint w→
��� ��� ¼ 1 and another constraint w→¼ ∇ϕ is pro-

duced. Then, we use the Bregman distance technique [25]

by introducing Bregman iterative parameter b
→

to satisfy

the constraint w
→¼ ∇ϕ , so we can transform Equation 22a,

b into the following optimization problem:

Min
ϕ;w

→

�
E ϕ;w

→
� �

¼
Z

Ω
Q12 u1;u2ð ÞHε ϕð Þdxþ γ

Z
Ω
w
→
��� ���δε ϕð Þdx

þ θ

2

Z
Ω

w−∇ϕ− b
→� �

dx

�
;

s:t: w
→
��� ��� ¼ 1;

In order optimize the above problem, we use the itera-
tive technique as

ϕkþ1;w→kþ1
� �

¼ arg min
ϕ;w

→

�
E ϕ;w→
� �

¼
Z

Ω
Q12 u1; u2ð ÞHε ϕð Þdx

þ γ

Z
Ω
w
→
��� ���δε ϕð Þdxþ θ

2

Z
Ω

� w−∇ϕ−b
→kþ1

� �
dx

�
;

ð23aÞ

s:t: w→
��� ��� ¼ 1; ð23bÞ
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where θ > 0 is a penalty parameter, w
→

and b
→

are vectors,

b
→kþ1 ¼ b

→k þ ∇ϕk−w
→k
; b

→0 ¼ w
→0 ¼ 0

→
: The alternating

minimization of E ϕ;w→
� �

with respect to ϕ and w→ leads to

the Euler-Lagrange equations, respectively

Q12 u1; u2ð Þδε ϕð Þ þ γ w
→k
��� ��� ∂δε ϕð Þ

∂ϕ
þ θ∇⋅ w

→k−∇ϕ−b
→kþ1

� �
¼ 0 in Ω

w
→k−∇ϕ−b

→kþ1
� �

⋅ n→¼ 0 on ∂Ω
;

8><
>:

ð24Þ

γ
w
→

w→
��� ��� δε ϕð Þ þ θ w→ −∇ϕkþ1−b

→
kþ1

� �
¼ 0

s: t: w
→
��� ��� ¼ 1

:

8>>><
>>>:

ð25Þ

Equation 24 can be solved using semi-implicit differ-
ence scheme and Gauss-Seidel iterative method, and the
first equation of Equation 25 can be expressed as a fol-
lowing generalized soft thresholding formula in analyt-
ical form

~w
→kþ1

¼Max ∇ϕkþ1 þ b
→

kþ1
��� ���− γ

θ
δε ϕkþ1
	 


; 0
� � ∇ϕkþ1 þ b

→
kþ1

∇ϕkþ1 þ b
→

kþ1
��� ��� :

ð26Þ

Then, w→
��� ��� ¼ 1 can be guaranteed via a simple projec-

tion technique as the following:

w
→kþ1 ¼ ~w

→kþ1

~w
→kþ1
����

����
: ð27Þ

Note that after computing the projection (27), the con-

straint w
→
��� ��� ¼ 1 is precisely guaranteed so that the con-

straint |∇ϕ| = 1 is indirectly adjusted by this projection
technique when evolution Equation 24 for LSF reaches
its steady state.
3.2 Augmented Lagrange projection method
The ALPM proposed in this part is different from pre-
vious ALM (18) and CALM (20). Here, we add the

constraint w→¼ ∇ϕ in energy functional through aug-
mented Lagrangian method and let the constraint

|∇ϕ| = 1 as a simple projection of auxiliary variable w
→
.

Compared with CALM (20) including eight variables
and four parameters, our augmented Lagrangian pro-
jection method is introduced only by two auxiliary
variables and one parameter θ. Similar to the Subsec-

tion 3.1, we introduce an auxiliary splitting variable w→

such that w
→ ≈∇ϕ when the following energy functional

approaches reach minimum.

ϕkþ1;w
→kþ1; λ

→kþ1
� �

¼ ArgMax
λ
→

Min
ϕ;w

→

E ϕ;w
→
; λ
→� �

¼
Z

Ω
Q12 u1; u2ð ÞH ε ϕð Þdxþ γ

Z
Ω
w
→
��� ���δε ϕð Þdx

þ
Z

Ω
λ
→
⋅ w

→ −∇ϕ
� �

dxþ θ

2

Z
Ω

w
→ −∇ϕ

� �2
dx

8><
>:

9>=
>;

ð28aÞ

s:t: w→
��� ��� ¼ 1; ð28bÞ

where λ
→
is the Lagrangian multiplier and θ is a positive pen-

alty parameter. The augmented Lagrangian method reduces
the possibility of ill-conditioning and makes the numerical
computation stable through iterative Lagrangian multiplier
during the process of the minimization. Therefore, different
from the previous penalty methods (17, 19) which need a
very large penalty parameter to penalize the constraint

effectively, the constraint w→¼ ∇ϕ of this method can
be guaranteed without increasing θ to a very large

value. Here, we minimize E ϕ;w
→
; λ
→� �

with respect to ϕ

and w
→
and maximize E ϕ;w

→
; λ
→� �

with respect to λ
→
. A sad-

dle point of the min-max problems satisfies the following:

Q12 u1; u2ð Þδε ϕð Þ þ γ w→k
��� ��� ∂δε ϕð Þ

∂ϕ
þ ∇⋅λ

→k þ θ∇⋅ w→k−∇ϕ
� �

¼ 0 in Ω

λ
→k þ θ w

→k−∇ϕ
� �� �

⋅ n→¼ 0 on ∂Ω

8><
>:

ð29Þ

γ
w→

w
→
��� ��� δε ϕkþ1

	 
þ λ
→

k þ θ w
→ −∇ϕkþ1

� �
¼ 0

s: t: w
→
��� ��� ¼ 1

8>><
>>:

ð30Þ

λ
→

kþ1 ¼ λ
→

k þ θ w
→kþ1−∇ϕkþ1

� �
; λ
→

0 ¼ 0 ð31Þ

Equation 29 can be solved using the same method as
Equation 24, and the first equation of Equation 30 can
be solved using the following generalized soft threshold-
ing formula in analytical form

~w
→kþ1

¼ Max ∇ϕkþ1−λ
→

k=θ
��� ���− γ

θ
δε ϕkþ1
	 


; 0
� � ∇ϕkþ1−λ

→
k=θ

∇ϕkþ1−λ
→

k=θ
��� ���

ð32Þ
Then, the second equation of Equation 30 can be im-

plemented as same as Equation 27.
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3.3 Dual split Bregman projection method
The dual method [26] is another fast algorithm proposed
in recent years for TV model for image restoration, and
it has been extensively applied to variational image seg-
mentation models [20] under VLFM framework. In
Equation 22a, ∫ Ω|∇ϕ|δε(ϕ)dx is not the total variation
of ϕ, but its equivalent formula ∫ Ω|∇Hε(ϕ)|dx is the
total variation of Hε(ϕ). Based on this observation, we
can introduce a dual variable to replace ∫ Ω|∇Hε(ϕ)|

dx with its dual formula Sup
p
→
: p

→
�� ��≤1 ∫ΩHε ϕð Þ∇⋅ p→ dx .

Thus, Equation 22a can be rewritten as following min-
max functional:

ϕkþ1; p
→kþ1

� �
¼ ArgMin

ϕ
Sup

p→: p→
�� ��≤1�

E ϕ; p
→

� �
¼
Z

Ω
Q12 u1;u2ð ÞHε ϕð Þdxþ γ

Z
Ω
Hε ϕð Þ∇⋅ p→ dx

�

ð33Þ
For the constraint |∇ϕ| = 1 (22b), we first introduce an

auxiliary variable w
→

and add the new constraint w
→¼ ∇ϕ

into (33) through Split Bregman iterative method, which
is expressed as following

ϕkþ1; p
→kþ1

;w
→kþ1

� �
¼ ArgMin

ϕ;w→
Sup

p
→
: p

→
�� ��≤1

E ϕ; p
→
;w
→

� �
¼
Z

Ω
Q12 u1; u2ð ÞHε ϕð Þdxþ γ

Z
Ω
Hε ϕð Þ∇⋅ p→ dx

þ θ

2

Z
Ω

w
→ −∇ϕ−b

→kþ1
� �2

dx

8>><
>>:

9>>=
>>;

ð34Þ
Then the constraint |∇ϕ| = 1 can be replaced by the

constraint w
→
��� ��� ¼ 1 so that we can conveniently use the

projection formula in Equation 27. Actually, the effect of

vector Bregman iterative parameter b
→

is used to reduce
the dependence on the penalty parameter θ, as the same
role of Lagrangian multiplier λ in augmented Lagrangian
projection method (28a). The Bregman iterative param-

eter b
→

can be updated by b
→kþ1 ¼ b

→k þ ∇ϕk−w
→k

, where

b
→0 ¼ w

→0 ¼ 0
→
: The Euler-Lagrange equation of ϕ in

Equation 34 is derived as

Q12 u1; u2ð Þ þ γ∇⋅p→k
� �

δε ϕð Þ þ θ∇⋅ w
→k−∇ϕ−b

→kþ1
� �

¼ 0 in Ω

w
→k−∇ϕ−b

→kþ1
� �

⋅ n→¼ 0 on ∂Ω

8<
:

ð35Þ

After ϕk + 1 is obtained, we can solve p
→
k þ 1 via the

gradient descent method

∂p→

∂t
¼ −γ∇H ϕkþ1

	 

; p→
��� ���≤1 ð36Þ
By using semi-implicit difference scheme and the
Karush-Kuhn-Tucker (KKT) conditions in [26], we can

update p
→
, and get following fast iterative formula for this

dual variable p
→
k þ 1

p
→kþ1 ¼ p

→k − τ∇H ϕkþ1
	 


1þ τ ∇H ϕkþ1
	 
�� �� ð37Þ

where τ ≤ 1/8 is a time step as in [26].
Then, we can get a simple analytical form for auxiliary

variable as the following:

~w
→kþ1

¼ ∇ϕkþ1 þ b
→

kþ1 ð38Þ

Finally, we use projection formula of ~w
→kþ1

as same as

Equation 27 in order to satisfy the constraint w→
��� ��� ¼ 1.

3.4 Dual augmented Lagrangian projection method
The same idea in Subsection 3.3 can be extended to
combine dual method and augmented Lagrangian pro-
jection method in Subsection 3.2, and this will lead to
the dual augmented Lagrangian projection method. In

detail, by introducing auxiliary variable w→ and putting

the constraint w→¼ ∇ϕ , we can transform Equation 33
into following iterative minimization formulation:

ϕkþ1; p
→kþ1;w

→kþ1
� �

¼ ArgMin
ϕ;w

→
Sup

p
→
: p

→
�� ��≤1

E ϕ; p
→
;w
→

� �
¼
Z

Ω
Q12 u1;u2ð ÞH ε ϕð Þdxþ γ

Z
Ω
Hε ϕð Þ∇⋅ p→ dx

þ
Z

Ω
λ
→
⋅ w

→ −∇ϕ
� �

dxþ θ

2

Z
Ω

w
→ −∇ϕ

� �2
dx

8><
>:

9>=
>;

ð39Þ

The constraint |∇ϕ| = 1 can be also expressed as the

constraint w
→
��� ��� ¼ 1 . By using the similar procedure, we

can obtain the Euler-Lagrange equation of ϕ as the
following;

Q12 u1;u2ð Þ þ γ∇⋅p→k
� �

δε ϕð Þ þ ∇⋅λk þ θ∇⋅ w→k−∇ϕ
� �

¼ 0 in Ω

λ
→

k þ θ w→k−∇ϕ
� �� �

⋅ n→¼ 0 on ∂Ω

8<
:

ð40Þ

The p→kþ1 is updated as same as Equation 38, and

~w
→kþ1

is the following analytical form

~w
→kþ1

¼ ∇ϕkþ1−
λ
→

k

θ
ð41Þ



Table 1 Abbreviations, full names, and their corresponding energy functionals of all methods for comparison

No. Abbreviations Full name Energy functional

1 GDEWRM Gradient descent equation with re-initialization [16] E(ϕ) = ∫ΩQ12H(ϕ)dx + γ ∫Ω|∇H(ϕ)|dx and ϕt þ Sign ϕ0ð Þ ∇ϕj j−1ð Þ ¼ 0
ϕ x; 0ð Þ ¼ ϕ0

�

2 GDEWORM Gradient descent equation without re-initialization [30] E ϕð Þ ¼Z
Ω
Q12Hε ϕð Þdx þ γ

Z
Ω
∇Hε ϕð Þj jdx þ μ

2

Z
Ω

∇ϕj j−1ð Þ2dx

3 ALM Augmented Lagrangian method [34] E ϕ; λð Þ ¼Z
Ω
Q12H ϕð Þdx þ γ

Z
Ω
∇H ϕð Þj jdx þZ

Ω
λ ∇ϕj j−1ð Þdx þ μ

2

Z
Ω

∇ϕj j−1ð Þ2dx

4 PLM Projection Lagrangian method [34] E ϕ;w
→

� �
¼Z

Ω
Q12H ϕð Þdx þ γ

Z
Ω
∇H ϕð Þj jdx þZ

Ω
λ w

→
��� ���−1� �

dx þ μ
2

Z
Ω

w
→

−∇ϕ
� �2

dx

5 CALM Completely augmented Lagrangian method [36] E ϕ;φ; s; v→;w→
� �

¼Z
Ω
Q12sdx þ γ

Z
Ω

v
→
��� ���dx þZ

Ω
λ2 s−Hε φð Þð Þdx

þ μ2
2

Z
Ω

s−Hε φð Þð Þ2dx

þZ
Ω
λ
→

3
⋅ v

→
−∇s

� �
dx þ μ3

2

Z
Ω

v
→
−∇s

� �2
dx

þZ
Ω
λ1 φ−ϕð Þdx þ μ1

2

Z
Ω

φ−ϕð Þ2dx

þZ
Ω
λ
→

4
⋅ w

→
−∇ϕ

� �
dx þ μ4

2

Z
Ω

w
→

−∇ϕ
� �2

dx

s: t: w
→
��� ��� ¼ 1

6 SBPM Split Bregman projection method E ϕ;w
→

� �
¼Z

Ω
Q12Hε ϕð Þdx þ γ

Z
Ω
w
→
��� ���δε ϕð Þdx þ θ

2

Z
Ω

w−∇ϕ−b
→kþ1� �

dx s: t: w
→
��� ��� ¼ 1

7 ALPM Augmented Lagrangian projection method E ϕ;w
→
; λ
→� �

¼Z
Ω
Q12Hε ϕð Þdx þ γ

Z
Ω
w
→
��� ���δε ϕð Þdx þZ

Ω
λ
→
⋅ w

→
−∇ϕ

� �
dx þ θ

2

Z
Ω

w
→

−∇ϕ
� �2

dx s: t: w
→
��� ��� ¼ 1

8 DSBPM Dual Split Bregman projection method E ϕ; p
→
;w
→

� �
¼Z

Ω
Q12Hε ϕð Þdx þ γ

Z
Ω
Hε ϕð Þ∇⋅ p→ dx þ θ

2

Z
Ω

w
→

−∇ϕ−b
→kþ1

� �2
dx s: t: w

→
��� ��� ¼ 1

9 DALPM Dual augmented Lagrangian method E ϕ; p
→
;w
→
; λ
→� �

¼Z
Ω
Q12Hε ϕð Þdx þ γ

Z
Ω
Hε ϕð Þ∇⋅ p→ dx þZ

Ω
λ
→
⋅ w

→
−∇ϕ

� �
dx þ θ

2

Z
Ω

w
→

−∇ϕ
� �2

dx s: t: w
→
��� ��� ¼ 1

10 FMM Fuzzy membership method [38] E ϕ;w
→

� �
¼Z

Ω
Q12ϕdx þ γ

Z
Ω
w
→
��� ���dx þ θ

2

Z
Ω

w−∇ϕ−b
→kþ1� �

dx s: t: ϕ∈ 0; 1½ �
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Then, we project w
→kþ1 as in Equation 27. Finally, the

Lagrangian multiplier λ
→

can be updated as the following:

λ
→

kþ1 ¼ λ
→

k þ θ w
→kþ1 − ∇ϕkþ1

� �
ð42Þ

The advantages of the proposed four projection methods
can be summarized as follows. (1): By introducing
fewer auxiliary variables (i.e., two for SBPM, ALPM and
three for DSBPM, DALPM) and considering the relation-
ship between TV regularization term ∫ Ω|∇Hε(ϕ)|dx or its
equivalent form ∫ Ω|∇ϕ|δε(ϕ)dx in Equation 22a and con-
straint term |∇ϕ| = 1 in Equation 22b, we developed a very
simple projection formula (27) in order to skillfully
avoid expensive re-initialization process. (2): The proposed
methods do not have many sub-minimization and sub-
maximization problems and penalty parameters due to the
fewer auxiliary variables, so it is very easy and efficient to
implement. (3): The final Euler-equations of proposed fast
projection algorithms only include a simple Euler-
Lagrange equation (24, 29, 35, 40) that can be solved via
fast Gauss-Seidel iteration, a generalized soft thresholding
formula in analytical form (26, 32), a fast iterative formula
for dual variable (37), and a very simple projection formula
(27). This technique can elegantly avoid computing the
complex curvature and thus improve the efficiency. (4):
All the proposed methods can preserve full LSF as a SDF
precisely without a very large penalty parameter. This is
due to the introduced Bregman iterative parameters
(23a, 34) and Lagrangian multipliers (28a, 39) and the
Figure 1 Comparison of our different projection methods with FMM.
of vessel. (a and g) Original image with red initial contour. (b-f and h-l) Th
DSBPM, DALPM, and FMM, respectively.
projection computation, so a relatively large time step is
allowed to be employed to speed up LSF evaluation as
we will use semi-implicit gradient descent flow for (24,
29, 35, 40). (5): Even if the LSF is initialized as a piece-
wise constant function, it can be corrected automatic-
ally and precisely due to the projection computation. In
conclusion, our proposed four projection methods will
have both higher computational efficiency and better
SDF fidelity, which can be validated in the next experi-
mental Section.

4. Numerical experiments
In this section, we present some numerical experiments
to compare the effectiveness and efficiency of our
methods (i.e., SBPM, ALPM, DSBPM, and DALPM) with
five previous ones (i.e., GDEWRM, GDEWORM, ALM,
PLM, and CALM). In addition, we also compare the
proposed four methods with the fast algorithm proposed
in [38] for Chan-vese model under VLFM framework
[20], which is named in this paper as fuzzy membership
method (FMM). Therefore, there are totally ten algo-
rithms involved in this paper. In order to make it easier
to assess the exact differences between these models, we
list the abbreviations of all methods, their full name, and
corresponding energy functionals in Table 1.
In order to make the comparisons fair among different

methods, we solve the PDEs in Equations 15, 17, 18, 19,
24, 29, 35, and 40 by semi-implicit difference scheme
based on their gradient descent equations. As for FMM,
we here adopt the method proposed in [38]. For CALM,
we use the Gauss-Seidel fixed point iteration for solving
By their application to segment an MR image of brain and a CT image
e final segmentation results (i.e., green contours) by SBPM, ALPM,



Figure 2 Zoom in small sub-regions of images in Figure 1 for detail comparisons. (a-j) The enlarged region of panels b to l of Figure 1,
respectively.
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the LSF ϕ instead of fast Fourier transformation (FFT)
for fair comparison with others. The initial LSF ϕ0 is
initialized as a same piecewise constant function for all
the methods except initializing a SDF for GDEWRM.
Equation 8 is solved by using the first order upwind
scheme in every five iterations. In experiments 1 and 2,
we set a one-step iteration for inside loop computation
of ϕ for all the methods. However, ten-step iterations
for ϕ in experiment 3 are required to achieve the final
3D SDFs fast. The parameter γ is usually formatted by
γ = η × 2552, η∈ (0,1). We set the spatial step h = 1 and
α1 = α2 = 1, τ = 0.125, ε = 3. The stopping criterion is
based on the relative energy error formula |Ek + 1 − Ek|/
Ek ≤ ξ, where ξ is a small prescribed tolerance and here we
set 10−3 in all numerical experiments. All experiments are
performed using Matlab 2010b on a Windows 7 platform
with an Intel Core 2 Duo CPU at 2.33GHz and 2GB
memory.

4.1 Experiment 1
In this experiment, we aim to compare the proposed
four methods with the fast algorithm FMM. As FMM
uses binary or label functions and continuous convex re-
laxation technique, it is very robust for initialization and
fast and guaranteed to find a global minimizer. Our
methods and FMM are applied to segment two medical
images. One is MRI image of brain in the first row of
Figure 1, and the other is CT image of vessel in the second
Table 2 Comparisons of iterations and computation time amo

Image (size) SBPM ALPM

Iterations CPU
time (s)

Iterations CPU
time (s)

Ite

Brain (123 × 155) 19 0.327 19 0.331

Vessel (95 × 152) 23 0.313 22 0.306
row. The five methods are initialized with the same
piecewise constant function (0 and 1). Here, we draw
the red contours to represent their initial contours in
the first column of Figure 1. Columns 2, 3, 4, 5, and 6
are the final segmentation results (i.e., green contours)
by SBPM, ALPM, DSBPM, DALPM, and FMM, respect-
ively. In order to make detailed comparisons, we crop a
part of region indicated by the yellow rectangle in
Figure 1 and enlarge them in Figure 2 where the first
four columns are the results by the proposed four
methods, respectively, and the last column is by FMM.
One can observe from Figures 1 and 2 that the white
matter in the brain and the vessel are extracted correctly
and perfectly by the four methods. However, the results
by FMM are less desirable. This can be clearly observed
in column 5 of Figure 2, where some undesirable results
of structure segmentation are marked with blue circles.
However, we cannot tell easily some major differences
among those segmentation results by all the four
proposed methods. Further, fewer iterations and fast
computational time shown in Table 2 demonstrate that
the four methods are comparatively efficient as the fast
FMM. In fact, the SBPM, ALPM, DSBPM, and DALPM
are just different iterative schemes to solve the same
system. The authors in [28] have proven their equiva-
lence for the TV model. The segmentation results in
Figure 1 and iterations and CPU times in Table 2
demonstrate consistency with their conclusion.
ng our proposed fast methods

DSBPM DALPM FMM

rations CPU
time (s)

Iterations CPU
time (s)

Iterations CPU
time (s)

20 0.308 20 0.325 22 0.326

22 0.309 22 0.303 24 0.329



Figure 3 Comparisons of our different projection methods with previous five ones. To segment a squirrel image, an ultrasound baby
image, a leaf image, and a synthetic noise number image. (a, h, o, v) Original image with initial green contour. (b, i, p, w) Results by GDEWRM.
(c, j, q, w) Results by GDEWORM. (d, k, i, y) Results by ALM. (e, l, s, z) Results by PLM. (f, m, t, I) Results by CALM. (g, n, u, II) Results by our
projection methods (from top to bottom is SBPM, ALPM, DSBPM, and DALPM, respectively).
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4.2 Experiment 2
In this experiment, we will compare the efficiency of our
methods with that of GDEWRM, GDEWORM, ALM,
PLM, and CALM. All nine methods are run on four real
and synthetic images including squirrel, ultrasound baby,
leaf, and synthetic noise number images, respectively.
In the first column of Figure 3, we initialize piecewise
constant function (0 and 1) for all methods except
Table 3 Comparison of iterations and computation time using

Methods Iterations

Squirrel Ultrasound baby Leaf Numb

(155 × 122) (180 × 175) (128 × 87) (128 × 1

GDEWRM 165 372 98 100

GDEWORM 166 108 85 38

ALM 46 100 64 31

PLM 109 92 69 34

CALM 32 39 62 26

SBPM 24 28 28 14

ALPM 23 26 27 15

DSBPM 24 25 29 13

DALPM 22 26 28 14
GDEWRM, which is initialized with a SDF. Columns 2,
3, 4, 5, and 6 of Figure 3 are the results by GDEWRM,
GDEWORM, ALM, PLM, and CALM respectively. In
the last column of Figure 3, we only present the final
segmentation result of squirrel, ultrasound baby, leaf,
and number image by SBPM, ALPM, DSBPM, and
DALPM respectively, because the visual effect and com-
putational efficiency for all the four proposed methods
different segmentation methods

CPU time (s)

ers Squirrel Ultrasound baby Leaf Number

27) (155 × 112) (180 × 175) (128 × 87) (128 × 127)

4.296 12.769 3.070 4.230

2.543 4.905 1.978 1.666

1.243 3.803 1.163 0.945

1.211 2.813 0.738 0.596

0.696 1.365 0.685 0.498

0.389 0.723 0.256 0.202

0.372 0.707 0.237 0.212

0.381 0.692 0.258 0.192

0.351 0.701 0.262 0.208



Table 4 Comparison of iterations, computation time, and
SDF fidelity using different segmentation methods

Methods Iterations CUP time (s) SDF fidelity value

GDEWRM 200 77.236 0.0385

GDEWORM 2000 224.094 0.4407

ALM 600 69.624 1.9005

PLM 500 46.644 0.0441

CALM 200 18.545 0.0259

SBPM 50 5.296 0.0149

ALPM 50 5.197 0.0149

DSBPM 50 4.924 0.0153

DALPM 50 5.213 0.0153
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are very similar on these images. From Figure 3, we can
see that all the methods do a relatively good performance
for segmenting both real and noise synthetic images.
However, compared with other methods, all the four pro-
posed methods perform better, which can be observed in
the last column of Figure 3. In addition, we record total it-
erations and computation time of all nine methods for
segmenting these images in Table 3. In order to make the
experimental data in Table 3 meaningful, we draw Figure 4
to illustrate the differences regarding iterations and com-
putation time. Figure 4a,b,c,d shows the total iterations
with bar chart of all nine methods for segmenting squirrel,
ultrasound baby, leaf, and number images, respectively,
and Figure 4e,f,g,h draws the total CPU time for segment-
ing these images. According to Figure 4e,f,g,h, the compu-
tational time of the nine methods can be clearly ranked in
the following order: SBPM ≈ALPM ≈DSBPM ≈DALPM <
CALM < PLM <ALM <GDEWORM <GDEWRM. The
reason leading to this rank can be justified as follows. (1)
All the methods compute faster than the GDEWRM due
to its expensive re-initialization process. (2) Among these
methods without re-initialization, ALM, PLM, and CALM
are running faster than GDEWORM. For GDEWORM,
the CFL condition limits its time step so that it cannot be
fast, while ALM improves convergence rate by introdu-
cing Lagrange multiplier λ. PLM uses Lagrangian method
and variable splitting technique to enhance the evolution
(a) Iterations of all methods  (b) Iterations of all methods for
 for squirrel segmentation ultrasound baby segmentation

(e) CPU time of all methods  (f) CPU time of all methods for
 for squirrel segmentation ultrasound baby segmentation

Figure 4 Graph Expression of iterations and CPU time of all the meth
segmenting squirrel, ultrasound baby, leaf and synthetic noise number ima
speed, so PLM is faster than ALM. However, both ALM
and PLM are limited by CFL condition and their speed is
slowed. CALM introduces many scalar or vector auxiliary
variables and Lagrangian multipliers to make each sub-
problem very simple as well as can avoid CFL condition,
so it computes faster than ALM and PLM. (3) All the pro-
posed methods can achieve the best efficiency and satis-
factory segmentation results because the nonlinear
curvature is replaced by the linear Laplace operator in
Equations 24 and 29 or the dual divergence operator in
Equations 35 and 40 as simple projection technique (27)
(c) Iterations of all methods (d) Iterations of all methods 
 for leaf segmentation  for number segmentation

(g) CPU time of all methods (h) CPU time of all methods 
 for leaf segmentation  for number segmentation

ods in Table 3. (a), (b), (c), and (d) Iterations of all methods for
ges respectively. (e), (f), (g), and (h) Record of their CPU time.



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 SDF fidelity comparisons of our projection methods with previous methods. (a, e, i, m, q, u) Initial LSFs. (b, f, j, n, r, v) Final
LSFs. (c, g, k, o, s, w) Initial contours marked by red rectangle and final segmentation results indicated by green contours. (d, h, l, p, t, x) Mean
value of penalty energy plots ∫ Ω(|∇ϕ| − 1)2dx (closeness measure between LSF and SDF).
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is used. In comparison with CALM, our projection
methods have fewer sub-problems, so it is very efficient. In
addition, by introducing the Bregman iterative parameters
(23a, 34) and Lagrangian multipliers (28a, 39), a relatively
large time step can be used to speed up LSF evaluation.
Therefore, our methods compute faster than CALM and
their efficiency ranks first. (4) The proposed four fast
methods (i.e., SBPM, ALPM, DSBPM, and DALPM) are
actually equivalent, which is validated in [25]. Therefore,
these projection methods have very similar computation
speed.

4.3 Experiment 3
In this experiment, we aim to compare SDF fidelity pro-
duced by our four methods and the other five. We seg-
ment a synthetic image (100 × 100) to obtain the SDF
fidelity value in Table 4 as explained below. The first col-
umn of Figure 5 is the initial LSFs for all the methods.
As there is no constraint of LSF as a SDF in GDEWRM,
panel a is initialized as a SDF for this method. However,
if it is initialized as a piecewise constant function, the
LSF will be far away from SDF during the contour evalu-
ation, even though the re-initialization process may be
not able to pull LSF back to SDF. In this case, the com-
parisons of SDF preservation with other methods with-
out re-initialization are not very fair. Based on the above
observation, Figure 5e,i,m,q,u is initialized as the same
piecewise constant function for GDEWORM, ALM,
PLM, CALM, and SBPM, respectively. As all of our four
projection methods achieve almost the same results,
here, we only give the experimental data for SBPM in
the last row of Figure 5. In the second column of
 (a) Iterations of all methods for a synthetic (b) CPU time of all m
image segmentation in Fig 5 image segmentatio

Figure 6 Graph expression of iterations and CPU time and SDF fidelit
CPU time, and SDF fidelity value of all methods, respectively.
Figure 5b,f,j,n,r,v are the final 3D LSFs of GDEWRM,
GDEWORM, ALM, PLM, CALM, and SBPM, respect-
ively. In the third column of Figure 5c,g,k,o,s,w are the
same initial contours marked by red rectangle and the
final segmentation results marked by green contours of
above methods. In the last column, we draw the plots of
mean value of penalty energy ∫ Ω(|∇ϕ| − 1)2dx by the
above corresponding methods, which is used to measure
the closeness between LSF and SDF. We denote SDF fi-
delity value as mean value in the last iteration for every
method. The smaller this value is, the closer the LSF and
SDF will be. We also put all these results in Table 4 for
easy comparison.
Note that the final LSF of GDEWRM in Figure 5b is

very close to SDF, which is validated by its very small
SDF fidelity value (0.0385) in Table 4. However, the final
green segmentation contour in Figure 5c shows that the
zero level set of Figure 5b by this GDEWRM shrinks
and cannot reach the exact location of the object. In
fact, in order to obtain Figure 5b, this GDEWRM needs
300 re-initialization iterations after every five-step iter-
ation of LSF evolution. So it is very expensive (total
77.236 s reported in Table 4), and this re-initialization
leads to large jumps in its penalty energy plots in
Figure 5d. For GDEWORM and PLM, their experimen-
tal results are displayed in the second and fourth row,
respectively. Although their final SDF fidelity values are
close to zero (i.e., 0.4407 for GDEWORM and 0.0441 for
PLM), their final SDFs as shown in Figure 5f,n are not
preserved nicely. Moreover, due to CFL condition, we
need to choose a very small time step 10−4 and a very
large penalty parameter 2 × 104 for GDEWORM and
ethods for a synthetic (c) SDF fidelity value of all methods for a
n in Fig 5  synthetic image segmentation in Fig 5

y of all the methods in Table 4. (a), (b), and (c) Record iterations,



Duan et al. EURASIP Journal on Image and Video Processing 2014, 2014:7 Page 15 of 16
http://jivp.eurasipjournals.com/content/2014/1/7
PLM, respectively. This selection is aimed to guarantee
the closeness between the LSF and SDF and stability of
LSF evolution, but this leads to a large number of total
iterations (i.e., respective 2,000 and 500). As we analyzed
in experiment 2, PLM adopts variable splitting technique
and therefore its total computation time and iterations
are much less than GDEWORM. As large penalty pa-
rameters are employed in PLM and GDEWORM, we
find that the final green contours by these two methods
cannot segment the object precisely. For ALM, it im-
proves convergence rate by introducing Lagrange multi-
plier λ so that we can choose a slightly larger time step
10−2 and a relatively smaller penalty parameter 10−1 to
evolve the LSF. However, we conducted a great number
of experiments for this method and note that it is very
sensitive to parameters selection. Also, its final SDF fi-
delity value is always the largest among all the methods.
This may be due to the fact that the introduced Lagrangian
multiplier in ALM breaks the CFL condition. The fourth
row of Figure 5 that demonstrates CALM is able to
achieve a better 3D SDF (shown in Figure 5f) and a
smaller SDF fidelity value (0.0259 shown in Table 4) than
those by other methods except our methods. The compu-
tation speed of this method has been improved to a great
extent as observed in Table 4 and Figure 5t. The last row
of Figure 5 presents the experimental data by our pro-
posed SBPM. Here, we emphasize that the other three
proposed methods can achieve almost that same SDF and
efficiency as SBPM. From Figure 5v, the final 3D LSF is
perfectly preserved as SDF fidelity value is only 0.0149, the
smallest one among all the methods in Table 4. Most im-
pressively, we find that penalty parameter 10 can be large
enough to penalize accurately the full LSF as SDF due to
the introduced Lagrangian multiplier, Bregman iterative
parameter, and the precise projection computation. In this
case, a relatively large time 10−2 can be employed to speed
up LSF evolution as shown in Figure 5x. In addition, even
if the LSF is initialized as a piecewise constant function
for SBPM, it can be corrected automatically and precisely
due to the projection formula (27).
Lastly, we present Figure 6 that includes three bar

graphs which correspond to iterations, CUP time, and
SDF fidelity value in Table 4, respectively. However,
Figure 6b shows that the slowest method is GDEWORM
rather than GDEWRM, which is inconsistent with the
conclusion in experiment 2. In fact, the time step in
GDEWRM is set 10−2, 100 times larger than that set for
GDEWORM. We find that this time step together with
300 re-initialization iterations would not broke the sta-
bility of LSF evolution and simultaneously is able to
achieve a very desirable SDF. In contrast, for the pur-
pose of preserving distance feature, we should choose a
very large penalty parameter for GDEWORM, which
limits the speed of LSF evolution. Therefore, in this
experiment, on the premise of preserving distance feature,
the GDEWRM is faster than GDEWORM. From Figure 6c,
the ability of SDF fidelity can be ranked as SBPM ≈
ALPM ≈ DSBPM ≈ DALPM > CALM > GDEWORM >
PLM >GDEWRM >ALM. In conclusion, this experiment
validates that the four projection methods perform excel-
lently in both accuracy and speed of preserving SDF.

5. Conclusions
In this paper, by investigating the relationship between
the L1-based TV regularizer term of Chan-Vese model
and the constraint on LSF and introducing some auxil-
iary variables, we design fast split Bregman projection
method (SBPM), augmented Lagrangian projection
method (ALPM), dual split Bregman projection method
(DSBPM), and dual augmented Lagrangian projection
method (DALPM). All these methods can skillfully avoid
the expensive re-initialization process and simplify compu-
tation of curvatures. In our methods, there are fewer sub-
problems and penalty parameters, so they can be solved ef-
ficiently. Moreover, the full LSF can be preserved as a SDF
precisely without a very large penalty parameter so that a
relatively large time step can be used to speed up LSF
evaluation. In addition, even if the LSF is initialized as a
piecewise constant function, it can be corrected automatic-
ally and accurately due to analytical projection computa-
tion. Simulation experiments have validated the efficiency
and performance of proposed methods in terms of compu-
tational cost and SDF fidelity.
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